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Abstract—A model predictive control strategy (MPC) based
on fuzzy optimization is proposed in this work for a multi-room
heating, ventilation and air conditioning (HVAC) system. The
proposed strategy aims to minimize energy consumption, while
requiring different thermal conditions for each room. For this
system, the combination of MPC and fuzzy optimization arises as
a suitable control strategy, due to the benefits given by the use of
fuzzy constraints for the managment of thermal comfort.The soft
constraint scheme provided by the fuzzy optimization allows to
reduce the power consumption of HVAC systems. This is achieved
by allowing some constraint violations in specific cases where
the proper operation of the system is not compromised. In this
context, the main contribution of this work is the introduction
of a new framework where the thermal requirements of several
rooms can be managed by fuzzy constraints, which are handled
as additional terms in the objective function of the MPC. The
optimization problem of the MPC is nonlinear, and it is solved
with a suitable particle swarm optimization (PSO) method. Sim-
ulations results show the effectiveness of the proposed controller
to reduce the energy consumption compared with a classical
MPC implementation, while maintaining constraint satisfaction
in appropriate levels.

Index Terms—Model predictive control, Fuzzy optimization,
Building climate systems

I. INTRODUCTION

The building sector is responsible of nearly 40% of the
total energy consumption in developed countries [1]. Because
of this, the improvement of energy efficiency in buildings is
highlighted as an important goal of climatization systems, from
environmental, social and economic points of view. In this
context, the objective of this work is to develop a control
strategy for the optimal operation of heating, ventilation and
air conditioning (HVAC) systems, focusing on minimizing
energy consumption, while maintaining the thermal comfort
conditions for the occupants of the different rooms. This
problem has been tackled by several works using predictive
control strategies (e.g. [2]–[6]) and fuzzy control strategies
(e.g. [7]–[9]), showing that both, fuzzy control and model
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predictive control (MPC) are effective approaches to control
HVAC systems. Of these, MPC strategies are naturally suited
for HVAC systems: they seek an optimal operation of the
HVAC system, in terms of energy consumption, which is
achieved by solving an optimization problem that considers
thermal comfort requirements as system constraints.

Building temperature models usually depend on stochastic
variables related to weather and room occupancy, which act as
external disturbances with predicted values that are unknown
and uncertain. These disturbances may provoke problems with
constraint compliance, thus leading to the use of robust control
strategies [10], [11] that enforce constraints for the worst
case predictions of the external disturbances. However, thermal
comfort requirements are not hard constraints that must neces-
sarily be met the entire time, thus making these formulations
overly conservative. Therefore, some works have considered
allowing a certain degree of constraint violations, which en-
ables a reduction of energy consumption. This relaxation has
been implemented for HVAC systems with stochastic MPC
formulations that use scenarios or the probability functions
of the external disturbances (e.g. [12]–[14]), and with robust
MPC based on interval fuzzy models [6]. The allowed margin
of constraint violation is related with the probability function
of the constraint compliance in stochastic MPC formulations,
and with the coverage level of fuzzy intervals in the case of
robust MPC of [6]. In the same line of these strategies, a fuzzy
optimization scheme that enables soft constraints is considered
this work in the formulation of the MPC controller.

The idea of fuzzy optimization is originally presented by
[15]. The objective function and constraints have their own
membership functions, but the system constraints are not han-
dled as constraints in the optimization. Instead, they are added
to the objective function with their own fuzzy membership
functions. This enables a soft constraint approach, as a certain
margin of constraint violations can be permitted according to
the definition of the associated membership functions.

Fuzzy optimization has been used in the control of several
kinds of systems, such as solar power plants [16], for reactive
power and voltage control in power systems [17], [18] and for
wastewater treatment processes control [19]. It was also used
for path planning problems [20], [21], generation scheduling
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of energy systems [22], [23] water management [24], [25] and
for a parking lot operation [26].

From the HVAC systems point of view, the application of
fuzzy optimization is not new. A previous implementation
is shown in [8], where that method is used to control the
air temperature, CO2 and humidity, and is shown to be
effective when the controller focuses on a single room. In
this context, this work focuses the design of a controller for
a multi-room HVAC system that has the typical objective of
minimizing the energy consumption, while aiming to maintain
(potentially) different thermal conditions for different rooms.
This is motivated by the fact that some types of rooms might
have different temperature requirements despite being inside
the same building (e.g. reception hall, laboratories, etc.).

