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Abstract—A generalized probability mixture density governs
the rule-base structure of an additive fuzzy system. A new
theorem allows such a mixture to absorb any bounded real
function by mixing two normal densities. We further show that
a sequence of adaptive fuzzy systems defines a corresponding
sequence of uniformly convergent generalized Gaussian mixtures.
The result applies to any uniformly convergent sequence of
function approximators. It gives a practical way to define
approximating mixtures with adaptive fuzzy systems or neural
networks. Users can combine any number of these rule-based
systems by mixing their generalized mixtures.

Index Terms—additive fuzzy system, generalized probability
mixture, Bayes rule posterior, Watkins representation

I. GENERALIZED MIXTURES AND FUZZY SYSTEMS

There is a deep connection between generalized proba-
bility measures and fuzzy rule-based systems. A set of m
fuzzy if-then rules R4, sB,,...,Ra, —n, defines a gener-
alized probability mixture p(y|r) = p1(z) pp, (y|x) + - +
pm () pB,, (y|z) if the fuzzy system F' : R™ — RP is additive
[1]. The mixture arises directly from summing the the m fired
then-part sets Bj, ..., B,, in (5) below. This mixture structure
does not hold for earlier min-max fuzzy systems [2]—[4].

The mixture is generalized because the convex mixing
weights p; () depend on the input . The m mixture weights
p; () and likelihood densities pg; (y|x) fully absorb the struc-
ture of the m rules. Such mixtures allow the user to combine
any number of rule-based systems into a common rule base
because mixing mixtures always produces a mixture. It also
allows the user to sample from a virtual rule continuum by
drawing rule samples from the mixture p(y|z). The sample
creates a fresh and statistically representative set of rules for
each input x and can also help mitigate rule explosion [1].

A more general result holds in the other direction: A given
generalized mixture p(y|r) gives rise to an additive fuzzy
system F' and all its higher-order statistical moments [1]. The
second moment gives the conditional variance V[Y|X = z]
in (17) that describes the confidence of a given fuzzy-system
output F'(z). This variance also endows a sampled neural
network with a confidence measure when an adaptive fuzzy
system approximates the network [5], [6].

Theorem 1 shows that a stronger result also holds: Mixing
just 2 normal densities gives a generalized mixture p(y|z)
whose conditional expectation E[Y|X = x] exactly represents
any bounded non-constant real function f : R® — R in the

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

sense that f(z) = E[Y|X = z] for all z. The representation
is exact and not a mere approximation. This mixture result
generalizes the earlier Watkins Representation Theorem that
showed that an additive fuzzy system with just 2 rules can
represent any such bounded function [7], [8]. Figure 1 shows
the generalized mixture p(y|x) that absorbs the target function
f(x) = sinz by mixing two unit-variance normal bell curves
centered at the infimum and supremum of the bounded func-
tion f. A similar mixture absorbs any other bounded function.

Theorem 2 shows further that adapting an additive fuzzy
system leads to a convergent sequence of generalized mixtures
@n(y|z) for all z. The generalized mixtures g, (y|z) mix the
same two normal bell curves. They converge uniformly to the
mixture p(y|z) as the underlying fuzzy systems F,, converge
to f: gn(ylx) = p(y|z) uniformly in y and = as F,, — f
uniformly in z.

Theorem 2 gives a practical way to define mixture represen-
tations using any kind of uniform function approximator F,.
This includes adaptive fuzzy systems and deep neural networks
and even Bernstein polynomials. The user can simply insert
the approximator F;, into the mixture’s two modified Watkins
mixing coefficients in (31) - (32).

Figure 1 illustrates the mixture representation of Theorem 1.
It shows how mixing the two unit-variance normal bell curves
N(y| — 1,1) and N(y|l,1) defines a gencralized mixture
p(y|x) that gives back f(z) = sinz in the first panel upon
averaging over p(y|x): sinx = E[Y|X = z]. The second
panel shows the mixture p(y|x,) that results for the fixed value
Z, = 3.41. The third panel shows the complete mixture p(y|z)
surface for all z and y values.

