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Abstract—In this contribution the concept of a local contrast
of a fuzzy relation with the use of a consensus measure is
introduced. A construction method of such local contrast using
aggregation functions and fuzzy implications is considered. Other
construction methods using similarity measure are also pointed
out. Several examples of local contrasts are provided. The
usability of introduced local contrast measures is evaluated by
applying them in image processing for salient region detection.

Index Terms—contrast measures, aggregation functions,
saliency detection, similarity measures

I. INTRODUCTION

The concept of a local contrast of a fuzzy relation makes
sense in any field where it is necessary to take into account the
influence of neighboring elements on the element itself, e.g.:
decision making, approximate reasoning, pattern recognition,
image processing. In these application areas the characteristics
of neighboring data points are as important as the data itself.

A local contrast is a measure of the variation among the
membership degrees of elements in a specific region of a fuzzy
relation. In this contribution we follow the notion of a contrast
given axiomatically in [1]. We provide a new construction
method with the use of a consensus concept (cf. [2]) which
may be treated as a measure of agreement among the inputs.
Moreover, we give several examples of local contrast based on
the construction method involving aggregation functions and
fuzzy implications. We also give examples of local contrast
with the similarity measure involved. Furthermore, we mention
the concept of a total contrast of a fuzzy relation where
examples of total contrast may be obtained by aggregating
the local contrasts. To evaluate introduced fuzzy contrasts on
real-world data we propose applying them in salient region
detection problem, which relies greatly on detecting regions
with high contrast [3]. Obtained saliency maps are binarized
with diverse thresholding strategies involved (cf. [4], [5]) and
compared to the human-annotated ground truth. The obtained
results prove effectiveness of the new examples.

The paper is organized as follows. In Section 2, basic
notions related to fuzzy connectives such as negations and
implications are recalled. Next, in Section 3, local contrast
is studied providing the construction methods and several
examples. Finally, in Section 4 results of applying proposed
definitions on images from MSRA10K dataset [5] are pre-

sented. The proposed definitions are evaluated using accuracy,
precision and recall.

II. PRELIMINARIES

We recall the notion of a fuzzy negation and an aggregation
function on the unit interval [0, 1].

Definition 1 (cf. [6]). A fuzzy negation N is a decreasing
function N : [0, 1]→ [0, 1] such that N(0) = 1 and N(1) = 0.
A fuzzy negation is strong if N(N(a)) = a for all a ∈ [0, 1].

Definition 2 ([7], pp. 2, 9). A fuzzy implication I : [0, 1]2 →
[0, 1] is a decreasing function in the first component and
increasing function in the second component and I(1, 0) = 0,
I(0, 1) = I(0, 0) = I(1, 1) = 1. A fuzzy implication fulfils:
• identity principle, if I(a, a) = 1 for a ∈ [0, 1].
• contraposition with respect to a fuzzy negation N , if

I(a, b) = I(N(b), N(a)), a, b ∈ [0, 1].

Examples of fuzzy implications I satisfying the identity
principle and contraposition with respect to the classical fuzzy
negation N(a) = 1− a are:
• Łukasiewicz implication -

ILK(a, b) =

{
1, if a ≤ b
1− a+ b, otherwise;

• Fodor implication -

IFD(a, b) =

{
1, if a ≤ b
max(1− a, b), otherwise;

• Rescher implication -

IRS(a, b) =

{
1, if a ≤ b
0, otherwise;

• Reichenbach implication -

IRC(a, b) = 1− a+ ab;

• Kleene-Dienes implication -

IKD(a, b) = max(1− a, b).

Definition 3 (cf. [8], Definition 1). Let n ≥ 2. A : [0, 1]n →
[0, 1] is said to be an aggregation function if it is increasing and
fulfils boundary conditions A(0, ..., 0) = 0, A(1, ..., 1) = 1.
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There are several subfamilies of aggregation functions.
One of them are n-dimensional overlap functions or recently
introduced general overlap functions.