In order to achieve the goal of this work, a MPC strategy
based on fuzzy optimization is proposed, where the novelty
lies in the use of fuzzy constraints for the thermal comfort
handling in multiple rooms simultaneously. The resulting op-
timization problem is solved with particle swarm optimization
(PSO), while neural networks are used for the disturbance
forecasting. Simulation results and a comparative analysis
are shown for the MPC with fuzzy optimization and the
classical MPC defined by hard constraints, both implemented
for performing a reference tracking.

This paper starts with a brief explanation of the model
predictive control strategy (MPC) in Section II, which also
describes how fuzzy optimization is included in the formula-
tion of the controller. Next, Section III presents a description
of the multi-room HVAC model, which is the system to be
controlled in this work, and the control problem statement.
Finally, simulation results are shown in Section IV, where a
comparative analysis is performed between the classical MPC
and the proposed MPC based on fuzzy optimization.

II. MODEL PREDICTIVE CONTROL BASED ON FUZZY
OPTIMIZATION

MPC is a control strategy that solves an optimization
problem, where the future behavior of the system is predicted
by a process model and a sequence of future control actions
that are chosen to minimize a performance index.

In a general MPC formulation, a typical dynamic system

x(k + 1) = f (x(k), u(k), ω(k)) , (1)

is considered to be controlled. In (1), x(k) ∈ Rnx is the state
of the system, u(k) ∈ Rnu is the input vector, and ω(k) ∈ Rnω

is a disturbance signal. The system is assumed to be subject
to linear constraints, which are expressed in the form

Fx(k) +Gu(k) ≤ h, (2)

where F ∈ Rnc×nx , G ∈ Rnc×nu and h ∈ Rnc , are the
elements that define the nc constraints.

In this framework, the sequence of future control actions
over a finite prediction horizon N , is computed by solving the
following optimization problem:

min
~x,~u

J(~x, ~u)

s.t. F x̂(k + j) +Gu(k + j) ≤ h,
x̂(k + j + 1) = f̂ (x̂(k + j), u(k + j), ω̂(k + j)) ,

j = 0, ..., N − 1,
x̂(k) = x(k),

(3)
where ~x = [x̂(k), . . . , x̂(k +N)]

T is the vector of predicted
states and ~u = [u(k), . . . , u(k +N − 1)]

T is the vector of
future control actions, which are the decision variables in the
optimization problem. Also in (3), f̂ is the identified predictive
model which tries to emulate the behavior of (1), ω̂(k+j) are
the predicted disturbances given by an autoregressive model
(e.g. a trained neural network model) and J(~x, ~u) is the
objective function. The optimization problem is solved with a
suitable algorithm and from the solution obtained, only the first
element of the optimal sequence of control actions is applied
to the system [27]. Then, in order to introduce feedback, the
process is repeated for each instant k during the operation of
the controlled system, solving the same optimization, but with
updated values of the system state and disturbance predictions.

Here, combination of predictive control with fuzzy opti-
mization, as previously done in [16], [28], [29] and [30], is
proposed in order to handle some restrictions of the system
as soft constraints in the formulation of (3). The fuzzy
optimization consists in the use of a new objective function
Jf defined by several fuzzy membership functions. Some of
them are associated to the nobj objectives of the controller
(which come from the original objective function J(~x, ~u)).
Additionally, those rows of the system constraints (2) that do
not necessarily need to be met all the time, are not included
as hard constraints in the optimization, and instead are treated
as soft constrains by using nsc membership functions in Jf .
With a little abuse of language, we will refer to each of
these membership functions as soft constraints, even if each
membership function can be associated with more than one
row of (2). Thus, the new objective function Jf is defined as

Jf (~x, ~u) =

N∑
j=0

{nobj∑
i=1

[
µiJ(x̂(k + j), u(k + j)

]p
+

nsc∑
i=1

[
µic (x̂(k + j), u(k + j))

]p}
, (4)

where µiJ(x̂(k + j), u(k + j)) are the membership functions
associated to the nobj control objectives, µic(x̂(k+j), u(k+j))
are the membership functions associated to the nsc soft con-
straints, and p ∈ (0,∞) is a parameter that adjusts the degree
of fuzzy aggregation. ; a greater value of p represent a harder
aggregation of the different fuzzy membership functions [16].

