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Abstract—Living in the era of “data deluge” demands for
an increase in the application and development of machine
learning methods, both in basic and applied research. Among
these methods, in the last decades fuzzy inference systems
carved out their own niche as (light) grey box models, which
are considered more interpretable and transparent than other
commonly employed methods, such as artificial neural networks.
Although commercially distributed alternatives are available,
software able to assist practitioners and researchers in each step
of the estimation of a fuzzy model from data are still limited
in scope and applicability. This is especially true when looking
at software developed in Python, a programming language that
quickly gained popularity among data scientists and it is often
considered their language of choice. To fill this gap, we introduce
pyFUME, a Python library for automatically estimating fuzzy
models from data. pyFUME contains a set of classes and methods
to estimate the antecedent sets and the consequent parameters
of a Takagi-Sugeno fuzzy model from data, and then create an
executable fuzzy model exploiting the Simpful library. pyFUME
can be beneficial to practitioners, thanks to its pre-implemented
and user-friendly pipelines, but also to researchers that want to
fine-tune each step of the estimation process.

Index Terms—fuzzy logic, Takagi-Sugeno fuzzy model, data-
driven, open-source software, Python

I. INTRODUCTION

With the rapidly growing amount of gathered data [1] and
the increasing computer performance [2], Machine Learning
(ML) has gained in popularity. In the past decade, ML led to
many advancement, including self-driving cars [3], effective
image analysis [4] (in particular in the clinical domain [5]),
high quality speech recognition [6], an increased understand-
ing of the human genome [7], and so forth.

In 2018, Kaggle, an online community of data scientists
and ML practitioners, conducted an industry wide survey to
find out who is working with data and what is happening with
ML in different industries [8]. One of the findings of this
survey is that the most used programming language for data
professionals is Python, which was used on a regular basis
by 83% of the nearly 24,000 respondents. The survey also
showed that 78% of the respondents recommends aspiring data
scientist to learn how to program in Python as a first language.

Fuzzy inference systems (FIS) [9] are a popular type of
models whose parameters can be optimized using machine

learning optimization methods. FIS are an interpretable and
transparent type of models that reveal the underlying relations
in the data in terms of fuzzy rules. Since these fuzzy rules
are comprehensible to human beings, FIS function as (light)
grey box models, in contrast to, for example, (deep) artificial
neural networks. This property makes it possible to study
these models’ underlying reasoning mechanism and to gain
a deeper understanding of patterns in the data. Hence, FIS are
considered transparent and interpretable to a certain degree.

One of the most well-known and used software tools to
create data-driven fuzzy models is the MATLAB Fuzzy Logic
Toolbox [10], which provides MATLAB functions and a GUI
for analyzing, designing, and simulating systems based on
fuzzy logic, which can be both created from knowledge or
data. However, being a closed source, commercial product,
MATLAB is often unavailable for practitioners. This could
explain why only 14% of the respondents of the Kaggle survey
indicated to use MATLAB on a regular basis.

Given the popularity of Python it is remarkable that, to the
best of our knowledge, Python libraries providing methods
to automatically estimate fuzzy models from data are scarce
and none of them gives the user complete control over the
estimation process. Existing examples include libraries that
provide support for specific data-driven applications, i.e., fuzzy
clustering and creation of Adaptive Network Fuzzy Inference
Systems [11], [12]. In this paper we present pyFUME, a
Python package that provides a set of classes to define
pipelines for the automatic estimation of fuzzy models from
data. In pyFUME the fuzzy reasoning is handled by Simpful
[13], a Python library that provides a set of classes and
methods to intuitively define and handle fuzzy sets, fuzzy rules
and perform fuzzy inference. pyFUME contains functions to
estimate the antecedent sets and the consequent parameters
of a Takagi-Sugeno fuzzy model directly from data. This
information is then used to create an executable fuzzy model
using the Simpful library. pyFUME also provides facilities for
the evaluation of performance from a statistical standpoint.

This paper is structured as follows. In Section II, we first
provide some background on the structure and generation
of Takagi-Sugeno fuzzy models. After this, we give some
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information about the implementation details of the Simpful
library, which is the fuzzy reasoner used by pyFUME. Then, in
Section III, we describe in detail the functions implemented
in pyFUME. In Section IV we show how pyFUME can be
used to generate a fuzzy model from data using a publicly
available data set. Lastly, in Section V we draw final remarks
and provide insights on future developments of pyFUME.

