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Abstract—The notion of the metric space that allows to
measure a distance between objects of the given space, has
a crucial importance for distinct parts of mathematics, for
instance, for the approximation theory, interpolation methods,
data analysis, optimization etc. In fuzzy mathematics, the same
areas of applications have an analogous importance and thus, not
surprisingly measuring the distance between objects possesses a
desirable importance. In many cases, e.g., in fuzzy clustering,
the use of the standard metric spaces is absolutely sufficient.
However, if we deal with vague quantities represented by fuzzy
numbers, though the application of a standard metric to fuzzy
numbers is mathematically correct, it may lead to counterintu-
itive and undesirable results. Our investigation constructs the
“metric-like” spaces enabling to measure the distance between
two fuzzy numbers in a way that is not disconnected from the
used arithmetic of fuzzy numbers. Following the analogy from
the classical math where the most natural distance between two
numbers is the absolute value of their difference, in the case of
fuzzy numbers and under the assumption that the distance is
connected to the arithmetic, the most natural distance of two
fuzzy numbers is the absolute values of their difference too.
But then, naturally, the distance should map fuzzy numbers
again to fuzzy numbers, not to crisp numbers. This article
is a contribution to this area that guides readers from the
fundamental notions to the final construction supported by some
theoretical results.

Index Terms—MI-algebras, extensional fuzzy numbers, simi-
larity, extensionality, orderings, approximate reasoning

I. INTRODUCTION

Arithmetics of fuzzy numbers are used for calculations with
vague quantities in distinct fields such as fuzzy regression,
fuzzy optimization, risk evaluation, or decision-making. In-
terestingly, this application impact of the calculus of fuzzy
numbers is not that often followed by developing extended
mathematical structures stemming from the arithmetics of
fuzzy numbers. For instance, distances between fuzzy numbers
are mappings to the real numbers. It is not unnatural as
standard metrics (functions mapping to non-negative reals) are
operating on distinct objects and such an approach is mathe-
matically correct. On the other hand, in the case of distance
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on fuzzy numbers it may be viewed also a bit unintuitive.
Indeed, fuzzy numbers are models of vague quantities and
their distance is not a fuzzy number but a precise real number.
But the most intuitive distance between two real numbers a
and b is the absolute value of their difference |a − b|. If we
replace the real values by fuzzy numbers, the most intuitive
way how to measure their distance is to determine an absolute
value of their difference which is again a fuzzy number. This
naturally leads to the construction of metric-like spaces on
fuzzy numbers where the “metrics” would be mappings to
fuzzy numbers reflecting the chosen arithmetic. Note that ideas
about considering a distance of two fuzzy numbers expressed
again as a fuzzy number have not been deeply elaborated yet
but it does not mean that they were not existing, we refer
readers to an interesting construction published in [1].

This article is a contribution to this topic that directly stems
from the arithmetics of extensional fuzzy numbers that form
MI-prefields [2]–[4]. From the construction of the ordering
of extensional fuzzy numbers [5] we get to the definition of
specific metric-like spaces that are used to measure distanced
between fuzzy numbers. We end up with intuitive tools that
preserve most of the classical properties well-known from the
classical analysis. Such advantages, including fast calculus,
allow us to continue in constructing further notions from the
mathematical analysis (limits, convergences, approximation
spaces, interpolation) in the environment of extensional fuzzy
numbers. Thus, the whole apparatus may be very helpful in de-
veloping efficient tools for tasks from approximate reasoning
or data analysis, especially if the data is harmed by imprecision
or vagueness – typically in social or economical sciences.

II. PRELIMINARIES

A. Motivation

Definitions of fuzzy numbers differ at distinct publications
[6], [7] but independently on the chosen definitions, a fuzzy
number is a specific fuzzy set that serves as a model of a vague
quantity [8], [9]. Although so-called fuzzy metric spaces have
been defined [10] and although metric spaces can be generally
on distinct domains that allow to measure distances between
arbitrary objects, we are convinced that in order to capture
intuitive expectations, the arithmetics of the fuzzy numbers
have to be taken as the starting point. Let us consider a simple
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example. Let a fuzzy number A models the vague quantity
“about 3” and let a fuzzy number B models the vague quantity
“about 5”, see Figure 1.