The compliance of the different control objectives and soft
constraints is handled by the maximization of the fuzzy mem-
bership functions included in (4). Consequently, the shapes



defined for µJ(x̂(k+j), u(k+j)) and µc(x̂(k+j), u(k+j)) are
relevant in order to obtain the desirable results. For example,
Fig. 1 shows how a constraint for the state x, originally
specified by two rows of (2) defining a lower and upper bound,
is handled by the shape of a single membership function µc.

As shown in Fig. 1, µc(x) establishes bounds for the
state, such that x ∈ [x2, x3] is the desirable result that have
assigned the maximum value for the membership function,
i.e µc(x) = 1. Additionally, the ranges [x1, x2) and (x3, x4]
are also considered tolerable results, so in these cases the
membership function comply 0 ≤ µc(x) ≤ 1.

The definition of the nobj control objectives and the nsc soft
constraints follows the idea showed in Fig. 1. The maximum
values for the membership functions µJ(x̂(k+j), u(k+j)) and
µc(x̂(k+ j), u(k+ j)) are assigned when (x̂(k+ j), u(k+ j))
are desirable results. On the other hand, values in the range
(0, 1) are used for µJ(x̂(k + j), u(k + j)) and µc(x̂(k +
j), u(k + j)) when the results are acceptable but not ideal.

Taking into account this strategy for the management of
control objectives and soft constraints, the optimization (3)
can be rewritten in the form

max
~x,~u

Jf (~x, ~u)

s.t. g(x̂(k + j), u(k + j)) ≤ hg
x̂(k + j + 1) = f̂ (x̂(k + j), u(k + j), ω̂(k + j))

j = 0, ..., N − 1
x̂(k) = x(k),

(5)
where Jf (~x, ~u) is the objective function presented in (4)
and the inequality defined by g(x̂(k + j), u(k + j)) and hg ,
represents the constraints from (2) that cannot be included in
Jf (~x, ~u) (e.g. the hard constraint defined for u(k + j) that
is given by the limits of the actuators). Due to the nonlinear
behavior of the membership functions, is important to note
that (5) must be solved by a suitable nonlinear solver.

The formulation presented for this model predictive control
based on fuzzy optimization (hereinafter denoted as FO-MPC)
is represented by the block diagram shown in Fig. 2

In section III we describe the dynamics of an multi-room
HVAC model which is used for testing the performance of the
FO-MPC implementation.

Fig. 1. Constraint handled by a fuzzy membership function.

III. CASE STUDY: HVAC SYSTEM

In this section, a model of a Heating, Ventilation and Air
Conditioning Systems (HVAC), as shown in [1], is presented
as a case study of this work.

Under some simplifications, the dynamic of each room
temperature can be represented by a two state model based in
a resistive-capacitive circuit analogy. Thus, the equation which
describes the dynamic of each room is written as:

Cj1 Ṫ
j
1 =ṁj

scp(T
j
s − T

j
1 ) + (T j2 − T

j
1 )/Rj+∑

i∈N j

(T i1 − T
j
1 )/Rij + (Ta − T j1 )/Rja + P jd , (6)

Cj2 Ṫ
j
2 =(T j1 − T

j
2 )/Rj , (7)

T js =δ

∑
i∈ν ṁ

i
sT

i∑
i∈ν ṁ

i
s

+ (1− δ)Ta −∆Tc + ∆T jh , (8)

where T j1 represents the air temperature (which has fast
dynamics), T j2 is the temperature of the furniture and walls
(has slow dynamics), and T js is the air supply temperature, all
of them denoted for room j. In this model, Cji and cjp are the
thermal capacitance and the specific heat capacity of room air,
respectively. On the other hand, Rj , Rij and Rja are the heat
resistances of the model, where Rj is associated to the heat
exchange between T j1 and T j2 , Rij correspond to the exchange
between different rooms (denoted by the indexes i and j) and
Rja represents the resistance of the room with respect to the
ambient temperature of the exterior of the building. In (6), N j

denotes the neighborhood of room j, i.e. the set of rooms that
are physically connected by at least one wall with room j,
while ν in (8) represents the set of all rooms to be climatized.

The manipulated variables are the air mass flow rate of
each room ṁi

s, the temperature differences imposed by the
cooling and heating coils (∆Tc and ∆T jh respectively), and
the air recirculation rate δ, which for our MPC implementation
is considered as a constant parameter δ = 0.5. The control
objective is to keep the air temperatures T j1 within a certain
comfort range and minimize the control energy. The ambient
temperature Ta and the internal load P jd , related to occupancy
of the room j, are the external disturbances. Fig. 3 presents
a diagram showing the different variables considered in the
model of a multi-room HVAC system.