Definition 4 ([9]). A : [0, 1]n → [0, 1] is said to be an n-
dimensional overlap function if the following properties hold:

(O1) A is commutative;
(O2) A(−→a ) = 0 if and only if

∏n
i=1 ai = 0;

(O3) A(−→a ) = 1 if and only if
∏n

i=1 ai = 1;
(O4) A is increasing;
(O5) A is continuous,

where −→a = (a1, ..., an).

Examples of n-dimensional overlap functions (cf. [9]) are
the product (3) and the minimum powered by p element-wise
(1) which will be applied in our considerations. Recently, a
more general version of the notion of an overlap function was
introduced.

Definition 5 ([10]). A : [0, 1]n → [0, 1] is said to be a general
overlap function if the following properties hold:

(GO1) A is commutative;
(GO2) if

∏n
i=1 ai = 0, then A(−→a ) = 0;

(GO3) if
∏n

i=1 ai = 1, then A(−→a ) = 1;
(GO4) A is increasing;
(GO5) A is continuous.

The difference between the class of n-dimensional overlap
functions and the class of general overlap functions is that
the former has sufficient and necessary boundary conditions
(GO2) and (GO3) while the latter has sufficient conditions.
Mathematically, this means that the class of general overlap
function may have zero-divisors and one-divisors while n-
dimensional overlap functions are without zero-divisors and
one-divisors.

An example of a general overlap function ([10]) is given by
(2) which is not an n-dimensional overlap function.

Since the presented concepts for fuzzy relations are related
to possible applications in image processing we present them
on a finite domain.

Definition 6 ([11]). Let X = {0, 1, ..., N − 1} and Y =
{0, 1, ...,M−1} be two finite sets. A fuzzy relation on X×Y
is a fuzzy set of the type

R = {((x, y), R(x, y))|(x, y) ∈ X × Y },

with R : X × Y → [0, 1].
Given a fuzzy relation R, its complement is given by

NR = {((x, y), NR(x, y))|(x, y) ∈ X × Y },

where N is a strong fuzzy negation.

In image processing, a grayscale image of N ×M pixels
may be interpreted as a collection of N×M elements arranged
in rows and columns. A numerical value representing intensity,
chosen from the set {0, 1, 2, ..., L − 1}, is assigned to each
element. An image Q is just a matrix so it may be represented
as a fuzzy relation R on a finite set such that the membership

degree of each element (pixel) is its intensity divided by
L − 1. For a color image, its channels can be independently
represented in the same way.

III. LOCAL CONTRAST

In the paper [1] several examples of local contrast were
examined and properties required for this notion in literature
were studied. This led the authors in [1] to introduce the
axiomatical description of a local contrast which should fulfill
the following axioms.

Definition 7 ([1]). A local contrast LC associated with a
strong negation N is a real function on X × Y such that:
(LC1) 0 ≤ LC(x, y) ≤ 1 for all (x, y) ∈ X × Y ;
(LC2) If the membership degrees of all the elements of the
submatrix centered on (x, y) are identical, then LC(x, y) = 0.
That is, if R(x− i, y − j) = q with q ∈ [0, 1] constant for all
i, j = −n; ...; 0; ...;n, then LC(x, y) = 0.
(LC3) If in the submatrix centered on (x, y) there is at least
one element with null membership and at least one element
with a membership degree of one, then LC(x, y) = 1.
(LC4) The local contrast of (x, y) does not change if for all
i, j = −n; ...; 0; ...;n we take N(R(x − i, y − j)) instead of
R(x− i, y − j).

We present some examples of a local contrast.

Example 1 ([1]). Let N be a strong negation. Thus LC for
(x, y) ∈ X × Y may be defined in the following way:

LCinf (x, y) =


1 if in the submatrix there exist

at least one element with
the membership equal to 1
and another equal to 0;

0 otherwise.

LCsup(x, y) =


0 if the memberships of all

elements in the submatrix
are the same;

1 otherwise.

LCHB1(x, y) =

0 if the memberships of
all elements in the
submatrix are the same;

1 if in the submatrix there
exist at least one
element with the
membership equal to 1
and another equal to 0;

n∑
i,j=−n

R(x−i,y−j)N(R(x−i,y−j))

size of the submatrix otherwise.

LCHB2(x, y) =
n

max
i,j=−n

R(x−i, y−j)−
n

min
i,j=−n

R(x−i, y−j).