Figure 2 illustrates the uniform convergence of Theorem 2.
It shows a snapshot of two different mixture representations af-
ter their corresponding additive fuzzy systems F;, have learned
for n = 10,000 iterations. The first panel shows the approx-
imating mixture g, (y|z) for an additive fuzzy system with
10 Gaussian rules. The second panel shows the corresponding
mixture when F}, replaces f in Theorem 1. The last two panels
show the two mixtures for an additive fuzzy system with 10
sinc rules. The approximated mixtures in the second and fourth
panels are indistinguishable from the mixture p(y|z) in Figure
1 that exactly represents f(x) = sinz.
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(a) Target function f(x) = sinz and its fuzzy approximation. An
adaptive fuzzy system with 10 Gaussian rules approximated f from
random samples of the target function.
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(b) Gaussian mixture p(y|z, = 3.41) (green curve) that represents the
specific functional value f(x,) = sinz, by mixing the normal bell
curves N(y| — 1,1) and N(y|1,1) with Watkins mixing coefficients
w(3.41) and 1 — w(3.41).
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(c) Fuzzy mixture with Watkins coefficients g (y|zo = 3.41)

Fig. 1: Generalized Gaussian mixture representation of a bounded
function in accord with Theorem 1. The three panels show the
generalized probability mixture p(y|z) that represents the bounded
function f(z) = sinx using just the two mixed unit-variance normal
bell curves N(y| — 1,1) and N(y|1,1) centered at the respective
infimum « = infsinz = —1 and supremum g = supsinx = 1.

II. MIXTURE STRUCTURE OF ADDITIVE SYSTEMS

We first review the mixture structure that underlies additive
fuzzy systems. The mixture gives a Bayes posterior over
the rules for each input-output pair (z,y). It also gives a
conditional variance V[Y'|X = z] that describes the inherent
uncertainty of a fuzzy system’s answer to a question. We
present this in formal detail because the main theoretical
results below depend on it. We begin with the convex structure
of additive fuzzy systems and how an input fires the m stored
rules.

A. Rule Firing as Delta-Spike Convolution

An additive fuzzy system F' : R™ — RP adds and then
averages the fired then-part fuzzy sets B; C R? of its m rules
Ra,5Byy---,Ra,,—B,,. The fuzzy system defines a map or
process that takes an input vector x € R’ through the rule base
and produces a system output F'(z) € RP. The output turns
out to be a convex combination of the m centroids cq, ..., ¢y,
of the respective m then-part fuzzy sets By, ..., B,,.

The process begins when vector input z € R™ fires each of
the m rules R4, g, in parallel. The if-part fuzzy set A; C R™
has membership or set function a; : R* — [0,1] [9], [10].
The then-part fuzzy set B; C R™ has set function b : RP —
[0,1]. We will often take the then-part sets B; to be scalar
(p = 1) for simplicity and with no loss of generality. The
naive view of rule firing is that the input x, fires the rule
R4, B, when it "picks off” the if-part value a;(7,) and then
somehow affects the corresponding then-part set B; to produce
the z-fired version B;(z,). Denote the input-fired jth rule as
Ra,B;(7,). We show now that a rule fires formally when
the rule convolves with an input.

Denote the functional form of the fuzzy-rule set function
as 74,5, : R x R? — [0,1]. A practical definition views
the if-then rule ”If X = A; then Y = B;” as the Cartesian
product A; x B; with multiplicative (not pairwise minimum)
definition 74, .5, (z,y) = a;j(x)b;(y). We show that this
product defines a standard additive model or SAM fuzzy
system: R4, B, (7,) = aj(x,) Bj.

Define next the input z, as the vector Dirac delta function
d(x — z,). A simpler discrete version would denote the input
T, as a unit bit vector. Then the input z, fires the jth rule
Ra; . p; when the rule convolves with the delta-spike input
d(x—x,) to produce the fired then-part set B;(x,): b;(y|z,) =
rA;—B,;¥0(r—1,)(y) for all y € RP. This gives the key result
that b;(y|zo) = 74,-B,(%0,y) = aj(zo) bj(y). So it gives
the fired then-part set B;(x,) as the input-scaled then-part set
a;(x,) Bj because

b;(ylz,) = /Rn 0x =) T4, 5B, (2,y) d (1)
= /n 3z — o) aj(x) bj(y) dz )
=b;(y) 5 dx — o) aj(x) dx 3)
= b;(y) a;(x,) ©)
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(c) Generalized mixture py,(y|x) from 10 sinc rules.
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(d) Converged mixture gy, (y|xo) that mixes 2 normal curves.