II. BACKGROUND

A. The Takagi-Sugeno fuzzy model

FIS are “expert systems” [14], in which knowledge is for-
malized and codified by means of membership functions and
fuzzy rules. The process of fuzzy inference leverages fuzzy
logic for mapping a given input to an output. This mapping
can serve as a basis from which decisions or predictions can
be made, or it can reveal patterns in the data.

In this context, a Takagi-Sugeno (TS) FIS [15] consists of
a set of fuzzy rules, where each rule describes a local relation
between input and output variables. When first-order TS fuzzy
systems are used, each model consists of rules in the form:

Rj : IF x1 is Aj1 and . . . and xN is AjN

THEN yj = aTj x+ bj
(1)

where, j = 1, . . . J denotes the rule number; x = (x1, . . . xN )
denotes the input vector; N is the number of input features;
Ajn is the fuzzy set for rule Rj and nth feature, while yj is the
consequent function of rule Rj , that is, a linear combination
of the elements of x, with coefficients aj and a constant bj .

We can define the degree of fulfillment of a rule j as:

βj = min(µAj1(x), . . . , µAjN
(x)), for j = 1, . . . , N. (2)

The overall output y∗ of the system for a given input vector
x is a weighted average of the individual rule outputs:

y∗ =

∑J
j=1 βjyj∑J
j=1 βj

. (3)

The development of a Takagi-Sugeno FIS generally consists
of two phases [16], [17]:

• during structure identification phase, a suitable number
of rules and a proper partition of the feature space must
be determined. This can be done, e.g., by means of
grid partitioning or k-means clustering [18], fuzzy c-
means [19] or subtractive [20] clustering;

• in a second phase, corresponding to the parameter iden-
tification, the FIS parameters (e.g., the membership func-
tions or the linear coefficients) are adjusted. For this
purpose, least-square or derivative-based optimization
techniques can be used (for more information see [16]).

B. Simpful

Simpful is a user-friendly Python library, which provides
the users with a lightweight application programming interface
(API) to define FIS for any purpose [13]. Compared to
other existing Python software (e.g, [11]), Simpful’s API was
designed to be as close as possible to natural language, in

order to facilitate the users in the definition of fuzzy sets,
linguistic variables, fuzzy rules and perform fuzzy inference.
Notably, this was achieved without dependencies from any
Python libraries besides numpy and scipy, and the use of
virtual machines (a solution adopted, for example, in [21]).

One of the distinguishing features of Simpful is that fuzzy
rules are defined through well-formed strings of text, written
in natural language, thus simplifying the definition of the rule
base. Such encoding of the rules in a human readable format
facilitates the inspection of the model and the interpretation
of the results, with respect to other competitor libraries.

Once a collection of linguistic variables, fuzzy rules, and
consequent outputs is defined and added to Simpful’s fuzzy
system main class, this performs a recursive tokening and
parsing of the antecedents of each rule (exploiting the paren-
theses as delimiters), in order to identify atomic clauses
and functional logic operators. This allows Simpful to build
executable representations of the antecedents of the rules in
the form of derivation trees, which are exploited to perform
Sugeno inference and return final output values, once the input
values of the antecedents are provided.

The latest version of Simpful (v2.0.0) supports: (i) polygo-
nal and functional (e.g., sigmoidal, gaussian or custom shaped)
fuzzy sets; (ii) the definition of fuzzy rules with an arbitrary
degree of complexity, employing common logic operators
(e.g., AND, OR, NOT), by means of strings of text written
in natural language; (iii) the Sugeno inference method, with
support for consequent functions of any order. Moreover,
Simpful supports the definition of FIS with multiple inputs
and outputs, and the definition of fuzzy networks [22] with
arbitrary topologies. The source code of Simpful is available,
under GPL license, on GitHub at the following URL: https:
//github.com/aresio/simpful. Simpful can also be installed by
using the PyPI facility: pip install simpful.

III. IMPLEMENTATION OF PYFUME

pyFUME was implemented in the Python 3 pro-
gramming language [23] and depends on numpy [24],
scipy [25] and Simpful [13]. pyFUME can be downloaded
from GITHUB at the following address: https://github.com/
CaroFuchs/pyFUME. A PyPI package for pyFUME is also
under development. Currently, pyFUME supports:

1) Loading of the input data.
2) Division of the data in a training and test data set.
3) Clustering of the data using Fuzzy C-Means (FCM) [19]

or an approach based on Fuzzy Self-Tuning Particle
Swarm Optimization (FST-PSO [26], [27]) in the input-
output space.

