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Abstract—The Fuzzy Rule-Based Classification Systems (FR-
BCS) are classification models that use fuzzy rules to represent
knowledge. FBRCS are popular today, with numerous applica-
tions and studies of their behavior and efficiency. This work is
dedicated to studying a method that allows the minimization
of FBRCS generated by the Chi Algorithm, using the Quine-
McCluskey method so that the number of generated rules can
be reduced, without greatly altering the accuracy, thus improving
the simplicity of the model.

Index Terms—Interpretability, Classification problems, Fuzzy
rules, XAI.

I. INTRODUCTION

The use of Fuzzy Rule-Based Classifications Systems (FR-
BCS), is usually related to the purpose of obtaining the
greatest possible interpretable knowledge of a given problem.
Interpretability has been and is a frequent topic of discussion
[1], however one of the parameters that is always present in
any analysis is the number of rules obtained by a classifier.
Thus, it is not always possible to obtain a reduced number of
rules as a solution to a problem. This happens for example with
one of the most frequently used fuzzy rule-learning algorithms,
such as the Chi algorithm [2], which usually obtains a high
number of rules, and therefore makes it difficult to interpret
the provided solution.

In this way, we are interested in minimizing fuzzy rule
bases. By using logical minimization, a set with a high number
of rules can be reduced to a set that uses fewer variables and/or
rules that are to some extent equivalent. Thus, the aim of this
work is given a set of fuzzy rules, obtained for example by the
Chi algorithm, to define a procedure that is able to reduce the
number of fuzzy rules while maintaining its predictive ability.

To achieve this goal, we will first define a binary encoding
of the fuzzy rule set so that it can serve as input for the Quine-
McCluskey method [3]. This algorithm defines a procedure for
the simplification of Boolean functions. By using appropriate
coding we can simplify a fuzzy set of rules, and thus reduce
the number of rules required.
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By using the Quine-McCluskey method, we can modify a
set of basic fuzzy rules (Mamdami-type fuzzy rules), to a set
of extended fuzzy rules like those used by the NSLV algorithm
[4].

A similar attempt to reduce the number of fuzzy rules was
made in [5] using Karnaugh’s maps [6]. The main limitation
of this technique is that it requires the use of a maximum of
6 binary variables (two fuzzy variables with three linguistic
labels each one), which is why it becomes impracticable for
the datasets that are normally used.

Another more recent study focuses on the design of fuzzy
models that can be interpreted through semantic cointension
[7], and uses the Espresso algorithm as a minimization method
[8]. Obtaining good results in the analysis of interpretability
with a different approach to the one proposed in this work.

In the next section we present some preliminary of the work,
such as the basic model of fuzzy rules with weight and the
extended rule model, the Chi algorithm and its use, and the
Quine-McCluskey algorithm. In section III we describe the
coding used to represent the fuzzy rule set and the use we make
of the Quine-McCluskey algorithm with that coding. Section
IV will show the experimentation done that demonstrates the
interest of the proposal presented. Finally, the paper ends with
some conclusions.

II. PRELIMINARIES

The basic elements that this work requires as previous
elements to the development of the proposal are the rule
model in which is expressed the knowledge that is going to be
minimized, the algorithm used for the extraction of such rules
and the Quine-McCluskey algorithm that is used as a method
for the minimization.

Below we briefly describe each of these elements.

A. Rule model

The minimization proposal that we carry out in this work
starts from a set of basic fuzzy rules that could be obtained in
multiple ways, however, with the idea of being able to make
a complete experimentation with the model we will assume
that the initial set of rules has been obtained from the Chi
algorithm [2].
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The usual structure of a fuzzy rule set using the Chi
algorithm is [9]:

Rule Rj : If x1 is Aj1 and ... and xn is Ajn then
Class = Cj with RWj

(1)

Where Rj is the label of the j−th rule, x = (x1, ..., xn) is a
n− dimensional pattern vector that represents the example,
Aji is a linguistic label modeled by a triangular membership
function, Cj is the class label and RWj is the rule weight.
The rule weight used in this work is the Penalized Certainly
Factor [10] (PCF):

RWj = PCF =∑
xp∈ClassCj

µAj
(xp)−

∑
xp /∈ClassCj

µAj
(xp)∑P

p=1 µAj (xp)

(2)

where µAj(xp) is the matching degree of the example
xp with the antecedent part of the fuzzy rule Rj and it is
calculated as follows.