Fig. 2: Mixture representations for the adaptive fuzzy approximation of the bounded target function f(z) = sin z in Figure 1. The underlying
fuzzy approximators £, (x) used 10 rules with either Gaussian or sinc if-part set functions. Panel (a) shows the generalized mixture p,, (y|z)
of the Gaussian fuzzy system after n = 10,000 epochs of learning. The mixture combined 10 Gaussian likelihood functions. Panel (b)
shows the mixture ¢, (y|z) that Theorem 2 describes when the fuzzy system F), directly defines the mixing weight of the two normal bell
curves in Figure 1. Panels (c) and (d) show the related mixtures for an underlying fuzzy approximator £, with 10 sinc rules. The final
converged mixtures in (b) and (d) are indistinguishable from the generalized mixture p(y|z) in Figure 1 that represents f(x) = sinx with

two unit-variance normal densities.

for all y from the sifting property of the Dirac delta. We
can rewrite the firing sequence (1) - (4) as the fuzzy set
Ra, B, (70) = aj(z,) By.

The same argument extends to an input fuzzy set A C R™
that fires the rules if we replace the delta-spike convolution
with the correlation a;(A) = [, a(x) aj(x) dx where a is
the set function of A and where the integral exists [11]. This
gives the fired rule’s then-part setas R4, .p,(A) = a;(A) B;.
The additive-model results below still hold in this more general
case of a set-valued input but for simplicity we present only
the common case of vector-valued inputs.

Each rule RAj_> B; also has a nonnegative rule weight
wj > 0. The weight can reflect a rule’s credibility or relative
importance and gives rise to a straightforward supervised
learning law [11]. We define more generally an m-by-m matrix
W of rule weights. We consider here only a diagonal W and
thus ignore cross rules of the form R4, B; Where i £ .
Cross rules simply require an extra rule sum over 4.

The vector input z, fires all m rules Ra, .p, in
parallel: ¢(zo) = G(Rayp,r-- Ra,—5,)() =
d(Ra, B, (x0),.-.,Ra, B, (x,)) for some rule combina-
tion function ¢ and weight matrix W. This produces a final
combined generalized set B(x,). An additive fuzzy system

sums the weighted rules: ¢(z,) = > w;jRa;p, (2). Then

the convolution argument (1) - (4) gives the key result for the
total rule firing given input z,:

B(z,) = ija]-(xo)Bj. €
j=1

A defuzzification” step converts the summed rule firings
B(x,) into a final output F'(x,) by taking the centroid of
this generalized fuzzy set. So it does not matter that some
or all values b(y|z,) can exceed unity. Earlier fuzzy systems
appeared to have instead combined rules with pairwise maxi-
mum to prevent this [2]-[4] even though then the final result
B(x,) would tend to approach a unit rectangle for large m.
So the max-based combination technique would tend to give
poorer performance as the size m of the rule base increased.

B. Generalized Mixtures from Additive Combination

The generalized mixture probability density p(y|z) now
follows from the additive combination b(y|x,) in (5). This
follows from the nonnegativity of b(y|x,) and from its implied
integrability: p(y|z,) = %. So p(y|lz,) > 0 and
[ p(ylzo)dy = 1 for all z,. Hence p(y|z,) defines a family
of probability densities with index z,.

A mixture density is a convex sum of densities. Define

the finite positive volume Vj(z) of the jth fired then-part



set Bj(x) as Vj(z) = [b;(y|x)dy > 0. Then the total-firing
structure of the generahzed set function b(y|z,) in (5) gives
just such a convex sum:

EJ 1 w; bj(y|x)

plylz (6)
plie) T T we b(yfo) dy
. Z] L w; Vi(z)ps; (ylz) 7
> it wk Vi(2)
m
w; V;(x)
= = 7 ) PB; (Yl (3
% (57w v e
m
=Y pj(@) ps, (ylz) ©)
j=1
for then-part probability density function pp, (y|z) = b‘l/_EZélmg)
and the generalized mixing weight '
w; Vj(x) (10)

R aTaIT)

The SAM structure b;(y|z) = b;(y)a;(x) in (4) simplifies
the mixture because then the then-part likelihoods pp; no
longer depend on the input z: pp. (y|z) = ps;(y). Assume
that a;(x) > 0 for simplicity as holds in a SAM with