Let us note that LCinf and LCsup provide bounds for any
local contrast, i.e.

LCinf ≤ LC ≤ LCsup.



Total contrast of a fuzzy relation may be defined in the
following manner.

Definition 8 ([1]). Let N be a strong negation. A total contrast
TC associated with N is a real function on FR(X×Y ) such
that:
(TC1) 0 ≤ TC(R) ≤ 1;
(TC2) If all elements of the fuzzy relation R have the same
membership degree, then TC(R) = 0;
(TC3) If R is a crisp relation such that there exists at least
one element with membership equal to one and another with
membership equal to zero, then TC(R) = 1;
(TC4) The total contrast of a fuzzy relation and that of its
negation (by N ) are the same; that is, TC(R) = TC(N(R)).

In the following proposition we show that aggregating local
contrasts will produce a total contrast as long as we choose the
aggregating function properly. Usually aggregation functions
are required to be increasing (cf. Definition 3). However,
we may also drop this requirement to consider aggregation
function as the one which combines the single values into one
value.

Proposition 1 ([1]). Consider R ∈ FR(X × Y ), and let LC
be a local contrast associated with a strong negation N (in
the sense of definition of total contrast TC). Then let F :⋃

m∈N [0, 1]m → [0, 1] be a function such that:
(1) F (0, ..., 0) = 0 and F (1, ..., 1) = 1.
(2) If ai ∈ {0, 1} for all i ∈ {1, ...,m}, and there exist at
least one component ap = 1 and another component aq = 0
with p, q ∈ {1, ...,m}, then F (a1, ..., am) = 1. Under these
conditions,

TC(R) = Fx=0,...,N−1,y=0,...,M−1LC(x, y)

is a total contrast associated with the strong negation N .

Example 2 ([1]). The following are examples of functions
fulfilling assumptions of Proposition 1:
F (a1, ..., am) = max(a1, ..., am).

F (a1, ..., am) =



1, if ai ∈ {0, 1} for all
i ∈ {1, ...,m}
and there are at least one
ap = 1 and one aq = 0
such that p, q ∈ {1, ...,m}

1
m

m∑
i=1

ai, otherwise.

Example 3. Examples of total contrast are the following.
Maximum of local contrast of all elements of the matrix

TC1(R) = max
x=0,...,N−1;y=0,...,M−1

LC(x, y).

TC2(R)=

1, if LC(x, y) ∈ {0, 1} for
all (x, y) ∈ X × Y and
there are at least one
(x, y) that LC(x, y) = 1
and another (x, y)
that LC(x, y) = 0

1
N ·M

∑N−1
x=0

∑M−1
y=0 LC(x, y), else .

In the next part of the paper we will concentrate on the
notion of a local contrast.

In the paper [2] the concept of a consensus measure was
analyzed in the context of decision making. Consensus may be
treated as a measure of agreement among inputs. As a result
there were proposed two minimal axioms that a consensus
measure should fulfill.

Definition 9 ([2]). A function C : [0, 1]n → [0, 1] is said to
be a consensus measure if it satisfies the following properties:
(C1) (Unanimity) For all a ∈ [0, 1] it holds that
C(a, a, ..., a) = 1,
(C2) (Minimum consensus for n = 2) For the special case of
two inputs it holds that C(0, 1) = C(1, 0) = 0.

Unanimity (C1) is a natural requirement for consensus
which says that the agreement is total in the case of the
same inputs. Minimum consensus (C2) means that for the
two totally different inputs we obtain total disagreement, i.e.
consensus equals zero. Since we would like to apply the
consensus measure in image processing issues, in the context
of describing the local contrast, we propose a modified version
of the consensus where the axiom (C2) is replaced with its
adequate version for the case of n-argument inputs. We will
call this version by a strict consensus measure.

Definition 10. A function C : [0, 1]n → [0, 1] is a strict
consensus measure if it satisfies the following properties:
(C1) For all a ∈ [0, 1] it holds that C(a, a, ..., a) = 1,
(C2’) If ak = 0 and al = 1 for some k, l ∈ {1, ..., n}, then
C(a1, ..., an) = 0.