4) Estimation of the antecedent set parameters of the fuzzy
model, using the method described in [28].

5) Estimation of the consequent parameters of the first
order Takagi-Sugeno fuzzy model, implementing the
functionalities described in [29].

6) The generation, using the estimated antecedents and
consequents, of an executable fuzzy model based on



Simpful, possibly exporting the source code as a sep-
arate, executable file.

7) Testing of the estimated fuzzy model, by measuring the
Root Mean Squared Error (RMSE), Mean Squared Error
(MSE) or Mean Absolute Error (MAE).

8) Creation of visual summaries of the fuzzy sets derived
by pyFUME.

The primary goal of pyFUME is to facilitate the practition-
ers in the creation of a first order Takagi-Sugeno fuzzy model
from data. Therefore, a fuzzy model using default settings
can be created using the pyFUME() class, for which the
user only has to specify the path to the data he would like
to use, the number of clusters/rules that should be identified
in the data and the type of fuzzy model the user wishes
to be created (default: model_type=‘Takagi-Sugeno’).
pyFUME() then functions as a wrapper and calls pyFUME’s
classes as shown in Figure 1 for fitting the Takagi-Sugeno
fuzzy model. If the user wishes to change the default settings,
he can do so by providing key–value pair as input arguments
for pyFUME(). For example, providing the key value pair
normalize=True, will result in normalization of the input
data. As output, the function provides the user with the
Simpful fuzzy model, executable Simpful code and the RMSE
of the created model.

Users that wish to be more in control of the modeling
process can produce their own pipeline, exploiting the methods
exposed by the underlying classes. These classes and their
methods are described in detail in what follows.

A. DataLoader
The DataLoader class takes the path to the data as input.

The DataLoader accepts data in a comma separated format
(.csv). Optionally, the user can specify the names of the N
variables as a list, using the variable_names argument.
If the user does not provide variable names, these names are
read from the first row of the data set.

In the DataLoader class, the data is divided in input data
dataX (the first N columns) and the labels dataY (the N +
1-th column). If the user prefers to use normalized data, he
can set the input argument normalize to True, after which
the data will be normalized using min-max normalization. By
default, normalize is set to False and no normalization is
performed.

B. DataSplitter
The DataSplitter class takes as inputs dataX and

the labels in dataY. Its method holdout() splits the
data into a training and a test data set. By default, the
training data set contains 75% of all samples. This propor-
tion can be changed by specifying the optional input argu-
ment percentage_training. As output the holdout()
method provides the user with four subsets of the data:
x_train, y_train, x_test and y_test.

C. Clusterer
The Clusterer class clusters the (training) data in the

input-output feature space. The current version of pyFUME

supports FCM [19] and a fuzzy clustering approach based on
FST-PSO, presented in [27]. The latter method can have better
performance, at the cost of an increased computational effort,
when dealing with clustering problems that display multiple,
locally optimal solutions. The implementation of additional
clustering methods is planned for future releases.
Clusterer object is initialized by passing as arguments

the data and the number of clusters. This class is equipped
with a cluster() method, which accepts as arguments
the clustering method to be employed and its additional
settings (if needed). This method effectively behaves like a
wrapper for the pre-implemented clustering algorithm avail-
able in pyFUME, namely FCM and the one based on FST-
PSO, returning the cluster centers and the associated partition
matrix. Experienced users who might want to employ their
own clustering algorithm can easily override this method with
their own one. The private methods implementing the FCM
and FST-PSO based algorithm accept the following additional
arguments: in _fcm(), the user can specify the values of
the fuzzy clustering coefficient m (default m = 2), maximum
number of iterations max_iter (default max_iter = 1000),
and the minimum improvement of the objective function to be
reached as stopping criterion error (default error = 0.005);
in _fstpso(), the user can specify the values of the fuzzy
clustering coefficient m (default m = 2), maximum number
of iterations max_iter (default max_iter = 100), number
of particles n_particles (default automatically calculates
the number of particles, according to a heuristic as explained
in [26]).

D. AntecedentEstimator

The AntecedentEstimator estimates the parameters
of the membership functions that are used as antecedents of
the fuzzy rules. To do this, the AntecedentEstimator
class uses the same algorithm described in [28]. As in-
put, the class’ determineMF() method requires the
partition_matrix and x_train. Optionally, the user
can choose the shape of the fitted fuzzy sets. py-
FUME supports Gaussian (shape=gauss), double Gaussian
(shape=gauss2) and sigmoid (shape=sigmf) member-
ship functions. Unless specified otherwise, pyFUME fits Gaus-
sian membership functions to the data. The determineMF()
method returns the antecedent_parameters. In the
rules, the identified antecedent sets will be connected with the
AND operator, which is specified as the minimum in Simpful.