Gaussian or Cauchy if-part sets. Then pp, (y|z) = b{/(%) -
S
p(ylr) ZPJ (b

with simplified generahzed convex mixture coefficients
w; a;(x) V;
Zzlzl Wi ak(l‘) Vk '

The convex structure of the mixture p(y|z) in (11) reflects
that it is just the theorem on total probability from clementary
probability. The mixture weights p;(x) define m generalized
priors over the ’hidden” random variable Z that takes values
in {1,...,m}: p;j(x) = P(Z = j|X = x). The then-part
densmes pB,(y) define m generalized likelihoods: pp, (y) =
P(Y =y|Z = j). So (11) gives a Bayesian posterior density
p over the m rules given the input x and the observed output

y = F(x):

pj(x) = (12)

p;(z) B, (y)
>one1 pe(z) pB (Y)

This Bayesian posterior helps interpret neural black boxes
when an adaptive fuzzy system trains on a classifier or other
neural network and thereby converts the neural mapping to a
fuzzy rule-based system [5].

p(ily,r) = (13)

C. Mixture Moments: Fuzzy Systems as Convex Sums

The generalized mixture p(y|x) in (11) gives rise to un-
countably many central and noncentral higher-order moments
[1]. The first two integer moments are the most important be-
cause they give the respective conditional mean E[Y|X = z]
and the variance or covariance matrix V[Y|X = z]. The

former moment defines the fuzzy system F' itself. The latter
defines its basic input-by-input uncertainty measure given its
stored rules.

The ordinary SAM fuzzy system F' : R™® — RP of m
rules R4, g, is just the first central moment of the system’s
generalized mixture p(y|x) in (11):

Flo) = EY|X =2 = [uptl) s (14)
X wya(@) Vg 15)
Dok Wk ag(@) Vi
m
= pi(z) ¢ (16)
j=1
for then-part set centroids c; = M Most fuzzy

applications use some version of this addltlve system [12],
[13].

The convex sum of centroids in (16) follows naturally from
the mixture p(y|z). A direct calculation shows that it also
follows in the usual but ad hoc way by taking the centroid of
the fired then-part sets: F'(x) = Centroid(B(x)).

The second non-central moment of p(y|x) gives the condi-
tional variance V[Y|X = z] in the SAM case as

m
VIY|X = 2] = Zp; ) ok, + > pi(@) [
j=1

F(x))?
(17)

for then-part-set variance o = [(y — ¢;)*pp, (y) dy in the
scalar case of F': R® — R. The first term on the right-hand
side describes the uncertainty due to the size and structure of
the m then-part sets B;. The second term penalizes the output
F(z) based on how much the system interpolates over its m
rules. This conditional variance defines an uncertainty surface
over the input space. It can help interpret misclassifications
when the fuzzy system approximates a neural classifier [5],

[6].

III. MIXTURE REPRESENTATIONS OF FUNCTIONS WITH
WATKINS COEFFICIENTS

We next state and prove a simpler and more practical version
of Theorem 4 in [1]. The next section uses this result to prove
the main mixture uniform-convergence result.

Suppose the real function f : X — R is bounded and not
constant. The input vector space X is R™ in practice but can
have infinite dimension. The output f(z) can also be a point
in R? so long as each component function is bounded and
not constant. Let o denote the infimum of the bounded real
function f: a = inf,ex f(x). Let 5 denote the supremum:
B =sup,ex f(x). Then o < B because f is not constant.

We will use two normal bell curves to form a canonical
mixture representation of the bounded function f. The trick is
to center the bell curves over the infimum « and supremum
3. The corresponding variances o2, > 0 and o3 > 0 can
be arbitrary finite positive values for purposes of the next
theorem. The two variances are unity in Figure 1(a) where the



two likelihood normal curves have respective centers o« = —1
and 8 = 1. Denote these basis-like bell curves as N, (y|a, 02)
and Ng(y|B,02). So the normal density n,, has the form

2
1 1 —
exp |—= (y O‘) (18)
V2702 2\ oa
and thus n,(y) = Nu(y|a, 02).
The last step defines the convex Watkins coefficients w(x) >

0 and 1 —w(x) > 0 that control the mixture representation of
the bounded real function f:

na(y) =

w(z) = ﬁﬁ‘ff(;) (19)
1= () = f(;%a 20)

for infimum « and supremum S. Then 0 < w(x) < 1 holds
and so w(z) and 1 —w(z) define generalized mixture weights.
The weights are differentiable or integrable with respect to
variable x if and only if f is.