µ
Aj

(Xp) =

n∏
i=1

µ
Aji

(Xpi) (3)

being µAji
(Xpi) the membership degree of the value xpi to

the fuzzy set Aji of the Rule Rj .

B. The CHI Algorithm

The algorithm of Chi is based on the model proposed by
Wang and Mendel [11] but with focus on classification systems
and the steps to apply are the following.

1) The first step is to define a set of linguistic labels for
each antecedent variable.

2) The second step is to generate a fuzzy rule for each
example. A fuzzy rule is generated for each example xp
as follows.

a) The membership degrees of each value xpi to all
the different fuzzy sets if the i − th variable are
computed. For each variable, the linguistic label
with the greatest membership degree is selected.

b) The antecedent part is determined by the inter-
section of the selected linguistic labels and the
consequent is the class label of the example (yp).
All rules will have exactly the same number of
antecedents as variables in the problem (n).

c) The rule weight is computed using the PCF weight
(2).

When we have rules with the same antecedent, we make the
rule that has most weight and assign the class corresponding
to that rule.

Once the structure is obtained, to classify the new examples
we will carry out the following steps.

1) Finding the maximum matching degree of coincidence
between the examples and the rule using the matching
degree define in (3).

2) The degree of association of the example with each rule
is calculated as

bj(xp) = µAj
(xp).PCF (4)

3) The class corresponds to the rule with the highest level
of association.

Class = argmaxc=1,...,m(maxRj∈RB;Cj=cbj(xp))
(5)

The main advantage of the method described is that it is
a very simple method that achieves good levels of efficiency,
which has led to its use in many applications, but the main
disadvantage is that it produces in general a very high number
of rules that makes it difficult to interpret them.

As an example of this problem we can analyze the results
obtained in [12] using this algorithm and shown in Table
I on several well-known databases obtained from the UCI
repository [13]. We can see that the percentage of rules is
very high in relation to the examples in some cases. Thus,
on average the number of rules represents just over 41% of
the examples, so each rule covers approximately two and a
half examples. This fact is especially relevant in the BREAST
CANCER database, where the number of rules represents more
than 78% of the number of examples present in Table I. These
data show that the Chi algorithm is very dependent on the
number of antecedent variables that need to be used, and
therefore in some cases the rules are not very representative,
many rules are required to represent a problem and the
interpretability of an FRBCS can be lost using this algorithm.

The aim of this work is to decrease the rule base generated
by the Chi algorithm using a Boolean function minimization
developed with Quine McCluskey in order to improve the
simplicity of the problem and generate a set of extended rules.

TABLE I
SUMMARY RESULTS USING CHI ALGORITHM AND THREE

LINGUISTIC LABELS PER VARIABLE

Dataset Summary
Examples Attributes Rules R vs E∗

Iris 150 4 14 9.3%
Wine 178 13 127 71.3%

Breast Cancer 569 32 448 78.7%
Glass 214 9 41 19.1%
PIMA 768 8 154 20%
MEAN 375.8 13.2 157 41.7%

∗Percentage of rules vs examples.

The extended fuzzy rule model is a very similar fuzzy rule
model to the one used so far but in which the value assigned
to a variable is allowed to be a subset of the fuzzy labels of the
variable’s domain. When a variable is assigned all the labels
in its domain, the variable is irrelevant and can be removed
from the rule.

C. Quine McCluskey Method

In this section we present the basic definitions and the steps
to apply the Quine McCluskey method. For a more detailed
description of this algorithm see [3].