The following example justifies the adjective ’strict’ in the
new version of the consensus.

Example 4 ([12]). The following is a consensus measure but
it is not a strict consensus measure

C(a1, ..., an) = 1 +
1

n

n∑
i=1

log2(1− |ai − a|),

where a = 1
n

∑n
i=1 ai.

Consensus measure may have some additional properties
(cf. [2]). We recall only one of them.

Definition 11 (cf. [2]). A consensus measure (a strict consen-
sus measure) C is said to be reciprocal if for a strong negation
N , it holds

C(a1, ..., an) = C(N(a1), ..., N(an))



for all a1, ..., an ∈ [0, 1].

Below we remind a construction of the consensus measure
with the use of an aggregation function and a fuzzy implica-
tion.

Proposition 2 ([2]). Let M denote an averaging aggregation
function and I denote a fuzzy implication satisfying the identity
principle. The following is a consensus measure

C(a1, ..., an) =
1

1−K

(
Mn

i,j=1,i6=jI(ai, aj)−K

)
,

where
K = min

b∈[0,1]n
Mn

i,j=1,i6=jI(bi, bj).

It is easy to see the following simplified dependence.

Proposition 3. If an aggregation function M has a zero
element zero, I denotes a fuzzy implication satisfying the
identity principle, then C defined in the following way

C(a1, ..., an) = Mn
i,j=1,i6=jI(ai, aj)

is a strict consensus measure.

If for example M = min or M is a weighted geometric
mean, then C is a strict consensus measure for adequate fuzzy
implications I .

Proposition 4 ([2]). Let M denote a symmetric averaging
aggregation function and I denote a fuzzy implication satisfy-
ing the identity principle and contraposition with respect to a
strong negation N . Then

C(a1, ..., an) =
1

1−K

(
Mn

i,j=1,i6=jI(ai, aj)−K

)
,

where
K = min

b∈[0,1]n
Mn

i,j=1,i6=jI(bi, bj)

is a reciprocal consensus measure.

We will use the following modification of the above propo-
sition.

Proposition 5. Let M : [0, 1]n → [0, 1] denote a symmetric
aggregation function with a zero element zero and I denote a
fuzzy implication satisfying the identity principle and contra-
position with respect to a strong negation N . Then

C(a1, ..., an) = Mn
i,j=1,i6=jI(ai, aj)

is a reciprocal strict consensus measure.

Since consensus is a measure of agreement among the
given values and a local contrast, on the contrary means a
disagreement among inputs, we propose to construct a local
contrast as a negation of the consensus measure over the given
set of values. It is easy to verify that the following dependence
holds.

Proposition 6. Let R ∈ FR(X×Y ), C be a reciprocal strict
consensus measure with respect to a strong fuzzy negation N .

Then LC : X × Y → [0, 1] is a local contrast, where for all
(x, y) ∈ X × Y

LC(x, y) = N(Cn
i,j,k,l=−n,(i 6=k or j 6=l)(R(x− i, y − j))).

From Propositions 5 and 6, for the classical fuzzy negation
N(a) = 1− a, we directly obtain

Corollary 1. Let R ∈ FR(X×Y ), M be an aggregation func-
tion and I be a fuzzy implication that both satisfy assumptions
of Proposition 5. Then the operation

LC(x, y) =

1−(Mn
i,j,k,l=−n,(i 6=k or j 6=l)(I(R(x−i, y−j), R(x−k, y−l)))

is a local contrast.

Based on Corollary 1 we may obtain the following examples
of local contrasts.

Example 5. Let (x, y) ∈ X × Y .
For M = min and I = ILK we have

LC1(x, y) = 1−

(
n

min
i,j,k,l=−n,(i6=k or j 6=l)

(min(1, 1−R(x−i, y−j)+R(x−k, y−l)))

=
n

max
i,j,k,l=−n,(i 6=k or j 6=l)

(max(0, R(x−i, y−j)−R(x−k, y−l))).

If M is the geometric mean and I = ILK we have

LC2(x, y) = 1−

(Gn
i,j,k,l=−n,(i 6=k or j 6=l)(min(1, 1−R(x−i, y−j)+R(x−k, y−l))),

where
G(a1, ...am) = m

√
a1 · ... · am,

is the geometric mean.