Watkins first showed that a SAM additive fuzzy system F'
can exactly represent any bounded nonconstant real function
f: (R) — R with just two rules if it uses w and 1 —w for the
respective if-part set functions of the two rules: F(z) = f(z)
for all z € R [7], [8]. This Watkins Representation Theorem is
a much stronger result than the uniform fuzzy approximation
theorem that says some additive fuzzy system with a finite
number m of rules can uniformly approximate any continuous
function on a compact set [14]-[16]. But the Watkins result
requires that the user know the bounded function f in advance
and not just approximate it from data.

The Watkins representation is quite useful when we do know
a closed-form bounded function and want to represent it in a
rule base. This holds for almost all closed-form probability
densities in Bayesian analysis [17] as well as many other
math models and even many trained neural systems. The next
theorem shows that a generalized Gaussian mixture p(y|z)
can also absorb such an f by mixing just the two likelihood
densities N, (y|o, 03) and Ng(y|3,03).

Theorem 1: Generalized Gaussian Mixture Representation
of Bounded Functions.

Suppose that f : R — R is bounded and not a constant
with o = infyex f(z) and B = sup,cy f(x). Suppose
that the generalized mixture density p(y|x) mixes two normal
probability density functions with Watkins coefficients (19):

p(ylr) = w(@)Na(yle, 03) + (1 — w(@))Na(y|B,03) -
2n

Then p(y|x) represents f exactly on average: E[Y|X = z] =
f(zx) for all x. In particular: F(x) = f(z) for all x for the
additive SAM system F' in (16).

Proof : Substitute the Watkins coefficients in (19) - (20) into
p(y|r) and then integrate and use (18):

BIYIX =l = [ yplolo) dy 2)
- ) [ynaw ay
=) [yt ay 3)
_SI@, @) a
= (G e (s ey
L)~ os)
= f(z). (26)

This follows because the centroid of a normal random variable
Y ~ N4 (yla, o2) is just its location parameter o and similarly
ifY ~ Ng(yw,ag). Q.ED.

Figure 1(c) shows this generalized Gaussian-mixture repre-
sentation of f(x) = sinx over a 27 interval of its domain in
Figure 1(a). The mixture has the form

1 &
SlIlCL‘N

sinx + 1
——N
2

p(ylz) = 5

(y|_171)+ (y|171) :

27)

The green curve in Figure 1(b) shows the Gaussian-mixture
slice p(y|3.41) for input z, = 3.41.

Theorem 1 holds for any two likelihood densities that
have the infimum « and the supremum [ as their respective
centroids. It holds approximately for linear or multiplicative
perturbations of «v and 8 as may occur in practice when one
estimates the function f with data as in [1].

The theorem also reduces to the original Watkins 2-rule
case if the likelihood variances o, and og go to zero. Then
the normal bell curves become Dirac delta functions:

plylr) = w(z)o(y — o) + (1 —w(z))o(y — F) -

This result reflects the earlier practice of simply defining the
fuzzy system’s rule then-part sets B; as their centroids c;
[18]. This strong assumption removes all uncertainty from the
then-part portions of the rules but does not affect function
approximation to first order. It does affect the system’s second-
order uncertainty in accord with the first term on the right-hand
side of (17).

The canonical Gaussian-mixture representation (21) also
implies an integral representation for the k-th derivative f(*)
of the bounded function f if the derivative exists:

(28)

-k
£ () = / Toulz) (29)
= w®(x) /y na(y)dy —w® (x) /y ng(y)dy
(30)

5 (@)

because w®) (z) = il



IV. MIXTURE APPROXIMATION THEOREM

We can now present the main result: The approximator
mixture ¢, (y|x) converges uniformly in = and in y to the
canonical generalized Gaussian mixture p(y|z) if the fuzzy or
other function approximator F;, converges uniformly to the
bounded non-constant function f. The theorem holds for any
uniform function approximator F,, of f. Figure 2 shows that
a user can simply plug an adaptive fuzzy system F,, into the
generalized Gaussian-mixture framework to produce such a
uniformly converging sequence of Gaussian mixtures g, (y|z).

We start with the definition of uniform convergence. The
sequence of functions F}, converges uniformly in x to f if for
all € > O there exists a positive integer ng such that for all
integers n > ng: |F,(z) — f(x)| < e for all z € X.

