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Abstract—A Fuzzy Data Envelopment Analysis (FDEA) is a
popular technique to measure the relative efficiency of decision-
making units (DMUs) with imprecise and vague data for multiple
inputs and outputs. In real-life applications, there are two types
of outputs: desirable outputs and undesirable outputs. In this
paper, we have proposed a new version of FDEA model, named
as Parabolic based Fuzzy Data Envelopment Analysis (PFDEA)
model that computes parametric efficiency of a DMU in the
presence of undesirable outputs. The inputs and outputs are
represented in the form of asymmetric parabolic fuzzy numbers
in the proposed model. A new technique is introduced to convert
PFDEA model into a linear programming problem using a—
cut approach with a novel section formula based method, named
as Ratio Division Method. This method is used to perform the
complete ranking of the DMUs in a numerical example using
Cross-Efficiency Method to provide a complete ranking of the
DMUs.

Index Terms—Data envelopment analysis, Fuzzy data envelop-
ment analysis, Undesirable outputs, Fuzzy arithmetic operations

I. INTRODUCTION

Lotfi A. Zadeh generalized the classical set theory by
introducing Fuzzy Set (FS) theory [40]. The fuzzy sets, which
are defined on the set R of real numbers, are known as
Fuzzy Numbers (FNs). A fuzzy number is the special types of
fuzzy set which are normal, compact and convex. The most
commonly used fuzzy numbers are triangular, trapezoidal, and
parabolic of membership functions. Since the fuzzy numbers
describe the physical world situations more realistically than
the crisp numbers, therefore, they are utilized to solve various
real-world problems such as in image processing [3], machine
learning [11], data envelopment analysis (DEA) [5], and many
others.

Data envelopment analysis (DEA) is a non-parametric linear
programming technique to construct the experimental produc-
tion frontiers, to evaluate the relative efficiency of the orga-
nizations under study or decision-making units (DMUs) with
multiple inputs and outputs data. DEA, which was proposed
by Charnes et al. [5] has been widely, implemented in several
contexts, such as the efficiency of hospitals in providing their
services [19] manufacturing efficiency [28] productivity of
OECD countries [9]. The a recent theoretical survey in DEA
has been discussed in [10].
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Initially, in the traditional DEA, such as CCR and BCC
models, all inputs and outputs values of DMUs are consid-
ered as specific numerical values or crisp numbers. How-
ever, in real-world applications, many complicated factors
are involved, which results to imprecision and vagueness
in the data. To deal with such uncertain information, the
notion of fuzziness was introduced in the Data Envelopment
Analysis model and is popularly known as Fuzzy Data En-
velopment Analysis (FDEA) model. Several techniques have
been developed in FDEA to deal with uncertainty in data. For
instance, based on a— level approaches, Kao and Liu [18]
formulated a pair of parametric programs to derive bounds
on the membership functions of the efficiency score of the
fuzzy BCC model and applied their work to the efficiency
score of 24 university libraries in Taiwan. Saati et al. [30]
suggested a fuzzy CCR model as a possibilistic programmings
problems. Wang, Luo, and Liang [37] constructed the FDEA
models from the perspective of fuzzy arithmetic operations
and applied them to the manufacturing enterprise. Angiz et al.
[2] used a discrete approach based on a fuzzy CCR model.
Puri and Yadav [26] formalized a concept of fuzzy input mix-
efficiency in FDEA and applied for their work in the banking
sector. All the mentioned researcher utilized the triangular-
fuzzy numbers (TFNs).