E. ConsequentEstimator

The ConsequentEstimator requires the
partition_matrix and x_train to estimate the
parameters of the linear consequent function of the
fuzzy model using least squares fitting. This is done
by means of the suglms() method, which returns the
consequent_parameters Additionally, the user can opt
for global (default, global_fit=True) or local fitting
(global_fit=False) of the linear function.
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Fig. 1: Graphical representation of the pyFUME pipeline for the estimation of a Takagi-Sugeno fuzzy model. Blue text highlights
the pyFUME classes employed in each step.

F. SugenoFISBuilder

The SugenoFISBuilder class takes as input
arguments the antecedent_parameters, the
consequent_parameters and the variable_names
and uses these to build the Simpful model. The Simpful
model is a first order Takagi-Sugeno fuzzy model in which
the antecedents are connected using the AND-operator and in
which the consequent exists out of a linear combination of the
input variables and a constant. The SugenoFISBuilder
class generates an object with the executable Simpful model.
In addition, it can generate and save the Simpful code
belonging to that model as a standalone file. The fuzzy
sets of the generated model can be exported as figures (in
any format supported by the Matplotlib library) using the
produce_figure() method.

G. SugenoFISTester

The SugenoFISTester class requires as input the Simp-
ful model and the data subsets x_test and y_test.
When the calculate_RMSE(), calculate_MSE() or
calculate_MAE() method is called, the samples provided
in x_test are evaluated using the Simpful model and the
accuracy of the model is assessed by calculating the RMSE,
MSE or MAE respectively. The error value is then returned to
the user.

IV. TEST CASE

In this section, we illustrate how pyFUME can be used to
create a fuzzy model from data and we show how the generated
model can be used and inspected by the user.

A. Data set

As an example, we will generate a model using the concrete
data set [30]. The concrete data set is a publicly available data

set, containing 1030 samples. It is gathered to analyze the com-
pressive strength (in MPa) of concrete samples. Compressive
strength is well-known to be a highly nonlinear function of the
age of the concrete and the ingredients employed in its mixing.
The concrete data set contains both the age and the amounts of
the ingredients used in the concrete mix: cement, blast furnace
slag, fly ash, water, superplasticizer, coarse aggregate, and fine
aggregate. In what follows, we use this data set to estimate
a FIS that describes the relationship between the concrete’s
compressive strength, its age and its exact composition.

A subset of the concrete data set is shown in Table I. As it
can be observed, the data is in a comma separated format (i.e.,
.csv): the first row contains the variable names, each successive
row contains the data of one data instance.

B. Fuzzy model generation and results

Both the code in Listing 1 and Listing 2 can be used to
estimate a fuzzy model from the concrete data using pyFUME.

The code in Listing 1 is simple and easy to use, making
it ideal to use for practitioners who wish to use the default
settings or only wish to use few non-default settings. In this,
it is similar to MATLAB’s genfis. Users that wish to deviate
from the default settings can use the code shown in Listing
2. Options for deviations are discussed in Section III. An
example of a deviation can be seen in Listing 2, line 14, where
normalization of the input data is activated.

Both the code shown in Listing 1 and Listing 2 generate
Simpful code and an executable model. Line 17 to 28 of
Listing 1 show how the user can use the set_variable()
and Sugeno_inference() methods of the model object
to predict the compressive strength of a new concrete sample.

Besides the executable model, pyFUME gives Simpful code
as its output. An example of automatically generated Simpful
code for the concrete data set can be found in Listing 3. This



TABLE I: Sample of the concrete data set.

Cement, BlastFurnaceSlag, FlyAsh, Water, Superplasticizer, CoarseAggregate, FineAggregate, Age, CompressiveStrength,
540.0, 0.0, 0.0, 162.0, 2.5, 1040.0, 676.0, 28, 79.99,
540.0, 0.0, 0.0, 162.0, 2.5, 1055.0, 676.0, 28, 61.89,
...
159.1, 186.7, 0.0, 175.6, 11.3, 989.6, 788.9, 28, 32.77,
260.9, 100.5, 78.3, 200.6, 8.6, 864.5, 761.5, 28, 32.40,

Simpful code is not only an easy way to store the model for
later usage. It also gives insights in the inner workings of the
model since the code is readable.