Fig. 2. Block diagram of the FO-MPC implementation.



Fig. 3. HVAC system diagram.

The power consumption of the whole HVAC system pre-
sented in Fig. 3 is given by

P = κf

(∑
i∈ν

ṁi
s

)2

+
cp
ηc

(∑
i∈ν

ṁi
s

)
∆Tc

+
cp
ηh

(∑
i∈ν

ṁi
s∆T

i
h

) (9)

where κf , ηc and ηh are constants related to the efficiency of
the power consumption of each actuator of the system [2].

In this work, four rooms are air-conditioned with the HVAC
system. The arrangement of the rooms follows the layout
shown in Fig. 4, where each thermal zone is exposed to
an unique interaction with the other rooms. Each zone has
a dimension of 20[m] × 30[m] × 3.5[m], sharing the same
thermal capacitance and resistance with the other rooms, thus
Cj1 = 9.163 · 106 [K/W], Cj2 = 1.694 · 107 [K/W] and Rj =
1.7 · 10−3 [K/W] for j = 1, . . . , 4. The other heat resistances
considered in the HVAC model have the following values:
R12 = 2.88 · 10−2 [K/W], R23 = R34 = 1.92 · 10−2 [K/W],
R1
a = R4

a = 1.4 · 10−3 [K/W] and R2
a = R3

a = 1.5 · 10−3

[K/W]. The parameters that define the power consumption
in (9) are κf = 65[W · s2/kg2], ηc = 4, ηh = 0.9 and
cp = 1012[J/kg · K]. Finally, the usual maximum occupancy
for each room is 40 people.

The MPC controller will use the Euler discretization of the

Fig. 4. Room layout for the experiment.

model (6)-(8), with a sampling time ∆t = 600 [s]:

Cj1T
j
1 (k + 1) =Cj1T

j
1 (k) + ∆tṁj

s(k)cp(T
j
s (k)− T j1 (k))

+ ∆t
(T j2 (k)− T j1 (k))

Rj
+

∆t
∑
i∈Nj

(T i1(k)− T j1 (k))

Rij
(10)

+ ∆t
(Ta(k)− T j1 (k))

Rja
+ ∆tP jd ,

Cj2T
j
2 (k + 1) =Cj2T

j
2 (k) + ∆t

(T j1 (k)− T j2 (k))

Rj
, (11)

T js (k) =δ

(∑
i∈ν ṁ

i
s(k)T i1(k)

)(∑
i∈ν ṁ

i
s(k)

) + (1− δ)Ta(k)

−∆Tc(k) + ∆T jh(k). (12)

The main goal of the controller is the minimization of
the power consumption while maintaining the temperature
of each room within an interval around certain references
values. This objective is implemented using the following
room temperature constraint

rj − 1.5 ≤ T j1 ≤ rj + 1.5 (13)

where rj is the reference value of the room j and the
maximum deviation allowed around rj is 1.5oC.

Based on this, the FO-MPC solves a similar optimization
problem as in (5), using the objective function:

Jf =


4∑
i=1

N∑
j=1

[
µe

(
T̂ i1(k + j)− ri(k + j)

)]2

+

µu
 N∑
j=1

P̂ (k + j)

2
 , (14)

where µe and µu are the membership function associated
to (13) and the prediction of power consumption over the
prediction horizon N = 6, respectively. The functions µe(x)
and µu(x) are defined for this case study as:

ϕ(x) =

{
3− 1.8|x| if |x| ≤ 1.5

0.3158− 0.0105|x| if 1.5 < |x| , (15)

µe(x) =

 0 if ϕ(x) ≤ 0
ϕ(x) if 0 ≤ ϕ(x) ≤ 1

1 if 1 < ϕ(x)
, (16)

µu(x) =


0 if x < 0
x

(3.3488·106) if 0 < x ≤ 3.3488 · 106

0 if 3.3488 · 106 < x

, (17)

resulting in the shapes shown in Fig. 5.
Given the definition of µe(x) in (16), the use of it in (14)

implements (13) as a soft constraint in FO-MPC.
The references ri for temperature T i1 of each room i are:

r1(k + j) = 15◦C
r2(k + j) = 21◦C
r3(k + j) = 23◦C
r4(k + j) = 27◦C

 from 7 am to 9 pm, (18)



(a) Temperature deviation (b) Power consumption

Fig. 5. Membership functions.

and no references are considered during night hours. At
these times constraint (13) is not enforced, and the respective
membership functions µe(x) are replaced by null values.