In the algorithm:
• Literal: It is a logical variable or its negation (q or q̄).
• Minterm: It is a product of the literals where each a

variable appears exactly once either true or complemented
form.

• Prime implicant: it is the product which cannot be com-
bined with de another term to eliminate a variable for
further simplification.

• Essential prime implicant: it is a prime implicant that
is able to cover an output of the function which is not
covered by any combination of prime implicant called
essential prime implicant.

The Quine McCluskey (QM) method uses the following
three basic simplification laws:

• q + q̄ = 1 (Complement)

• q + q = q (Idempotent)

• q(w + z) = qw + qz (Distributive)

Where q, w and z are literals
The QM method has the following steps:
• Find the prime implicant: In this step, we replace the

literal in form of 0 and 1 and generate a table. Initially,
the number of rows in table is equal to the total number
of minterms of the original un-simplified function. If
two terms are only different in one bit, one variable
is appearing in both form (variable and negation), then
we can use complement law. Iteratively, we compare all
terms and generate the prime implicant.

• Find the essential prime implicant: Using prime implicant
from above step, we generate the table to find essential
prime implicants. Note that some prime implicants can
be redundant and may be omitted, but if they appear
only once, they cannot be omitted and provide prime
implicant.

• Find other prime implicant: It is not necessary that
essential prime implicant cover all minterms. In that case,
we consider other prime implicant to make sure that all
minterms has been covered.

In general, QM method provides a better method for the
function simplification than the Karnaugh map, but still is an
NP-Hard problem, and it became impractical for large input
size due to exponential complexity.

III. PROPOSED METHOD OF CODING FUZZY
RULES

To apply the QM method for the minimization of fuzzy rules
sets obtained by the Chi algorithm, and since QM method is
able to minimize only Boolean function, we must first adapt
the linguistic values of the rule base to a set of binary variables
representing those linguistic variables.

The process is as follows, from the set of fuzzy rules
obtained by the Chi algorithm, we use a process of coding such

rules so that they can be used as input for the QM method.
After applying this method, we decode and simplify the set of
rules obtained. As we’ll see later this rule set can be interpreted
as an extended fuzzy rule set. The process is described in the
“Fig. 1”.

Fig. 1. Flowchart for the minimization of a fuzzy rule set.

In this way we start from the following set of fuzzy rules
which have been obtained by the Chi algorithm (1)

Each linguistic variable has an associated fuzzy domain,
with the idea of simplifying the description in the following
explanation and in the experiment, we will take as a reference
for all the linguistic variables a domain with three labels, as
described in “Fig. 2”.

Fig. 2. Fuzzy domains for variables x1, ..., xn.

The process is the same for a larger number of linguistic
labels.

A. Coding of the Rule Base

As we said before, to use the QM method, it is necessary
to transform the rule base generate by Chi algorithm to a QM
compatible model, for this we must transform the linguistic
labels into binary labels in order to change the coding of the
model.

According to QM method, if two terms are only different in
a bit, the law of complement can be applied by generating the
prime implicants. This is a very important point when coding
linguistic label.

As explained above, these linguistic labels must be changed
to binary values. The number of bits needed to represent a
linguistic label is given by the following equation.

Bits = Round(
log2(L)

log2(2)
+ 1) (6)

where L is the number of linguistic labels in the domain
and the rounding is down. For example, 3 linguistic labels use
2 bits, 5 linguistic labels use 3 bits and so on. This equation



is a generalization used to have a reference of how many bits
are needed for an odd number of linguistic labels.

Having as reference the three linguistic labels (Small,
Medium and Large) and considering that the generation of
the prime implicants occurs when the minterm differ in a bit
(Hamming distance between linguistic labels is equal to 1). We
will only need 2 bits and therefore we will use the following
coding for the 3 linguistic labels shown below in the figure
“Fig. 3”.

Fig. 3. Linguistic labels

Therefore, we only have to replace each linguistic label
with its binary coding. In all cases, the first linguistic label
is represented by the binary number ”0” in all the bits that
make up the coding and the contiguous linguistic labels must
be differentiated by only one bit.