In line 4 of Listing 3, the empty fuzzy system is created.
Line 5 to 8 shows how the rules are defined. As can be seen in
these rules, when rules are automatically identified from data
only the AND-operator is used to connect the rules’ antecedent
sets. In line 10 to 12 the consequents with their coefficients are
shown. Since we fit a first-order Takagi-Sugeno system, the
consequent are a linear combinations of the input variables,
plus a constant. From line 14 to 60, the fuzzy sets and
membership functions of the input variables are defined. These
membership functions are visualized in Figure 2. In line 10 and
11 of Listing l and line 40 and 41 of Listing 2, the accuracy
of the model is calculated. Since the calculate_error()
method is not given an additional argument, by default the
RMSE is used. The RMSE is then printed in the console. In
this example, the RMSE of this system is 14.65.

This example shows how pyFUME can be used to generate
first-order Takagi-Sugeno models from data, both by using the
pyFUME class and by using its underlying functions.

V. CONCLUSION

In this paper we presented pyFUME, a python package for
estimating fuzzy models from data. For practitioners, pyFUME
offers a user-friendly API, which is able to create a model out
of data with limited interaction required by the user, owing
to its pre-implemented, commonly employed methods. For
more experienced users and researchers, the classes defined
in pyFUME expose methods that can be easily overridden, in
order to tweak the pre-implemented methods or define custom
ones. This feature allows for the generation of a personalized
pipeline for estimating the parameters of the fuzzy model.

In the near future, we plan to further extend pyFUME’s
support, by adding additional methods to its set of already
implemented classes. In particular, we will add other data
splitting methods (e.g., cross-validation), additional clustering
methods (e.g., Gustafson-Kessel [31] and possibilistic fuzzy c-
means [32] clustering), and more evaluation metrics to test the
performance of the generated model. We will also add support
for other types of fuzzy models, such as zero-order Takagi-
Sugeno, Mamdani [33], Tsukamoto [34], AnYa [35], and
probabilistic fuzzy models [36]–[38]. We will also implement
support for other commonly used t-norms.

The approach and the software presented in this paper
will be adapted to develop a framework for the automatic
definition of dynamic fuzzy models [39], [40]. These models
are represented by fuzzy inference networks [22], whose

evolution over time can be simulated. Since their definition is
time consuming and relies on domain-experts’ knowledge, we
envision that pyFUME can help the modelers in the definition
of accurate models more efficiently, based on data.

Finally, future releases of Simpful [13], the fuzzy reasoner
behind pyFUME, will support the Fuzzy Markup Language
(FML) format, defined in the IEEE Std 1855-2016 [41]. The
use of the FML, possibly achieved by leveraging existing li-
braries (i.e., JFML and Py4JFML [21], [42]), will facilitate the
import, export and sharing of the FIS defined with pyFUME.
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Listing 2: Flexible method to fit a fuzzy model to data using pyFUME.
1 from LoadData import DataLoader
2 from S p l i t t e r import D a t a S p l i t t e r
3 from Mode lBu i lde r import S u g e n o F I S B u i l d e r
4 from C l u s t e r i n g import C l u s t e r e r
5 from E s t i m a t e A n t e c e n d e n t S e t import A n t e c e d e n t E s t i m a t o r
6 from E s t i m a t e C o n s e q u e n t P a r a m e t e r s import C o n s e q u e n t E s t i m a t o r
7 from T e s t e r import S u g e n o F I S T e s t e r
8
9 # S e t t h e pa th t o t h e da ta and choose t h e number o f c l u s t e r s