On the other hand, FO-MPC must consider as hard con-
straints the actuators limits like the air mass flow limitations
for the air supply fan and maximum temperature changes in
∆T ih and ∆Tc. These constraints are defined as follows:

0.005 [kg/s] ≤ ṁi
s ≤ 5 [kg/s], (19)

0 °C ≤ ∆T ih ≤ 13 °C, (20)
0 °C ≤ ∆Tc ≤ 13 °C. (21)

Due to the nonlinearities in the definition of the membership
functions (µe and µu) and the system model, FO-MPC has
to be implemented with a dedicated solver for nonlinear
optimization. In this work, the Particle Swarm Optimization
(PSO) algorithm is chosen for solving (5), where g(·) ≤ hg
represents the hard constraints (19)-(21). For the disturbance
signals, experimental data collected from a weather station
located in La Araucanı́a Region, Chile, in 2016 is used as
the ambient temperature Ta and the internal occupancy P jd is
simulated with the Markov chain algorithm proposed in [31],
assigning a heat generation per person of 150 [W].

The results of FO-MPC are compared with those obtained
with a classical MPC in order to analyze the benefits of the
proposed control strategy. In this case study, the classical MPC
solves (3), using the following objective function:

J =

4∑
i=1

N∑
j=1

λe

(
T̂ i1(k + j)− ri(k + j)

)2
+ λp

N∑
j=1

P̂ (k + j)

+ exp

{
η

[(
T̂ i1(k + j)− ri(k + j)

)2
− e2max

]}
, (22)

and considering (19)-(21) as the hard constraints of the system.
In the objective function (22), λe, λp are weight parameters
related to error tracking and power consumption. As done
with the FO-MPC implementation, the optimization problem
of the classical MPC is solved with PSO algorithm. The
classical formulation of the MPC would normally include (13)
as a hard constraint in the optimization problem. However,
since PSO is used to solve the optimization, this constraint is
actually implemented with an additional term in (22) given by

an exponential penalty function; this term strongly penalizes
occurrences where the tracking error is greater than the ideal
maximum defined value. Thus, η is a positive parameter and
emax is the maximum allowed deviation around the reference,
i.e. emax = 1.5◦C. Here, the inclusion of this penalty term
in (22) was considered due to the difficulties presented by
the PSO algorithm when trying to handle this condition in a
similar way as done with the other system constraints.

Next section presents the simulation results of the distur-
bance modeling and the comparison between the implemen-
tation of FO-MPC and MPC, both during the operation of a
multi-room HVAC system model.

IV. SIMULATION RESULTS

A. Disturbance modeling

The external disturbances that affect the system dynamics
must be modeled first in order to implement an MPC strategy
for the HVAC system. In this work, feedforward Neural
Networks are used predict future values of the disturbances,
the ambient temperature and occupancy of the rooms, which
are necessary for obtaining the future temperatures of the
rooms in the optimization problem (5).

Experimental data collected from a weather station located
in La Araucanı́a Region, Chile, is used for training and
validation of neural networks for the modeling of the ambient
temperature Ta. Here, a feedforward single-layer perceptron
is trained, using 5 regressors of the ambient temperature as
inputs of the model, and 10 neurons in the hidden layer.
The behaviors of the predictions for 6 steps ahead and the
corresponding future measurements are shown in Fig. 6. Also,
the Root Mean Square Error (RMSE) of the predictions is
included as a performance metric of the trained model.

As it can be seen from Fig. 6 and Table I, the trained model
results with a low prediction error for the ambient temperature
within the prediction horizon of the controller (RMSE less
than 1 when using up to N = 6 prediction steps). This is
satisfactory enough to consider the use of this trained neural
network as the predictive model of the disturbance.

Fig. 6. Prediction of ambient temperature 6 step ahead.



Fig. 7. Prediction of occupancy level 6 step ahead.

On the other hand, for the modeling of the internal occu-
pancy of the rooms, artificial data previously generated by the
use of a Markov chain based algorithm, as proposed in [31],
is considered for training and validation of the neural network
model. Similar to the case of the ambient temperature, a feed-
forward single-layer perceptron is trained, using 5 regressors
of the occupancy level as inputs of the model, and 10 neurons
in the hidden layer. The results of the predictions obtained 6
step ahead and the values of the RMSE are included in Fig. 7
and Table II, respectively.