The assumption of standard DEA models, which proposed
by Charnes et al. [5] are for desirable data. However, in real-
life applications, the undesirable inputs and/or outputs might
be present in the manufacturing process, which also needs to
be counted. In order to deal with undesirable outputs in DEA,
Scheel [32] coordinated direct and indirect approaches in
DEA. Indirect approaches transforms the undesirable outputs
by a monotone decreasing function to make it desirable; it can
be seen in various studies of Scheel [32], Seiford [33] and
Liu et al. [23]. On the other side, direct approaches avoid the
transformation process and incorporate the undesirable outputs
directly into the DEA and FDEA models. The literature of
direct approaches on DEA and FDEA are discussed in [20] and
[26] respectively. DEA models have been extended to various
new version [13], [27], [31] to handle real-world applications
of imprecise and undesirable data. In [20], the desirable and
undesirable outputs are considered as a weighted sum in the
optimization function of the DEA model. The positive weights



are allotted to desirable outputs, whereas negative weights are
given for undesirable outputs, to increase the efficiency of the
DMUs. The model has been named as the DEA model with
undesirable output (DEA-UQ). Meanwhile, to deal with the
impreciseness and vagueness of complex data, a fuzzy version
of the DEA models have been introduced in the literature [28],
[29] and the model has been named as FDEA-UO.

DEA as well as FDEA models are producing more than one
efficient DMUSs and no further discrimination between them.
Therefore; the major draw back of DEA and FDEA models
are the lack of discrimination power. To increase the discrim-
ination power of DEA and FDEA models, there are various
accessible approaches in the literature, (see Adler, Friedman,
and Sinuany-Stern [1], Liang et al. [22], Jahanshahloo, Lofti,
Khanmohammadi, Kazemimanesh, and Rezaie [15], Wu, Sun,
Liang, and Zha [35] and Guo and Wu [13]), and Sexton et al.
[34]. One among them is the cross-efficiency technique, which
is characterized to evaluate the efficiency score of each DMUs,
n times via using the optimal weights of n linear programming
(LP). In another word the DMUs are self and peer evaluated.

In the above literature, various approaches have been pro-
posed to deal with inefficient DMUs for the imprecise and
vague datasct. The efficiency of a DMU is improved by
maximizing its output value and by minimizing its input
value to approach the efficient-frontier. Therefore, study on
performance of the parameter « is done to find the least value
of the input and maximum value of the output to improve
the efficiency of the DMU. The a-cut approach converts
the fuzzy number based data into interval data. Most of
the researchers have used triangular fuzzy numbers to deal
uncertain data. In the paper, parabolic fuzzy numbers are used
to deal the uncertainty of the data. A PFN extends the input
and output intervals, thereby providing the smallest lower
bound for the input value and largest upper bound for the
output value and hence making the DMU more efficient. Any
inefficient DMU corresponding to PFNs can reach faster on
the efficient-frontier rather than using TFNs. In addition, we
have proposed a parametric FDEA model to deal undesirable
output named as Parabolic based Fuzzy Data Envelopment
Analysis with Undesirable Outputs (PFDEA-UO) model. A
new technique named as Ratio division is also introduced to
convert the input and output intervals for each « to obtain their
corresponding crisp numbers for solving their corresponding
linear programming model and perform the complete ranking
of the DMUgs.

The rest of the paper is organized into four sections.
Section II outlines the essential related preliminaries of the
proposed work. In section III, a parametric FDEA model has
been proposed, named as Parabolic Fuzzy Data Envelopment
Analysis with undesirable outputs (PFDEA-UO) model with a
novel defuzzification technique called Ratio Division Method.
Section IV provides the experiment of the proposed model
with its analysis using cross efficiency method. Finally, section
V states the conclusion of the paper.

II. PRELIMINARIES
This section gives some basic definitions and some mathe-
matical formulations of concepts used in the paper.
A. Definition: Triangular Fuzzy Number [40]

A triangular fuzzy number (TFN) denoted by Ay isa triplet
(a”,a™, a") defined by the membership function p1 5, : X —
[0,1] given by:

a‘”,__“a , ol <z <aM
. —J a=d” M . U
pi (@)= 52 ,d" <z<a 1
0 , otherwise

B. Definition: Parabolic Fuzzy Number [40]
A parabolic fuzzy number (PFN) denoted by Ay is a

(a®,a™,a") defined by the membership function i 5 = X —
[0,1] given by:
TN o M L
g Je2e o) aF<a<aV
oV (z—2aM +aV
piy () = QU522 M <e<a? @)

0 , otherwise

The triangular and parabolic [uzzy number can be illustrated
in the Fig 1 as:

TFN

PFN

Membership Function
2
T

Fig. 1. Triangular and Parabolic Fuzzy number

C. Definition: a—cut Approach [40]

Let A be a fuzzy set defined on universe discourse X. Let o
be a parameter € [0, 1], then the a— cut for A can be defined
as crisp sets as follows:

A, = {:1:|f~1(x) > a} 3)

D. Arithmetic Operations on Fuzzy Numbers [36]

Suppose A = (a”,a™,aV) and B = (b",bM,bY) be two
positive triangular or parabolic fuzzy numbers. So, the fuzzy
arithmetic operations are defined as:

A+ B = (aF +bE, ™ 4 M oY +0Y) 4)
A—B=(a"=b".a™ —bM o —b") Ja” >V (5)
A-Bz(aL-bL,aM-bM,aU-bU) 6)

o al oM U



E. Fuzzy Data Envelopment Analysis (FDEA) Model [30]

Suppose there are n decision making units (DMUs), with
m different inputs to produce s different outputs. Let X €
R™*"Y € R°*™ be the input matrix and output matrix
respectively. Consequently, for the k** (k = 1,2---,n)
DMU, the &k, (i = 1,2,--- ,m) and Gpg, (r = 1,2,--- ,5)
are non-negative fuzzy inputs and fuzzy outputs respectively.
Hence the mathematical formulation is as below:

S A~
Zr:l U”I’k’ y’l”k

Z:llvzki"zk
S ~
WUy Yy i ~
st M <1,Vj=1,2---

max Ey =

T - (8)
>is1 Vigdij
U > 0V, v > OV3
Where 1, is the " weight of output and v;, is the i*" weight

of input.

F. Cross-Efficiency Method [34]

The cross-efficiency technique is a square matrix of n X n,
which is deduced from the calculation of the efficiency value
of each DMU n times via using the optimal weights of n linear
programming, and could be obtained through;

s
Erzl UrkYrj Vk,j

hij = ) ©)
! Zgl VikTij5
k=1,2,--- n, 7=1,2,--- ,n.
Where 1, is the " weight of output and vy, is the i*" weight

of input, similarly y,; is the r** output of j'* DMU and
is the #** input of j** DMU.

III. PROPOSED PARABOLIC BASED Fuzzy DATA
ENVELOPMENT ANALYSIS WITH UNDESIRABLE OUTPUTS
(PFDEA-UO) MODEL

In this section, an improved version of Fuzzy Data Envel-
opment Anaysis model, named as Parabolic based Fuzzy Data
Envelopment Analysis with Undesirable Outputs (PFDEA-
UO) model. Suppose there are n decision making units
(DMUs) with m different inputs to produce s different outputs
(s1 desirable outputs and s» undesirable outputs), such that
s1 4+ 59 = s. Let X € R™X™ Y9 ¢ Rv*n Yb ¢ Rsaxn
be the input matrix, desirable output matrix, and undesirable
output matrix respectively. Consequently, for the k", (k =
1,2---,n) DMU, the z;, = (zf,2M 2U), (i=1,2--- ,m)
Yk = (yrk7ygljc\/[7yrk) (T = 1,2, s1), and g =
(ygﬁ, yzk , ypk ), (p=1,2,- -, s2) are non-negative parabolic
fuzzy inputs, parabolic fuzzy desirable outputs and parabolic
fuzzy undesirable outputs respectively. Hence the proposed
PFDEA-UO model is defined as below:

Model 1: PFDEA-UO Model

max Fj, =

gM

1 bM
zf‘ 1 u‘rk(yrk s Yk yrk )

2
Z; 1 pk(ypk7ypk 7ypk)

Z;zl Uikz( Lk T %7 U)

s.t:
1 M 2 bM , bU
Zf‘ 1 (yr] 7y$] 7.%«]) Z; 1 p](yp] ypj 7yp])
m
D ie1 Vij (szJ xz]“jI: :rZ)
(10)

<(L,1,1),(=1,2,--- ,n).
9. >0Vr, ungOVp, v > OVi

where u, is the r*" weight of desirable output, ugk is pth
weight of undesirable output and v;y is i*" weight of input.