10 p a t h = ’ . / C o n c r e t e d a t a . c sv ’
11 n r c l u s =3
12
13 # Load and n o r m a l i z e t h e da ta
14 d l = DataLoader ( pa th , n o r m a l i z e =1)
15 v a r i a b l e n a m e s = d l . v a r i a b l e n a m e s
16 dataX= d l . dataX
17 dataY= d l . dataY
18
19 # S p l i t t h e da ta u s i n g t h e hold−o u t method i n a t r a i n i n g ( d e f a u l t : 75%)
20 # and t e s t s e t ( d e f a u l t : 25%) .
21 ds = D a t a S p l i t t e r ( d l . dataX , d l . dataY )
22 x t r a i n , y t r a i n , x t e s t , y t e s t = ds . h o l d o u t ( dataX , dataY )
23
24 # C l u s t e r t h e t r a i n i n g da ta ( i n i n p u t−o u t p u t space ) u s i n g FCM w i t h d e f a u l t s e t t i n g s
25 c l = C l u s t e r e r ( x t r a i n , y t r a i n , n r c l u s )
26 c l u s t e r c e n t e r s , p a r t i t i o n m a t r i x , = c l . c l u s t e r ( method=” fcm ” )
27
28 # E s t i m a t e t h e membership f u n t i o n s o f t h e s y s t e m ( d e f a u l t : mf shape = g a u s s i a n )
29 ae = A n t e c e d e n t E s t i m a t o r ( x t r a i n , p a r t i t i o n m a t r i x )
30 a n t e c e d e n t p a r a m e t e r s = ae . determineMF ( x t r a i n , p a r t i t i o n m a t r i x )
31
32 # E s t i m a t e t h e p a r a m e t e r s o f t h e c o n s e q u e n t ( d e f a u l t : g l o b a l f i t t i n g = True )
33 ce = C o n s e q u e n t E s t i m a t o r ( x t r a i n , y t r a i n , p a r t i t i o n m a t r i x )
34 c o n s e q u e n t p a r a m e t e r s = ce . suglms ( x t r a i n , y t r a i n , p a r t i t i o n m a t r i x )
35
36 # B u i l d a f i r s t −o r d e r Takagi−Sugeno model u s i n g S i m p f u l
37 s i m p b u i l d e r = S u g e n o F I S B u i l d e r ( a n t e c e d e n t p a r a m e t e r s , c o n s e q u e n t p a r a m e t e r s , v a r i a b l e n a m e s )
38 model = s i m p b u i l d e r . ge t mode l ( )
39
40 # C a l c u l a t e t h e mean squared e r r o r o f t h e model u s i n g t h e t e s t da ta s e t
41 p r i n t ( ” The c a l c u l a t e d e r r o r i s : ” , model . c a l c u l a t e e r r o r ( ) )
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Listing 3: pyFUME’s automatically generated code for the Simpful model for the concrete data set.
1 # WARNING: t h i s s o u r c e code was a u t o m a t i c a l l y g e n e r a t e d by S i m p f u l i f i e r .
2 from s i m p f u l import *
3
4 FS = FuzzySystem ( )
5 RULE1 = ” IF ( Cement IS c l u s t e r 1 ) AND ( B l a s t F u r n a c e S l a g IS c l u s t e r 1 ) AND ( FlyAsh IS c l u s t e r 1 ) AND

( Water IS c l u s t e r 1 ) AND ( S u p e r p l a s t i c i z e r IS c l u s t e r 1 ) AND ( C o a r s e A g g r e g a t e IS c l u s t e r 1 ) AND
( F i n e A g g r e g a t e IS c l u s t e r 1 ) AND ( Age IS c l u s t e r 1 ) THEN (OUTPUT IS fun1 ) ”

6 RULE2 = ” IF ( Cement IS c l u s t e r 2 ) AND ( B l a s t F u r n a c e S l a g IS c l u s t e r 2 ) AND ( FlyAsh IS c l u s t e r 2 ) AND
( Water IS c l u s t e r 2 ) AND ( S u p e r p l a s t i c i z e r IS c l u s t e r 2 ) AND ( C o a r s e A g g r e g a t e IS c l u s t e r 2 ) AND
( F i n e A g g r e g a t e IS c l u s t e r 2 ) AND ( Age IS c l u s t e r 2 ) THEN (OUTPUT IS fun2 ) ”

7 RULE3 = ” IF ( Cement IS c l u s t e r 3 ) AND ( B l a s t F u r n a c e S l a g IS c l u s t e r 3 ) AND ( FlyAsh IS c l u s t e r 3 ) AND
( Water IS c l u s t e r 3 ) AND ( S u p e r p l a s t i c i z e r IS c l u s t e r 3 ) AND ( C o a r s e A g g r e g a t e IS c l u s t e r 3 ) AND
( F i n e A g g r e g a t e IS c l u s t e r 3 ) AND ( Age IS c l u s t e r 3 ) THEN (OUTPUT IS fun3 ) ”

8 FS . a d d r u l e s ( [ RULE1 , RULE2 , RULE3 ] )
9

10 FS . s e t o u t p u t f u n c t i o n ( ’ fun1 ’ , ’ 5 . 9 3 e−02*Cement + −1.18e−02* B l a s t F u r n a c e S l a g + −1.96e−02*FlyAsh +
−2.38e−02*Water + 1 . 3 5 e +00* S u p e r p l a s t i c i z e r + −5.22e−02* C o a r s e A g g r e g a t e + 2 . 2 8 e−02* F i n e A g g r e g a t e
+ 8 . 8 6 e−02*Age + 4 . 9 7 e +01 ’ )