As it is observed in Fig. 7, the neural network model gives
impossible outputs as predictions (specifically, negative values
of occupancy), for steps predictions greater than one. In order
to compensate this, a saturation at the output of the predictive
model is considered, making the values bounded to [0,40].
On the other hand, the results of RMSE in Table II show that
the predictive model is good enough for being used in the
MPC implementation, because maintains a low error within
the prediction horizon of the controller (RMSE less than 4
when using up to N = 6 prediction steps).

Finally, the disturbance signals corresponding to the internal
heat gain of each room P jd , are calculated from the occupancy
values assuming a heat generation per person of 150 [W].

TABLE I
PREDICTION ERROR FOR AMBIENT TEMPERATURE MODELING

Steps ahead
Metric 1 step 6 step 12 step
RMSE 0.2187 0.7440 1.2410

TABLE II
PREDICTION ERROR FOR OCCUPANCY LEVEL MODELING

Steps ahead
Metric 1 step 6 steps 12 steps
RMSE 1.6092 3.0437 28.2981

B. MPC implementation

As previously mentioned, two MPC strategies are imple-
mented and compared in this paper. One is the MPC based on
fuzzy optimization (FO-MPC), and the other is the classical
MPC implementation. In this work, the optimization problems
defined for both controllers are solved with PSO, and both use
the same predictive model (10)-(12) for the room temperatures.
The simulation spans 2 days of data outside the training set.

The results are shown in Tables III and IV, where the energy
consumption, the average computation time and the constraint
satisfaction level of each room are presented. Also, Fig.8,
9, 10 and 11 present the graphical comparison between the
temperature behavior under the effect of both controllers, for
each room considered in the HVAC system.

It is observed from Table IV that FO-MPC obtains higher
levels of constraint satisfaction than classical MPC. The FO-
MPC implementation reached satisfaction levels above 99%
for the first three rooms, which are slightly higher than the lev-
els obtained by the classical MPC. However, in the fourth room
(which has the reference of 27◦C) both controllers had a lower
satisfaction percentage of the room temperature constraint, and
classical MPC had a higher satisfaction level than FO-MPC
by a margin of 0.5%. These results are due to the fact that FO-
MPC can handle better the temperature constraints for the first
three rooms, thanks to the use of soft constraints that allowed a
greater temperature deviation in the fourth room, which have
the most demanding temperature requirement. Additionally,
the satisfaction levels obtained for all rooms confirm that both
implemented controllers are appropriate to be applied in this
multi-room HVAC case study, because they manage to comply
the constraints in more than 90% of the simulated cases.

A notable result is the behavior presented by room 1, shown
in Fig, 8, where the room temperature suffers a big overshot
just before the activation of the constraints (at 7 am). This is
caused by the fact that the other rooms have higher temperature
requirements, so the recirculation air that is distributed to all
rooms will get hotter. Then, due to the energy minimization,
the controller decides to activate the cooling coil for the
temperature regulation of the first room later as possible.

FO On the other hand, Table III shows that FO-MPC
consumes less energy than the classical MPC. This behaviour
is the main advantage identified for FO-MPC, and can be

TABLE III
SIMULATION EFFICIENCY METRICS

Controller Energy consumption [kWh] Computation Time [s]
FO-MPC 2135.6 5.0795

MPC 2335.8 3.4712

TABLE IV
CONSTRAINT SATISFACTION LEVEL

Controller Room 1 Room 2 Room 3 Room 4
FO-MPC 100 % 99.96 % 99.26 % 91.78 %

MPC 95.46 % 96.13 % 98.65 % 92.26 %



Fig. 8. Simulation in Room 1.

Fig. 9. Simulation in Room 2.

Fig. 10. Simulation in Room 3.

Fig. 11. Simulation in Room 4.

explained due to the fact that its objective function is more
permissive with the temperature constraint than that used in
the classical MPC. Due to that, FO-MPC was able to obtain
lower temperatures in rooms 2-4. This way, the control actions
given by FO-MPC are less strong than those provided by
classic implementation of MPC, resulting in the lower power
consumption observed.

Finally, also from Table III it can be observed that FO-MPC
had a higher computational time than the classical MPC. This
is due to the higher complexity that means the handling of its
objective function. However, this increment is not significant
enough and remains small when compared with the sampling
time of the HVAC system (10 minutes).