The analysis of the proposed model for cach DMU is
performed on the basis of its Efficiency, E; computed on
various levels as follows:

1. Firstly, the Efficiency, Fj for kth DMU is calculated on
the bounds of Parabolic fuzzy numbers, known as lower
bound Efficiency £}, middle bound Efficiency E} and
upper bound Efficiency EY .

2. Secondly, the Efficiency, Ej for kth DMU is also calcu-
lated between the bounds of Parabolic fuzzy numbers for
each input and output value of kth DMU for the complete
analysis of the performance of the DMUs.

Consequently, based upon fuzzy arithmetic operations [36]
and linear transformation [5], the following three linear pro-
gramming (LP) models are obtained. The first derived model
is termed as Lower-Efficiency with Undesirable Outputs (LE-
UO) Model. Its mathematical formulation is given as:

Model 2: LE-UO Model

max BF =

Z urkyrk Z upk yplc

s.t:

m

U
g VikZy = 1
i=1

S1

”’jy”'J Z “me ZUU ri; <0, V5. (11)
r=1
S1
L .
Zuﬂjyfj Zumym >0, V5.
'r':
uly >0Vr, u kaOVp,vikZOVi

The second derived model is termed as Middle-Efficiency
with Undesirable Outputs (ME-UQO) Model . Its mathematical
formulation is given as:



Model 3: ME-OU Model

S1 So
M _ g ,9M b, bM
max E _Zurkyrk _Zupkypk
r=1 p=1
s.t:
m
M
i=1
S1 82 m
g ,9M b . bM M .
Zum‘ym’ _Zupjypj _vaxzj <0,V (12)
r=1 p=1 i=1
S1 S2
g ,9M b, bM .
doull = upup >0, Vi
r=1 p=1

ud >0Vr, uszOVp, v > OVi

The third derived model is termed as Upper-Efficiency with
Undesirable Outputs (UpE-UO) Model. Its mathematical for-
mulation is given as:
Model 4: UpE-UO Model
S1 52
max B = Zufkyfg -

r=1

b, bL
UpkYpk
p=1
s.t:

m
E vikmﬁﬂ =1
i=1
51 52

g ,9U _ b, bL
Z UrjYr; Z UpjYpj
r=1 p=1

S1 82

9 9L _ b ,9U :
Doululy =Y by >0, V5
r=1 p=1

uly >0V, udy > 0Vp, vy > OVi

m
= vzl <0, Vi (13)

i=1

The efficiency Ej, for k& DMU is to be found out for the
values of imprecise data lying between the bounds of the
PFNs as well. To do so, a— cut approach is implemented
that provides intervals for each input and output value of
the DMUs. So, parabolic fuzzy numbers the interval obtained
using the a-cut approach is given as:

zeld”(1—vVI—a)+a"VI—a,d" (1 —v1I—a)+a"VI—a

(14)

To find the least and the most admissible bounds for the
inputs and the outputs data, the nested interval in (14) are
transformed to crisp numbers using proposed Ratio division
method.

Ratio Division Method: Let [A, B] be an interval, then for
0< R <1, we get x4 and xp using basic section formula.

A+R-B

S (>
A-R+ B

=R (10

x4 and xp are the points close to A and B, respectively.
The middle point of the interval is obtained when R = 1. The
interval given in (14) gives A = a™ (1—/1 — a)+a”V/1 — @)
and B=aM(1-+y1—-a)+a"V1-a.

Using the Ratio division method, we get the crisp values
for each input interval and output interval using parametric
bounds for each PFN input and PFN output value mentioned
in (14).