In view of the above, the code ”10” above is not used
because the bit difference between adjacent linguistic labels
must be equal to 1.

We can show an example of such coding for a problem
with four antecedent variables. Let’s suppose two rules for
the same class in the consequent:

If x1 is MEDIUM and x2 is SMALL and x3 is MEDIUM
and x4 is SMALL then Class = C1 with RW1

If x1 is MEDIUM and x2 is SMALL and x3 is MEDIUM
and x4 is MEDIUM then Class = C1 with RW2

First, we replace the linguistic labels with the binary coding
defined above, we take the weight off the rules and we obtain:

If x1 is 01 and x2 is 00 and x3 is 01 and x4 is 00 then
Class = C1

If x1 is 01 and x2 is 00 and x3 is 01 and x4 is 01 then
Class = C1

Finally, assuming these are the only two rules for that
class, we transform it into a Boolean expression with which
we can apply the QM method.

01000100 + 01000101 �for Class C1

Through this structure we manage to create a truth table for
each class, in order to use the QM method independently of
each class as shown in the “Fig. 4”.

Repeating the same process for all the rules by grouping
them with their respective classes.

Fig. 4. Truth table for Class 1

In summary, the steps to perform the coding are as follows:
1) Describe the number of bits required for the linguistic

labels used using (6).
2) Encode the linguistic labels with maintaining the differ-

ence of 1 bit between each contiguous label.
3) Concatenate the different assignments.

B. Simplification of the Rule Base

After applying the QM method, two types of cases can be
generated. Either the original bits are kept and there is no
simplification or one of the bits is replaced by a *, where
* symbolizes the elimination of a boolean variable in the
minimization process. In this case, the options are:
• 0*, which means that the assignment to the variable is

SMALL or MEDIUM.
• *1, which means MEDIUM or LARGE,
• and *0 and 1* that do not imply simplification, the first

is equivalent to using SMALL and the second to using
LARGE.

Using the previous example, we obtain the following
simplified Boolean function:

If x1 is 01 and x2 is 00 and x3 is 01 and x4 is 0* then
Class = C1

Thus, the two previous rules have been transformed into a
single extended rule. This rule is:

If x1 is MEDIUM and x2 is SMALL and x3 is MEDIUM
and x4 is {SMALL or MEDIUM} then Class = C1

Finally, the weight of this rule is recalculated using an
adaptation of (2) to the extended rule model and we obtain
the following extended rule:

If x1 is MEDIUM and x2 is SMALL and x3 is MEDIUM
and x4 is {SMALL or MEDIUM} then Class = C1 with RW3

where RW3 is the weight of the new rule.
This process would apply to all classes and would allow us

to obtain the final set of rules.

IV. EXPERIMENTAL STUDY

In this section we want to check if the proposed method
allows to reduce the number of fuzzy rules keeping the
accuracy level. To do this we use the databases described in
Table II and obtained from the UCI repository [13].

In this experiment we use fuzzy domains composed by three
symmetric triangular membership function with the upper and



TABLE II
DATABASE USED FOR THE EXPERIMENTAL STUDY

Summary
Datasets Examples Attributes Number of Classes

Iris 150 4 3
Wine 178 13 3

Appendicitis 106 7 2
Pima 768 8 2
Wifi 2000 7 4

Balance 625 4 3
Banana 5300 2 2
Ecoli 325 7 8

Haberman 290 3 2
Newthyroid 201 5 3

Bupa 322 6 2
Phoneme 5390 5 2
Titanic 2185 3 2

Page Block 5463 10 5
Winequality 1599 11 6

lower labels open, for all variables. We use the Chi algorithm
to obtain the initial set of fuzzy rules.

The study is focused in two parameters: the number of
rules and the accuracy. On these parameters, we use a cross
validation process to check the results obtained on the initial
fuzzy rule set and the minimized fuzzy rule set obtained by
the QM method.