These results show that FO-MPC is suitable for a multi-
room HVAC system with a multiple reference situation, where
some actuators are used by all rooms (for example, the cooling
coil). Another observation that can be made at this point is that
both controllers did not reach 100% of compliance with the
original constraints for room temperature (the deviation has to
be less than 1.5°C around the reference). This illustrates the
difficulty of trying to comply these conditions for multiple
rooms, which can provoke problems of infeasibility in the
hypothetical case of using an MPC designed with other types
of optimizers that only consider hard constraints.

V. CONCLUSIONS

This work presents a MPC strategy that uses the idea of
fuzzy optimization, in order to control a multi-room HVAC
system. The main motivation for doing this is the fact that
some conditions of the HVAC are not hard restrictions, thus
the controller may allow to violate those constraints by a small
margin, without compromising the operation of the system
(e.g. the comfort region for the room temperature). With the
inclusion of fuzzy optimization in the MPC, these conditions
can be treated as soft constraints, handled by membership
functions in the objective function.

Simulation results show that the use of the new objec-
tive function given by the fuzzy optimization managed to
reduce the energy consumption with respect to the classical
MPC implementation, while the controller tried to satisfy the
requirements of four different rooms. That was due to the
fact that the new objective function resulted more permissive
in terms of the temperature constraints than that used in
the classical MPC, which allowed a greater flexibility in
controlling the rooms with higher temperatures requirements.

On the other hand, despite the fact that FO-MPC obtained
higher constraint satisfaction levels than the classical MPC,
both controllers failed to comply the system conditions in
a 100% of the cases. Here, it can be emphasized that this
situation would be a serious problem if the MPC had been
implemented using another optimizer with hard constraints
instead of fuzzy optimization with PSO. This is due to the
fact that, in the hypothetical case of using the alternative solver
defined only by hard constraints, the imposition of the system
conditions can provoke infeasibility in the optimization prob-
lem, which in turn can cause bad responses in the controller.



Additionally, the computation time of FO-MPC remains short
enough for application (i.e. the average computational time is
still considerable lower than the sample time of ten minutes).

In summary, simulation results show that the proposed FO-
MPC is better suited than classical MPC to control the temper-
ature of a multi-room HVAC system, when the controllers face
a multiple references situation (i.e. each room has different
temperature requirements).
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[23] A. Derghal, N. Goléa, and N. Essounbouli, “An interval fuzzy
optimization-based technique to optimal generation scheduling with load
uncertainty,” IFAC-PapersOnLine, vol. 49, no. 12, pp. 1122 – 1127,
2016, 8th IFAC Conference on Manufacturing Modelling, Management
and Control MIM 2016.

[24] G. Fu, “A fuzzy optimization method for multicriteria decision making:
An application to reservoir flood control operation,” Expert Systems with
Applications, vol. 34, no. 1, pp. 145 – 149, 2008.

[25] M. S. Taskhiri, R. R. Tan, and A. S. Chiu, “Emergy-based fuzzy opti-
mization approach for water reuse in an eco-industrial park,” Resources,
Conservation and Recycling, vol. 55, no. 7, pp. 730 – 737, 2011.

[26] S. Faddel, A. T. Al-Awami, and M. Abido, “Fuzzy optimization for
the operation of electric vehicle parking lots,” Electric Power Systems
Research, vol. 145, pp. 166 – 174, 2017.

[27] B. Kouvaritakis and M. Cannon, Model Predictive Control: Classical,
Robust and Stochastic. Springer International Publishing, 2016.

[28] Shaoyuan Li and Yugeng Xi, “Generalized predictive control with fuzzy
soft constraints,” in Ninth IEEE International Conference on Fuzzy
Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063), vol. 1, May 2000,
pp. 411–416 vol.1.

[29] C. Arnold, T. Aissa, and S. Lambeck, “Using uncertain set points in
predictive functional control,” in 2013 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), July 2013, pp. 1–8.

[30] T. Aissa, C. Arnold, and S. Lambeck, “Fuzzy set points predicitve
functional control for implicit regulator calculation of mimo-systems,”
in 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
Aug 2015, pp. 1–8.

[31] C. Wang, D. Yan, and Y. Jiang, “A novel approach for building
occupancy simulation,” Building Simulation, vol. 4, no. 2, pp. 149–167,
Jun 2011.