11 FS . s e t o u t p u t f u n c t i o n ( ’ fun2 ’ , ’ 3 . 4 4 e−01*Cement + 3 . 0 0 e−01* B l a s t F u r n a c e S l a g + 3 . 5 8 e−01*FlyAsh +
1 . 9 7 e−01*Water + 5 . 9 1 e−01* S u p e r p l a s t i c i z e r + 1 . 8 3 e−01* C o a r s e A g g r e g a t e + 2 . 1 9 e−01* F i n e A g g r e g a t e +
2 . 9 6 e−01*Age + −5.04 e +02 ’ )

12 FS . s e t o u t p u t f u n c t i o n ( ’ fun3 ’ , ’−1.15e−02*Cement + 8 . 0 5 e−02* B l a s t F u r n a c e S l a g + −7.30e−02*FlyAsh +
−5.25e−01*Water + −7.51e−01* S u p e r p l a s t i c i z e r + −5.63e−02* C o a r s e A g g r e g a t e +
−1.45e−01* F i n e A g g r e g a t e + −3.76e−05*Age + 3 . 0 5 e +02 ’ )

13
14 FS 1 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 2 4 3 . 3 8 7 0 2 9 , 1 4 3 . 1 9 3 5 2 1 ) , t e rm = ’ c l u s t e r 1 ’ )
15 FS 2 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 2 0 7 . 9 8 7 0 2 3 , 1 2 5 . 6 6 0 1 3 0 ) , t e rm = ’ c l u s t e r 2 ’ )
16 FS 3 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 4 0 8 . 0 0 2 0 6 3 , 1 4 2 . 0 0 6 9 9 5 ) , t e rm = ’ c l u s t e r 3 ’ )
17 MF Cement = L i n g u i s t i c V a r i a b l e ( [ FS 1 , FS 2 , FS 3 ] , c o n c e p t = ’ Cement ’ )
18 FS . a d d l i n g u i s t i c v a r i a b l e ( ’ Cement ’ , MF Cement )
19
20 FS 4 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 2 0 6 . 1 0 7 4 0 3 , 1 2 2 . 4 9 1 9 7 6 ) , t e rm = ’ c l u s t e r 1 ’ )
21 FS 5 = FuzzySe t ( f u n c t i o n =Gaussian MF (−83.389683 , 2 1 1 . 6 0 5 4 9 2 ) , t e rm = ’ c l u s t e r 2 ’ )
22 FS 6 = FuzzySe t ( f u n c t i o n =Gaussian MF (−119.439592 , 2 6 7 . 0 3 3 3 4 2 ) , t e rm = ’ c l u s t e r 3 ’ )
23 MF Blas tFurnaceS lag = L i n g u i s t i c V a r i a b l e ( [ FS 4 , FS 5 , FS 6 ] , c o n c e p t = ’ B l a s t F u r n a c e S l a g ’ )
24 FS . a d d l i n g u i s t i c v a r i a b l e ( ’ B l a s t F u r n a c e S l a g ’ , MF Blas tFurnaceS lag )
25
26 FS 7 = FuzzySe t ( f u n c t i o n =Gaussian MF (−97.019491 , 2 3 7 . 3 3 3 6 5 3 ) , t e rm = ’ c l u s t e r 1 ’ )
27 FS 8 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 1 1 9 . 9 0 6 6 3 0 , 9 5 . 8 1 8 6 0 3 ) , t e rm = ’ c l u s t e r 2 ’ )
28 FS 9 = FuzzySe t ( f u n c t i o n =Gaussian MF (−11.090035 , 1 4 0 . 2 0 7 0 0 1 ) , t e rm = ’ c l u s t e r 3 ’ )
29 MF FlyAsh = L i n g u i s t i c V a r i a b l e ( [ FS 7 , FS 8 , FS 9 ] , c o n c e p t = ’ FlyAsh ’ )
30 FS . a d d l i n g u i s t i c v a r i a b l e ( ’ FlyAsh ’ , MF FlyAsh )
31
32 FS 10 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 1 9 3 . 1 0 6 9 2 2 , 4 8 . 8 9 5 6 6 4 ) , t e rm = ’ c l u s t e r 1 ’ )
33 FS 11 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 1 6 6 . 5 8 6 3 4 2 , 4 9 . 6 5 3 0 5 5 ) , t e rm = ’ c l u s t e r 2 ’ )
34 FS 12 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 1 8 8 . 4 0 4 6 0 5 , 4 6 . 9 3 9 1 4 2 ) , t e rm = ’ c l u s t e r 3 ’ )