L U T
L MO T a)+ (g + B2y )Vl —

e 1+R a7
Fl =M1 - Vi—a)+ (W2 + Rl.igg)m "
Gpk = k' (1= VI —a) + g + Ri.izzg)m (19)

# =l (- T + L Tf%iz)m (20)
i =1 vima) + ok Hfg)\/m 21
Y (- Ty 4 T iib;é N

Using Eqn. (17)-(22), we obtain two corresponding linear pro-
gramming models named as Lower Parametric Efficiency with
Undesirable Outputs (LPrE-UQO) Model and Upper Parametric
Efficiency with Undesirable Outputs (UpPrE-UO) Model as
follows:

Model 5: LPrE-UO Model

S1 ED)
oL _ 9 ~gL b ~gU
max B = Zurkyrk - Zupkypk
r=1 p=1
s.t
m
~U
Z'Uikxik =1
i=1
S1 S2 m
g ~gU b ~gL L .
Soul gl =S ubglt =Y vydh <0, V5 (23)
r=1 p=1 i=1
S1 S2
g ~9L b ~gU .
Do ulity = > updy >0, Vi
r=1 p:l

udy >0Vr, uby >0Vp , vy > OVi

Model 6: UpPrE-UO Model

S1 §2
U g ~gU b ~gL

max E = E U Yrk _Zupkypk

r=1 p=1
s.t
m

~L
E VikZTy, = 1
i=1
S1 S2 m
_gU b ~gL ~L .

E ul gl — g Uy Gos — E vt <0, Vi (24)
r=1 p=1 =1

S1 S

9 ~gL b ~9U ;
Dol = Y upiny >0, Vi
r=1 p=1
ud >0Vr, uszOVp, v > 03

The solution procedure of Model 5 and Model 6 are explained
by the Algorithm 1.



Algorithm 1: Procedure to solve the Model S and Model 6

Input: Dataset (Parabolic Fuzzy inputs, desirable outputs, undesirable

outputs) and o where a € [0, 1].

Process:

These models are producing more than one efficient DMUs
and no further discrimination between them. Therefore; the
major draw back of DEA models are the lack of discrimination
power. To increase the discrimination power of DEA models,
there are various accessible approaches in the literature. Cross-

1) Select a ratio 0 < R < 1. efficiency is one of the techniques, which is characterized to
2) Select the parametric bounds of inputs with Eq. (17) and (20). evaluate the efficiency score of each DMUs, n times via using
3) Select the parametric bounds of desirable outputs with Eq. (18) . . N, .

and 21). the optimal weights of n linear programming (LP). Eventually,

4) Select the parametric bounds of undesirable outputs with Eq. (19) the output result is the cross-efficiency matrix of n xn for each

and (22). stage of a € [0, 1], and could be obtained through:
Output:
1) Lower-efficiency score (EL) Zfl gkgf] —

= b
2) Upper-efficiency score (EU) hij = pk rJ ,VEk, 5. (25)

3) Cirisp efficiency or Mlddle efficiency score. Zz— vlkxl]

In addition, all the entries of cross-efficiency matrix are
between zero and one,i.e 0 < th < 1. The diagonal hkk
demonstrates the standard DEA efficiency score, hkk =1, for
efficient and hy, < 1, for inefficient units. Furthermore; the
average of these efficiencies are known as the average cross-
efficiency(ACE). So, ACE is defined by:

Data Set

_ 1
kg = — >l (26)
k=1

ACE is used to rank all the DMUs (efficient as well as
inefficient). According to its decreasing values, the complete

Yes
Uncertainty —»‘ Fuzzify H PFNs J

No l ranking produce by the algorithm 2.
DEA-Model Defuzzify <«— FDEA-Model Algorithm 2: Ranking of DMUs using Cross-Efficiency Method
-Wode Input: Dataset (Parabolic Fuzzy inputs, desirable outputs, undesirable
l outputs) and the values of a € [0, 1].
Process:
Result Section 1) Select a ratio 0 < R < 1.
Formula 2) Select the parametric bounds of inputs with Eq. (17) and (20).

3) Select the parametric bounds of desirable outputs with Eq. (18)
and (21).
4) Select the parametric bounds of undesirable outputs with Eq. (19)
and (22).
Output:

1) Cross-efficiency matrices (hk 3)-
2) Average cross-efficiency matrix (h;C ).

TABLE 1 3) The ranking result of DMUs with respect to decreasing values of
ARCHITECTURE OF THE PROPOSED MODELS Rij.