For M = min and I = IFD we have

LC3(x, y) =

1− (
n

min
i,j,k,l=−n,(i6=k or j 6=l)

(I(R(x− i, y− j), R(x−k, y− l))).

If M is the geometric mean and I = IFD we have

LC4(x, y) =

1−(Gn
i,j,k,l=−n,(i6=k or j 6=l)(I(R(x−i, y−j), R(x−k, y−l))).

If Mp is the minimum powered by p element-wise and
I = IFD we have

LC5(x, y) =

1−(Mpni,j,k,l=−n,(i 6=k or j 6=l)(I(R(x−i, y−j), R(x−k, y−l))),

where
Mp(a1, ..., an) =

n
min
i=1
{api }, p > 0. (1)

For Mp and I = ILK we have

LC6(x, y) =



1−(Mpni,j,k,l=−n,(i 6=k or j 6=l)(I(R(x−i, y−j), R(x−k, y−l))).

For Mp and I = IRC we have

LC7(x, y) =

1−(Mpni,j,k,l=−n,(i 6=k or j 6=l)(I(R(x−i, y−j), R(x−k, y−l))).

For Mp and I = IKD we have

LC8(x, y) =

1−(Mpni,j,k,l=−n,(i 6=k or j 6=l)(I(R(x−i, y−j), R(x−k, y−l))).

If M is a GMLuk general overlap function where

GMLuk(a1, ..., an) =
n

√√√√ n∏
i=1

ai · (max{
n∑

i=1

ai − (n− 1), 0})

(2)
and I = ILK we have

LC9(x, y) = 1−

(GMLuk
n
i,j,k,l=−n,(i6=k or j 6=l)(I(R(x−i, y−j), R(x−k, y−l))).

If M is the product

P (a1, ..., an) =

n∏
i=1

ai (3)

and I = ILK we have

LC10(x, y) =

1−(Pn
i,j,k,l=−n,(i 6=k or j 6=l)(I(R(x−i, y−j), R(x−k, y−l))).

In another method of construction of the local contrast we
use the concept of a similarity S which may be treated as
one of the ways of measuring agreement between the input
elements.

Definition 12 ([13]). A function S : (FR(X))2 → [0, 1] is
called a similarity measure, if S has the following properties:
(SP1) S(A,B) = S(B,A);
(SP2) D(D,Dc) = 0, for D ∈ P (X);
(SP3) S(A,A) = 1;
(SP4) if A ≤ B ≤ C, then
S(A,B) ≥ S(A,C) and S(B,C) ≥ S(A,C)
for A,B,C ∈ FR(X).

Example 6. Let (x, y) ∈ X × Y , I = IFD and S be a
similarity measure S(a, b) = min(I(a, b), I(b, a)). Then

LC11(x, y) =

n
max

i,j=−n
S(1, R(x−i, y−j))−

n
min

i,j=−n
S(0, 1−R(x−i, y−j)) =

n
max

i,j=−n
I(1, R(x− i, y− j))−

n
min

i,j=−n
I(1−R(x− i, y− j), 0)

is the local contrast.

If in LC11 we use implication I = ILK then we call the
obtained local contrast by LC12.

We propose also another construction method with the
notion of a similarity measure involved. For S(a, b) =
min(I(a, b), I(b, a)) and I = ILK we build the following local
contrast

LC13(x, y) = 1−

(
n

min
i,j,k,l=−n,(i 6=k or j 6=l)

S(R(x− i, y − j), R(x− k, y − l)).

If in LC13 we use implication I = IFD then we call the
obtained local contrast by LC14.

IV. CONTRAST EVALUATION

Some of the most common pixel-wise operators in digital
photography are the ones performing manipulation of contrast
or tone [14]. It is common to use these techniques for contrast
enhancement to make photographs look either more attractive
or more interpretable. A substantial change of contrast in the
image, regardless of the existence of chromaticity (in color
images) or absence of one (in grayscale images), can be easily
observed by a human (Figure 1).