Fig. 1. Fuzzy numbers modeling the vague quantity “about 3” (A), and the
vague quantity “about 5” (B). Their Hausdorff distance equals 4.18 . Their
distance obtained as the absolute value of their difference is the vague quantity
“about 2” (C).

As one can easily check, that, e.g., Hausdorff distance [11],
that is often used for measuring the distance between fuzzy
numbers [12] of the two fuzzy numbers A and B equals
to 4.18. This result is mathematically fully correct yet not
that intuitive. Indeed, the value 4.18 is obtained by applying
the Hausdorff distance to all α-cuts and taking the supremum
of such distances, which is in this case the Hausdorff distance
for the supports of both fuzzy sets. This is really perfectly
reasonable when talking about distances of sets or even fuzzy
sets. But such an approach does not reflect the semantics
of fuzzy numbers and one would intuitively expect that the
distance between “about 3” and “about 5” is “about 2”.

Such an intuitive result would be obtained if the distance
would stem from an arithmetic. Indeed, if we designed an
absolute value of a fuzzy number, we should expect that the
absolute value of the difference of two fuzzy numbers would
be their most intuitive distance. The difference of two fuzzy
numbers is a fuzzy number and the absolute value of a fuzzy
number is again expected to be a fuzzy number. Therefore,
instead of building a classical metric (distance) operating on
fuzzy numbers d : F(R) × F(R) → R, we build a metric-
like fuzzy function that maps pairs of fuzzy numbers again to
fuzzy numbers d : F(R)×F(R)→ F(R).

B. Arithmetics of extensional fuzzy numbers

Already the first step that influences the rest of the inves-
tigations in the area of arithmetics of fuzzy numbers is the
definition of a fuzzy number. There are several approaches,
most often, fuzzy number is considered to be a normal,
convex and continuous or upper semi-continuous, sometimes
also symmetry is expected. Such requirements are usually
technically motivated, e.g., by preservation of the properties by
distinct operations, which makes the family of fuzzy numbers
closed with respect to those operations.

We prefer the restriction to extensional fuzzy numbers that
is motivated by their semantics and origin. Extensional fuzzy
numbers, sometimes also called fuzzy points [13]–[15], are

constructed as extensional hulls of crisp numbers. Thus, their
construction is simple and straightforward and their seman-
tics (a number with partial membership of its neighboring
numbers) is clear and unquestionable. Let us briefly recall the
construction formally.

Definition 2.1: Let ⊗ be a left-continuous t-norm. A binary
fuzzy relation on the set of real numbers S : R2 → [0, 1] is
called ⊗-similarity on R if the following axioms holds for all
x, y, z ∈ R

a) S(x, x) = 1 , (reflexivity)
b) S(x, y) = S(y, x) , (symmetry)
c) S(x, y)⊗ S(y, z) ≤ S(x, z). (⊗-transitive)

We say that a ⊗-similarity on R is separated if S(x, y) = 1
implies x = y for any x, y ∈ R (see [4]).

Definition 2.2: [16] Let S be a ⊗-similarity relation on R.
A fuzzy set A ∈ F(R) is said to be extensional w.r.t. S if

A(x)⊗ S(x, y) ≤ A(y)

holds for any x, y ∈ R.
If a fuzzy set is not extensional, we may construct its

extensional hull, that is its least fuzzy superset. Naturally,
an extensional hull of an extensional fuzzy set is the fuzzy
set itself. Mathematically, the extensional hull of a fuzzy set
A ∈ F(R) may be constructed as follows [13]:

EXTS(A)(x) =
∨
y∈R

(A(y)⊗ S(x, y)) . (1)

We can also determine the extensional hull of a crisp number
as each crisp number x ∈ R can be represented as singleton
fuzzy set x̃ that is defined as x̃(x) = 1, and x̃(y) = 0 for any
y ∈ R, y 6= x. The singleton x̃ is already a fuzzy set to which
we can apply formula (1). Following the previous studies, our
denotation will omit the distinction between a crisp number x
and its singleton x̃ and we will simply consider an extensional
hull of x under the name extensional fuzzy number [2]–[4].

For a given similarity relation S, we can introduce the
following denotation:

EXTS(x)(y) = xS(y)

and one can easily check [4] that calculation is as simple as
follows

xS(y) = S(x, y), y ∈ R.