Let v,(x) and 1 — v, (x) define the approximator Watkins
coefficients that result from replacing the target function f
with the uniform approximator F),:

B — Fn(x)

v (T) = oo (3D
L= (o) = 2 (32)

such that o < F,, < 8 for all n. Define the approximating
Gaussian mixture q,(y|z) as

tn(y|7) = va(2)Na(yla, 02) + (1 = va(2))Ns(yl 8, 05) -
(33)

Then the next theorem shows that ¢, (y|xz) converges uni-
formly to the generalized Gaussian mixture p(y|z). This means
that for all € > 0 there exists a positive integer ng such that
for all integers n > ng: |g,(y|x) — p(y|x)| < € for all 2 and
for all y.

Theorem 2: Uniform Gaussian Mixture Convergence.
Suppose that f : R™ — R is bounded and not a constant
with a = infyex f(x) and f = supgex f(x). Suppose
that the generalized mixture density p(y|x) mixes two normal
probability density functions with Watkins coefficients (31):

p(ylr) = w(z)Na(yla, 03) + (1 — w(@))Na(y|B,03) -
(34

Suppose that F,, uniformly approximates f and that o < F,, <
B for all n. Define the approximating mixture q,(y|x) with
(31) - (33). Then the generalized Gaussian mixture q,(y|z)
converges uniformly in x and y to the generalized Gaussian
mixture p(y|z):

Jim g, (ylr) = p(ylz) - 35)

Proof : Pick any y. Then Figure 1(b) shows that the distance
between the normal-curve values nq(y) and ng(y) cannot
exceed the larger of the two mode values n,(c) and ng(3):
(36)
(37

na(y) — ns(y)| < max(na(a),ns(B))
< max(ne(a),ng(B)) +1=c.

Suppose that F,, converges uniformly to f. Then for all
€ > 0 there exists a positive integer ng such that for all integers
n > ng: |F(z) — f(z)| < B;Cae for all x € X since f is
bounded and not constant. Then for all such large n > ng:

|gn (ylz) — p(ylz)| = |(8 = Fu(z))na(y)

f—a
F(Fale) — a)naly) — (8~ F(a)na(y)
~ (f(2) ~ )na(y) G8)
= | Fu @) (n5(5) — ()
~ @) 0s(s) ~ ma)) (39)
— = lFu(a) = J(@)naly) ~ n ()

(40)
< ool Fa@)  f@) (1)
c fB—-a«

i—a ¢ € 42)

<€ 43)

for all z and all y. So g, (y|x) converges uniformly to p(y|x).
Q.E.D.

A more general result holds: The approximator F;, can obey
the bounds «,, < F,, < B, so long as lim,_,,, a, = « and
lim,, 00 B = 5. The new bounds «,, and 3, now replace «
and $ in the modified Watkins coefficients v, (z) and 1—v,, ()
in (31) and (32). Then the uniform convergence in (35) still
holds because the mixed normals’ exponentials and quadratics
are continuous. So the limits pass through without incident.

A. Convergent Mixtures with Adaptive Fuzzy Approximators

The mixture convergence in (35) allows the user to insert
any uniform approximator F,, in (31) - (33) to produce
a corresponding sequence of generalized Gaussian mixtures
an(ylz).

A classic example in real analysis of a uniform approxima-
tor is the sequence of Bernstein polynomials B,, on the unit
interval that uniformly approximates a continuous function
f:10,1] — R [19]. A Bernstein polynomial B, takes n + 1
uniform samples of f and forms a binomial average:

~ k. (n
Bula) = 3 15 (1)@ — 2yt

where (7)) = #lk)' Suppose that & = 0 and 8 = 1 for
f although in general these values may differ. The extreme
value theorem ensures that the continuous function f attains its
minimum « and maximum 3 on [0, 1] because the unit interval
is compact. Then put v,(x) = 1 — By(x) and 1 — v, (x) =
B, (x). This gives the uniformly converging mixture sequence
4a(yla):

qn(ylr) = (1 = Bp(2))N(y|0,1) + Bu(z)N(y[1,1) . (45)

(44)

The basic uniform approximation theorem for additive fuzzy
systems [11], [14], [20] states that additive fuzzy systems F'



are dense in the space of continuous function f on a compact
set. These and related theorems [15], [16] do not actually
exhibit a uniformly convergent sequence of additive fuzzy
systems £}, as in the case of the Bernstein polynomial (44). We
often assume that efficient supervised learning produces such
convergent sequences. The same holds with the basic theorems
on neural universal approximation: Multilayer neural networks
N with a large but finite number of hidden logistic sigmoid
neurons are dense in the space of continuous functions [21],
[22]. We often assume that a successfully trained neural classi-
fier or regressor defines such a predicted uniformly convergent
sequence of neural networks N,, for the nth training epoch.