Fig. 1. The Lena images and computed histograms: original contrast (left),
image with increased contrast (center) and decreased contrast (right). Contrast
adjustments was performed by manipulation of image histogram.

However, local contrast measure is not a strictly defined
concept and many different contrasts were proposed [15].
As a consequence, it is difficult to state that a particular
contrast definition is correct and to provide a direct comparison
between them. It is worthwhile to mention that the majority of
contrast enhancement does not define a specific contrast term,
but rather exploit the under-utilized regions of the dynamic
range [16], for instance, using histogram modification or
transform-based techniques.

The salient region detection problem relies heavily on the
concept of image contrast [3] and has commonly accepted
measures of solution quality. Therefore we propose to evaluate
introduced fuzzy contrasts on real-world data by applying
them in a salient region detection problem. We believe that
evaluating the quality of obtained saliency maps will give us
a clue about the usefulness of local contrast definitions and
also possibility to compare multiple ones.



A. Saliency detection

Salient region detection, simply called saliency detection
is a technique used as the first step in many applications:
object-based image retrieval, adaptive content delivery, adap-
tive region-of-interest based image compression, and smart
image resizing [4]. The salient regions are described as more
conspicuous in a sense of their contrasts than their surround-
ings. The salient region could be also intuitively understood
as a region that is more visually distinctive to the observer
than others [17]. Visual saliency is related closely to human
perception and processing of visual stimuli. Many disciplines
including cognitive psychology, neurobiology and computer
vision study this phenomenon [5]. A number of studies have
shown that human cortical cells are highly responsive to high
contrast stimuli in their receptive fields [18].

There are a few research topics closely related to saliency
detection. Fixation prediction studies try to predict where
humans look - the output of these models are usually sets
of fixation points. On the other hand, object proposal methods
try to generate a set of (typically overlapping) rectangles, often
called bounding boxes, describing regions that may represent
certain objects. These methods are often used as a preprocess-
ing technique to avoid exhaustive sliding window detection on
entire images. All of the methods require some consistent data
to evaluate the performance metrics, thus many public datasets
were proposed to challenge saliency detection models. The
datasets contain manually or automatically obtained labels (in
the case of fixation prediction problem ground-truth is usually
obtained by eye-tracking device). Sample images and different
types of ground truth data are presented in Figure 2.

Fig. 2. Sample images from saliency detection and fixation prediction datasets
[5][19]. Top row - input images, bottom row - different types of ground truth
data, from left to right: human-annotated bounding box, human annotated
pixelwise, eye-tracking results.

There are many approaches for saliency detection, a com-
prehensive survey of the methods and datasets is provided
by [17]. The main two groups are: biologically inspired and
purely computational. All methods, however, are "determining
local contrasts of image regions with their surroundings". The
differences are in the techniques and selecting image infor-
mation (color, intensity, orientation) [4]. Recently, with the
growing popularity of convolutional neural networks, machine
learning-based methods were proposed [20].

In our experimental approach we use new fuzzy local
contrast definitions to obtain saliency maps for images from
the MSRA10K dataset [5]. The dataset is widely used among
researchers and provides accurate pixel-wise manually ob-
tained ground truth labeling. Since high variability in color
or luminance of neighbouring pixels often contributes to
significant visual distinctiveness of a region we attempt to
utilize that property for testing these new fuzzy contrasts
defined with different aggregation functions.

B. Image preprocessing and saliency map computation

The images were first converted from RGB to CIELAB
color space given its perceptual accuracy. After that the color
space was fuzzified, according to the formula:

l = l
max l

a = a+127
max a

b = b+127
max b

where fuzzified color is expressed as three values: l for the
luminance (from black to white), a from green to red, and b
from blue to yellow. In the fuzzification process max should
be understood as maximum value in the image.

To compute saliency map each image was divided into
windows, similar to [21] and [3]. For each m×n window local
contrast of each channel (l, a, and b respective) was computed
according to our formulas. The size of the window controls
it’s sensitivity - decrease in m or n makes the window more
sensitive to color change. Next, the channels were combined
together to form final saliency maps. At the end the image
was thresholded using several algorithms - Otsu method was
chosen as the best performing one. The result is a binary mask
M (Figure 3.), where white regions are considered to be the
regions of interest (saliency regions).