We argue that from the conceptual point of view, extensional
fuzzy number provides us with a genuine representation of a
vague quantity. Its origin precisely reflects a real number with
its neighborhood, where the given similarity relation S models
the particular way how we deal with the close values in the
neighborhood.

A specific arithmetic has been developed for extensional
fuzzy numbers [2] and it gave rise to algebraic structures with
more identity-like elements, to the so-called MI-algebras1 [4].

Let S, T be ⊗-similarities on R. We say that S is less than
or equal to T (symbolically R ⊆ T ) if S(x, y) ≤ T (x, y) for
any x, y ∈ R.

1The abbreviation MI stands for many identities.



In this paper, we assume that C is a non-empty system of
nested separated ⊗-similarities on R with respect to ⊆ which
has the least element ⊥C and the set of all extensional fuzzy
numbers defined with respect to the similarities from the given
system:

FC(R) = {xS | x ∈ R and S ∈ C}.

For the purpose of this paper, we restrict ourselves to such
nested systems C that for any xS ∈ FC(R) the set (xS)α is a
closed interval in R for any α ∈ (0, 1]. The addition and the
multiplication of two extensional fuzzy numbers from FC(R)
are given as

xS + yT = (x+ y)max(S,T ), xS · yT = (x · y)max(S,T ),

for any S, T ∈ C, where the correctness of the definition
follows from the assumption on the linearity ordering of the
⊗-similarities in the system C which ensures the existence of
the maximum of two similarities (cf. [4]).

The “narrowest” ⊗-similarity from C, i.e., the bottom ele-
ment ⊥C = inf{S | S ∈ C} is used to determine the (strong)
identity elements for both operations:

0 = 0⊥C = ⊥C(0, ·), 1 = 1⊥C = ⊥C(1, ·)

The inverse operations are defined naturally, e.g., for the
additive operation as −xS = (−x)S . The non-strong neutral
elements called pseudoidentities are determined with help of
the inverse operations. For example, the set of pseudo-zeros
is I0C = {xS + (−x)S | S ∈ C}.

The structures (FC(R),+,−) and (FC(R), ·,−1 ) form so-
called MI-pregroups, and (FC(R),+, ·,−,−1 ) forms the MI-
prefield where, for instance, the distributive law

(xR + yS) · zT = (xR · zT ) + (yS · zT )

holds for any R,S, T ∈ C. For details, we refer to [4].
It can be seen that the proposed arithmetic attempts to

capture a human-intuitive calculus of vague quantities in a for-
mal mathematical construction. If a person sums up quantities
“around $20” and “around $30”, the human cognition leads to
the result “around $50” obtained as a summation 20+30 and
additionally, the tolerance values “around” the crisp result 50
is involved.

Example 2.1: [5] Let ⊗ be the Łukasiewicz t-norm and the
closed system of embedded ⊗-similarities be C:

C = {Sp | p ∈ [`, r] and Sp(x, y) = (1− p|x− y|) ∨ 0},

where 0 < ` ≤ r. Then max(Sp, Sp′) = Sp′′ for p ≤ p′ and
thus

xSp
+ ySp′ = (x+ y)Sp′′ , p′′ = min{p, p′}

with the strong identity element 0 = 0Sr
= Sr(0, ·).

Analogously to Example 2.1, we could build other closed
embedded systems of similarities for distinct t-norms. For
instance, for the product t-norm, the parametric similarities
could be constructed as follows Sp(x, y) = e−p|x−y|.

At some cases, it is advantageous if the crisp equality “=”
is contained in the closed system of embedded similarities.

As the equality is an equivalence relation, it is a ⊗-similarity
for any t-norm ⊗, and such a requirement is mathematically
correct.

Example 2.2: Let ⊗ be the Łukasiewicz t-norm and the
closed system of embedded ⊗-similarities be C:

C = {Sp | p ∈ [`,+∞) and Sp(x, y) = (1− p|x− y|) ∨ 0},

where 0 < `. Let S∞ be the crisp equality, i.e., S∞(x, y) = 1
if and only if x = y. Then the set C extended by the crisp
equality forms a closed system of embedded ⊗-similarities
C∞ = C ∪ S∞ and naturally, ⊥C = S∞.