An adaptive SAM system F' did learn the sine wave in
Figure 1(a). It used 10 Gaussian rules and fully converged to
the target function f(x) = sinx after just a few iterations.
The scalar if-part sets had the form

;L'—mj)Z] 46)

aj(x) = exp[—( 7

for the respective mean m; and dispersion d;. This Gaussian
set function gives rise to the supervised learning laws [11],
(171, [23]

x —mj(n)
d7 ()
(47

m;(n+ 1) = m;(n) + ppe(x)p;(x)c; — Fu(z)]

dj(n+1) =dj(n) + pne(z)pj(z)[c; — Fn(x)]

& (x)
(48)

where p, is a decreasing sequence of learning constants.
We often use a linearly decreasing sequence in practice both
because of its effectiveness and because of its robust status
in the theory of stochastic approximation [24]. The error ¢
is the desired-minus-actual difference e(z) = f(x) — F,(x).
The result produces the 10-rule SAM sequence F), that rapidly
converges to f(x) = sinz.

Figure 2(a) shows the generalized mixture p,(y|z) that
results from using this SAM’s coefficients in (7 ) - (12) after
n = 10,000 iterations or learning epochs. Figure 2(b) shows
the generalized mixture g, (y|z) that results from inserting this
Gaussian SAM F,, into (31) - (33) to rapidly approximate the
generalized mixture p(y|z) in Figure 1(c) that represents the
target function f(z) = sinz.

The sinc wavelet often performs better as an if-part set than
does a Gaussian or other set structure [17], [23], [25]. The
sinc if-part set function a? has center m? and has dispersion
or width d;?:

(49)

The sinc set function is neither monotonic nor unimodal. But
it still defines a working generalized set function even though
it takes values in [—.217,1] (the software must zero-out the
occasional negative value that this can produce in the mixing

( —mj(n))*

weights). The sinc set function gives rise to the adaptive SAM
learning laws

mf(t +1) = mf(t)

— K€t I;](xk) [cj — F(z)]
a; (z¥)
k(o k ot —mj 1
x (af(x") — cos ( & ))ﬂf—m? (50)
di(t+1) = db(t)
— M€t 53((;;3) [cj — F(z)]
j ok —mk
x (a¥(z") — cos (d—fj))d_f . (51)

Figure 2(c) shows a 10-rule sinc SAM F;, after n = 10, 000
iterations. Figure 2(d) shows the generalized mixture ¢, (y|z)
that also results from inserting this sinc SAM F;, into (31) -
(33) to rapidly approximate the generalized mixture p(y|x) in
Figure 1(c) that represents the target function f(x) = sinz.
The converged mixtures in panels (b) and (d) are indistinguish-
able from p(y|x).

Converging neural networks NV, likewise define a sequence
ol generalized mixtures g, (y|z) by replacing F,, with N,, in
the Watkins coefficients (31) - (33). The K output neurons are
bounded softmax or logistic neurons in a typical deep necural
network [26]-[29]. Then the above results apply component-
wise in this vector-valued case.

Mixtures can also represent the bounded dynamical models
in some control systems [12], [13], [30]. The vector approach
further allows mixtures to apply to nonlinear feedback net-
works such as fuzzy cognitive maps [31], [32] used in causal
modeling [33]-[35] because the concept nodes are bounded.

V. CONCLUSION

A sequence of converging fuzzy or neural systems defines a
sequence of converging generalized probability mixtures. The
convergence is uniform both in the input and in the output
variables. These convergent mixtures completely describe the
fuzzy system and all its higher-order moments. They also
give a new statistical description of neural networks. They
allow users to naturally combine any number of rule bases
into a single representative rule base because mixing mixtures
results in a new mixture. Then this hierarchical mixture’s own
Bayes theorem gives a complete posterior-density probability
description of the firing of the system’s rule-based subsystems
and the firing of the if-then rules in each subsystem.
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