C. Local contrast evaluation metrics

We use precision, recall and accuracy, which are universally-
agreed measures for evaluating salient object detection algo-
rithms [17]. The provided dataset contains provided by manual
annotation, accurate salient object ground-truth labeling for the
images. It is worth mentioning that ground-truth data needs
to be in this case down-sampled to match the resolution of
computed saliency maps. Having computed binary mask M
and ground-truth G, the measures are defined as follows:

Precision =
|M ∩G|
|M |

Recall =
|M ∩G|
|G|

Accuracy =
|M ∩G|
|M |

Evaluation of the proposed contrasts on the selected images
from MSRA10K dataset averaged among different window
sizes (5× 5, 10× 10) is presented in Table 1.



Fig. 3. From left to right: Original image, ground truth, computed saliency image using best performing local contrast, binarized saliency map.

TABLE I. Averaged results

Contrast p Precision Recall Accuracy

LC7 2.0 0.795260 0.708756 0.874853
LC7 0.5 0.837872 0.594712 0.871262
LC7 3.0 0.775138 0.736035 0.870351
LC8 0.5 0.815778 0.604762 0.861231
LC5 0.5 0.815778 0.604762 0.861231
LC6 3.0 0.801815 0.674163 0.858498
LC6 2.0 0.813624 0.627180 0.855165
LCHB2[1] 0.833879 0.559601 0.849145
LC1 0.833879 0.559601 0.849145
LC11 0.833879 0.559601 0.849145
LC13 0.833879 0.559601 0.849145
LC12 0.833879 0.559601 0.849145
LC6 0.5 0.837672 0.512843 0.842085
LC3 0.748412 0.781225 0.839969
LC14 0.748412 0.781225 0.839969
LC2 0.849087 0.451948 0.832230
LC9 0.849087 0.451948 0.832230
LC4 0.741493 0.753446 0.805933
LC10 0.551247 0.962998 0.730293

Computing accuracy measure is essential because precision
and recall (and some other overlap-based measures like F-

measure and AUC) do not take into account pixels correctly
marked as non-salient, thus methods that fail to detect non-
salient regions but perform well on salient ones are favored
[17]. Such a case can be observed while applying LC10

contrast, which despite good recall performs worse than others
in terms of accuracy.

We found that the best performing contrast is LC7, with
the minimum powered by p element-wise as an aggregation
function and Reichenbach implication. What is worth noticing,
changing the exponent contributes to a trade-off between preci-
sion and recall. The same can be observed for another contrast
measure (LC6) with this parameter. Moreover, few definitions
contributed by us outperform local contrast specified in [1].
While examining the results one can notice that a couple of
measures are equal for a few groups of local contrasts. Such
results are obtained in some cases due to the process of image
binarization, not the equality of computed saliency maps.

We may observe that recall is relatively low for all contrasts,
however, proposed contrast definitions could be used in a
preprocessing stage to find possible regions of interests, which



could be evaluated by a more accurate, but more computation-
ally complex algorithm.

D. Implementation details and speed-up considerations

Local contrasts measures were implemented in Python pro-
gramming language, with use of NumPy and scikit-image.
As for now, the implementation is directly following given
formulas with the use of NumPy vectorization capabilities.
Instead of naively evaluating the contrast value for each
window there is a possibility to investigate whether histogram-
based implementation will give equivalent results with reduced
computational complexity. Histogram-based speed-ups are a
common technique in image processing and have already been
proposed for salient detection [5].

V. CONCLUSIONS

In this paper, we provided the construction methods of the
local contrast of a fuzzy relation. We focused on the con-
struction method involving the notion of a consensus measure
but we also proposed two ways of defining the local contrast
with the use of the concept of a similarity measure. The new
examples of local contrast were examined in image processing
for salient region detection. Few definitions proposed by us
outperform local contrast specified by [1] in terms of recall
and accuracy.

For future work we plan to develop our work both on
theoretical and practical ground. We would like to develop
some general construction method involving the concept of
the similarity. Moreover, we would like to apply our results in
image processing problems.
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