Table III shows the results after performing the experiment.
CHI represents the data obtained using the Chi algorithm,
and CHI+QM represents the data obtained using the proposed
method.

TABLE III
DATABASE USED FOR THE EXPERIMENTAL STUDY

CHI CHI + QM Rule
Datasets Rules Accuracy Rules Accuracy Reduction %

Iris 16 0.929545 8 0.925 50%
Wine 104 0.939583 88 0.939583 15%

Appendicitis 28 0.891666 20 0.895833 29%
Pima 192 0.756544 110 0.755497 43%
Wifi 127 0.918333 55 0.915666 57%

Balance 79 0.897861 26 0.844385 67%
Banana 8 0.604968 6 0.588616 25%
Ecoli 63 0.689690 38 0.685567 40%

Haberman 19 0.776623 7 0.787013 63%
Newthyroid 19 0.858333 11 0.831666 42%

Bupa 61 0.624 39 0.608 36%
Phoneme 65 0.710973 25 0.702727 62%
Titanic 10 0.779084 7 0.779084 30%

Page Block 44 0.920744 24 0.919097 45%
Winequality 355 0.585673 245 0.584527 31%

MEAN 79.3 0.792241 47.2 0.784150 42%

We can appreciate the reduction or rules for all the datasets
used in this study in the “Fig. 5”.

We have focused this analysis on the study of 2 parameters,
the accuracy and the average number of rules. To make the
comparison we have used the Wilcoxon test which is a non-
parametric test to compare the mean range of two related
samples and determine if there are differences between then.

Fig. 5. Percentage reduction of rules using the proposed rule minimization
method.

In relation to the first parameter, the accuracy, the Wilcoxon
test obtained a p-value of 0.002382, determining that there
is no significant difference between the accuracy of the two
algorithm and that there is a 16.4% confidence that they are
different.

In relation to the second factor, we performed the same anal-
ysis to compare the number of rules generated by both algo-
rithm and the Wilcoxon test obtained a p-value of 0.0007193,
determining that there is a significant difference in the number
of rules generated by two algorithms.

We can see in Table III that the rule base accuracy of the
rule base remains similar between the algorithm of CHI et. Al
and the application of the rule minimization method of Quine
McCluskey.

It is important to note that the reduction in the size of the
rule set is on average 40% in relation to the initial fuzzy rule
set.

The most extreme case is in the Balance dataset, which with
625 examples, the Chi algorithm needed 79 fuzzy rules, which
after applying the minimization process have been transformed
into 26 extended fuzzy rules.

The complexity of the proposed method increases as we
increase the number of attributes, for this reason we choose
a model based on 3 linguistic labels since due to the coding
performed we increased the number of variables in a multiple
given by (6), taking as an example the dataset wine that has
13 attributes and a coding system given by 2 bits equivalent to
three linguistic labels, the number of variables used in the truth
table for the QM method is equal to 13x2, giving a total of
26 variables. The computational cost increases as the number



of attributes or the number of linguistic labels increases.
In summary, the rule base minimization method gives a

good result with the databases used, managing to reduce the
fuzzy rule set while maintaining the correctness.

V. CONCLUSIONS
The method proposed in the paper achieves the goal of

reducing the initial set of fuzzy rules significantly without
sacrificing the accuracy of the original fuzzy rule set. This
reduction allows to improve the simplicity of the model, as
well as having advantages in the efficiency of the associated
inference processes.

One possible interpretation of the process is that we have
been able to compact in some way the information contained
in the initial set of fuzzy rules. In any case, the proposed
model needs future improvements. First of all, it is necessary
to revise the binary coding of the fuzzy rules since the defined
model does not allow to completely eliminate variables from
the rule, which is one of the great advantages of the extended
fuzzy rules model. Secondly, although the QM method is
an improvement over the initial model of Karnaugh’s maps,
the algorithm is still extremely complex, and this complexity
grows exponentially with the number of variables required.
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