35 MF Water = L i n g u i s t i c V a r i a b l e ( [ FS 10 , FS 11 , FS 12 ] , c o n c e p t = ’ Water ’ )
36 FS . a d d l i n g u i s t i c v a r i a b l e ( ’ Water ’ , MF Water )
37
38 FS 13 = FuzzySe t ( f u n c t i o n =Gaussian MF (−5.405363 , 2 2 . 8 0 5 9 8 7 ) , t e rm = ’ c l u s t e r 1 ’ )
39 FS 14 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 7 . 9 6 4 3 4 1 , 1 0 . 8 7 0 1 2 9 ) , t e rm = ’ c l u s t e r 2 ’ )
40 FS 15 = FuzzySe t ( f u n c t i o n =Gaussian MF (−13.938112 , 4 2 . 9 7 7 3 2 2 ) , t e rm = ’ c l u s t e r 3 ’ )
41 M F S u p e r p l a s t i c i z e r = L i n g u i s t i c V a r i a b l e ( [ FS 13 , FS 14 , FS 15 ] , c o n c e p t = ’ S u p e r p l a s t i c i z e r ’ )
42 FS . a d d l i n g u i s t i c v a r i a b l e ( ’ S u p e r p l a s t i c i z e r ’ , M F S u p e r p l a s t i c i z e r )
43
44 FS 16 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 9 6 8 . 1 5 3 6 0 5 , 1 2 3 . 9 3 8 0 3 4 ) , t e rm = ’ c l u s t e r 1 ’ )
45 FS 17 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 1 0 0 4 . 0 6 5 9 3 2 , 1 3 0 . 5 6 0 2 3 7 ) , t e rm = ’ c l u s t e r 2 ’ )
46 FS 18 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 9 6 4 . 7 8 2 3 4 9 , 1 3 7 . 0 7 7 2 4 2 ) , t e rm = ’ c l u s t e r 3 ’ )
47 MF CoarseAggregate = L i n g u i s t i c V a r i a b l e ( [ FS 16 , FS 17 , FS 18 ] , c o n c e p t = ’ C o a r s e A g g r e g a t e ’ )
48 FS . a d d l i n g u i s t i c v a r i a b l e ( ’ C o a r s e A g g r e g a t e ’ , MF CoarseAggregate )
49
50 FS 19 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 7 4 2 . 8 2 0 6 0 4 , 1 4 4 . 6 2 6 3 1 6 ) , t e rm = ’ c l u s t e r 1 ’ )
51 FS 20 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 7 9 7 . 6 5 6 5 1 6 , 1 2 6 . 0 2 7 2 9 6 ) , t e rm = ’ c l u s t e r 2 ’ )
52 FS 21 = FuzzySe t ( f u n c t i o n =Gaussian MF ( 7 6 8 . 5 2 1 7 7 0 , 1 4 9 . 1 1 1 2 1 3 ) , t e rm = ’ c l u s t e r 3 ’ )
53 MF FineAggregate = L i n g u i s t i c V a r i a b l e ( [ FS 19 , FS 20 , FS 21 ] , c o n c e p t = ’ F i n e A g g r e g a t e ’ )
54 FS . a d d l i n g u i s t i c v a r i a b l e ( ’ F i n e A g g r e g a t e ’ , MF FineAggregate )
55
56 FS 22 = FuzzySe t ( f u n c t i o n =Gaussian MF (−99.208188 , 3 3 9 . 2 3 0 5 9 3 ) , t e rm = ’ c l u s t e r 1 ’ )
57 FS 23 = FuzzySe t ( f u n c t i o n =Gaussian MF (−85.161565 , 2 7 3 . 9 6 4 2 1 6 ) , t e rm = ’ c l u s t e r 2 ’ )
58 FS 24 = FuzzySe t ( f u n c t i o n =Gaussian MF (−93.942323 , 3 3 6 . 5 0 6 9 1 7 ) , t e rm = ’ c l u s t e r 3 ’ )
59 MF Age = L i n g u i s t i c V a r i a b l e ( [ FS 22 , FS 23 , FS 24 ] , c o n c e p t = ’Age ’ )
60 FS . a d d l i n g u i s t i c v a r i a b l e ( ’Age ’ , MF Age )
61
62
63 # end o f a u t o m a t i c a l l y g e n e r a t e d code #