Fig. 2. Flowchart of Parametric FDEA Model

Model 1: Proposed PFDEA-UO Model

Three bounds of Parabolic Fuzzy Numbers splits the Model using

Fuzzy Arithmetic Operations as below: IV. EXPERIMENT AND ITS ANALYSIS

This section shows the empirical part of our theoretical
work. In this section, the numerical example, along with tables
and figures, are included. The numerical example consist
of 5 DMUs with two inputs, one desirable output and one

1) Model 2: Lower Efficiency with Undesirable Outputs Model
2) Model 3: Middle Efficiency with Undesirable Outputs Model
3) Model 4: Upper Efficiency with Undesirable Outputs Model

Using the a—cut approach and the Ratio Division method the final
models are obtained as:

undesirable output given in [27]. The data is specified as
Parabolic fuzzy numbers and arranged in TABLE II.

TABLE III presents the result of the Model 5 and Model 6
for different values of a—cut approach. To increase the value
of o where o € [0,1] the efficiency score of Model 5 is
increasing while the efficiency score of Model 6 is decreasing,

1) Model 5: Lower Parametric Efficiency with Undesirable Outputs
(LPrE-UO) Model

2) Model 6: Upper Parametric Efficiency with Undesirable Outputs
(UpPrE-UO) Model

and for o = 1 both models of Model 5 and Model 6 provide
similar efficiency score, which is equivalent to the efficiency



TABLE 11
INPUT-OUTPUT DATA

DMUs Input 1 Input 2 Desirable Output Undesirable Output
A (2,4,5) (3,3.3) (1.5,1.5,1.5) (0.5,0.7,0.8)
B (5.7,8) (3,3.3) (3,3,3) (0.2,0.3,0.35)
C (7.5,8,8) (1,1,1) (4,4,4) (0.7,0.8,0.9)
D (3.4,6) (2,2,2) (2.5,2.5,2.5) (0.3,0.35,0.45)
E (1,2,3) (4,4,4) (1.2,1.2,1.2) (0.13,0.15,0.15)
TABLE III
LOWER EFFICIENCY AND UPPER EFFICIENCY OF TABLE II
DMUs Lower-efficiency score ((E;)L)
a=00]| a=01|a=02]a=03|a=04]a=05|a=06|a=07]|a=08| a=09 [ a=1
A 0.3779 0.3835 0.3896 0.3963 0.4061 0.4195 0.4351 0.4537 0.4772 0.5102 0.6000
B 0.6005 0.6095 0.6193 0.6300 0.6418 0.6550 0.6702 0.6881 0.7104 0.7411 0.8241
C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
D 0.6464 0.6583 0.6713 0.6858 0.7021 0.7208 0.7426 0.7690 0.8030 0.8521 1.0000
E 0.4429 0.4583 0.4755 0.4948 0.5169 0.5427 0.5735 0.6119 0.6627 0.7397 1.0000
DMUs Upper-efficiency score ((Ey)Y)
a=00| a=01|a=02| a=03|a=04 | a=05| a=06 | a=07]|a=08| a=09 | a=1
A 0.8100 0.7936 0.7772 0.7609 0.7445 0.7278 0.7107 0.6927 0.6731 0.6501 0.6000
B 0.8612 0.8590 0.8568 0.8544 0.8519 0.8492 0.8463 0.8431 0.8394 0.8347 0.8241
C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
E 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
TABLE IV
AVERAGE CROSS-EFFICIENCY VALUE
DMUs Average cross-efficiency (ACE) values
a=00| a=01|a=02 | a=03 | a=04 | =05 | a=06 | a=07 | a=08 | a=09 | a=1
A 0.6527 0.6271 0.6400 0.6141 0.6007 0.5868 0.5721 0.3597 0.3346 0.3027 0.2259
B 0.7594 0.7542 0.7568 0.7514 0.7486 0.7455 0.7422 0.7747 0.7703 0.7647 0.7525
C 0.8142 0.8208 0.8174 0.8244 0.8282 0.8324 0.8370 0.7992 0.8033 0.8085 0.8215
D 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
E 0.7673 0.7696 0.7684 0.7709 0.7722 0.7737 0.7754 0.7774 0.7797 0.7829 0.7828
TABLE V
RANKING OF DMUS
DMUs Ranking
a=00 | a=01]| a=02| a=03 | a=04| a=05|a=06 | a=07 | a=08 | a=09 | a=1
A 5 5 5 5 5 5 5 5 5 5 5
B 4 4 4 4 4 4 4 4 4 4 4
C 2 2 2 2 2 2 2 2 2 2 2
D 1 1 1 1 1 1 1 1 1 1 1
E 3 3 3 3 3 3 3 3 3 3 3

value of crisp data. Accordingly, three distinct efficiencies are
defined as follows:

1) Fully efficient or E; *: All those DMUs, which are
efficient concerning the lower efficiency model.

2) Efficient or E;: All those DMUs, which are efficient
concerning the middle-efficiency model or model of
crisp data.

3) Inefficient or E; : All those DMUs, which have an
optimal value of less than one concerning the upper-
efficiency model.

Therefore, TABLE III classifies the given DMUs in three
categories on the basis of their efficiencies obtained from the
Model 5 and Model 6 as follows:

1) Fully efficient or E,;H: The DMU C is fully efficient
because it has the optimal value of 1 concerning upper
efficiency as well as the lower efficiency.

2) Efficient or E,':: The DMUs, C, D, and E are efficient
because they have an optimal value of 1 with the upper-
efficiency model.

3) Inefficient or F, : The DMUs A and B are inefficient



because their optimal value is less than 1 for different
« values with the upper-efficiency model.

The optimal objective function values, EFj using LPrE-UO
Model and UpPrE-UO Model are the final efficiencies of kth
DMUs for different o, where o € [0,1]. In TABLE IV the
values of average cross-efficiency (ACE) are indicated which
assign the complete ranking method for the given DMUs at
different stages of a—cut approach, where « € [0, 1]. TABLE
V shows the final ranking results, which is characterized with
the decreasing values of average cross-efficiency (ACE).
Consequently, the Fig. 3 presents the efficiency result of 5
DMUs in crisp form while the Fig. 4 illustrates the result of
upper efficiency score of fuzzy input-output data. Besides this,
Fig. 4 depicts the impact of uncertainty on the efficiency score
of each DMUs. Therefore, the efficiency result of fuzzy input-
output data are more realistic and legible rather than the results
produced using crisp data. Fig. 4 also determines the variation
of a— level that are generating the variation of almost every
DMUs. Thus, it implies the alterations in the a— level affect
the efficiency results as well as the ranking of the DMUs.

Crisp Input-Output Data
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Fig. 3. The efficiency result of crisp input-output data

Fuzzy Input-Output Data
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Fig. 4. The efficiency results of fuzzy Input-Output Data

V. CONCLUSION

In the paper, we have proposed an improved model of fuzzy
data envelopment analysis for undesirable outputs, named as
Parabolic Fuzzy Data Envelopment Analysis with Undesirable
Outputs (PFDEA-UO). The impreciseness of the given data is
well handled using parabolic fuzzy numbers in the proposed
model. The three bounds of the parabolic fuzzy numbers are
used to obtain three efficiency models with the help of fuzzy
arithmetic operations, namely the Lower Efficiency with Un-
desirable Outputs (LE-UO) Model, the Middle-Efficiency with
Undesirable Outputs (ME-UO) Model, and Upper-Efficiency

0.3]
0.4

with Undesirable Outputs (UpE-UO) Model. The asymmet-
rical geometry of the parabolic fuzzy numbers is exploited
in the a-cut approach to obtain the interval-based Efficiency
models. We also proposed a novel technique, named as Ratio
Division to transform the interval efficiency models into two
crisp parametric models named as Lower Parametric Efficiency
with Undesirable Outputs (LPrE-UO) Model and the Upper
Parametric Efficiency with Undesirable Outputs (UpPrE-UO)
Model . Moreover, the Ratio Division method provides the
crisp parametric data set for cross-efficiency technique to
results in the complete ranking of DMUs at any « where
a € [0,1] is the parameter. We used the numerical example to
verify the effectiveness of the Ratio Division in the proposed
PFDEA-UO Model.
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