For the rest of the paper, let us fix the denotation C∞ for a
system containing the crisp equality.

III. “METRICS” ON EXTENSIONAL FUZZY NUMBERS

Now, we can start building the metric-like spaces of ex-
tensional fuzzy numbers based on their arithmetics and thus,
capture the intuitive expectations and avoid the unwanted
effects of standard metrics such as the one demonstrated on
Figure 1.

Let us briefly recall, that d : R × R → R is a metric
(distance) on R if for all x, y, z ∈ R:

d(x, y) ≥ 0 ,

d(x, y) = 0⇔ x = y ,

d(x, y) = d(y, x) ,

d(x, z) ≤ d(x, y) + d(y, z) .

The intended replacement of real values x, y, z by fuzzy
numbers in the definition above seems straightforward how-
ever, the last axioms (triangle inequality) directly uses the
ordering of fuzzy numbers, which is a notion that can be
approached from different perspectives [17]–[19].

A. Orderings of extensional fuzzy numbers

The triangle inequality is a binary property – either it holds
or not. So, also the ordering applied to extensional fuzzy
numbers should give the true/false answer to be used in the
triangle inequality axiom. Note, that it is not so automatic
as some orderings work on distinct indexes, some allow two
fuzzy sets to be order in a certain degree [20]. One might use,
e.g., the interval ordering ≤i:

[a, b] ≤i [c, d] ⇔ a ≤ c and b ≤ d

applied to all α-cuts of the fuzzy numbers:

A ≤i B ⇔ Aα ≤i Bα ∀α ∈ (0, 1]. (2)

But the fuzzy numbers from Figure 1 would not be comparable
according to such ordering. Bodenhofer [20], [21] proposed
to overcome this weakness by “widening” the fuzzy numbers
by constructing their extensional hulls with respect to wider
similarity relations and the obtained hulls are already ordered
according to the interval ordering of their α-cuts.

In [5], the authors have followed this idea however, they
captured the necessarily used extensionality in the truth/false
values of the ordering. Mathematically, “fuzzy truth values”



and “fuzzy falses” are constructed and the ordering has been
constructed as a mapping from pairs of extensional fuzzy num-
bers to these extended truth/false values. This again mimics the
classical ordering that maps pairs of numbers (or other objects)
to the set containing two elements {0, 1} – the truth and the
false. Let us briefly recall the construction mathematically.

The truth-values 0 and 1 are represented by their extensional
hulls “around 0” and “around 1”. In order to avoid possible
confusion between extensional fuzzy numbers “around 0” or
“around 1” used in the arithmetic calculations and the truth-
values, we opt for the denotation T (true) and F (false) and
their extensional hulls.

Definition 3.1: [5] Consider a system C of nested ⊗-
similarities on R and S ∈ C. The fuzzy sets TS ,FS ∈
F([0, 1]):

TS = EXTS(1) , (3)

FS = EXTS(0) (4)

will be called C-Boolean valued truth, and C-Boolean valued
false, respectively. Furthermore, we will denote the sets:

TC = {EXTS(1) | S ∈ C} , (5)

FC = {EXTS(0) | S ∈ C} , (6)
TFC = TC ∪FC . (7)

Definition 3.2: [5] Let (FC(R),+,−) be an MI-pregroup of
extensional fuzzy numbers with respect to a system C of nested
⊗-similarities on R. A mapping ≤C : FC(R)×FC(R)→ TFC
is called C-Boolean valued ordering if:
(i) (aS ≤C aT ) ∈ TC , (reflexivity)

(ii) (aS ≤C bT ) ∈ TC & (bT ≤C aS) ∈ TC ⇒ (aS − bT ) ∈
I0C , (anti-symmetry)

(iii) (aS ≤C bT ) ∈ TC & (bT ≤C cR) ∈ TC ⇒ (aS ≤C
cR) ∈ TC , (transitivity).

Notation 3.1: In cases where it will not possibly cause
any confusion and the particular “width” of the C-Boolean
valued truth will not be important, we will adopt the denotation
from [5] and instead of (aS ≤C bT ) ∈ TC or (aS ≤C bT ) ∈
FC , we will shortly write aS ≤C bT or aS 6≤C bT , respectively.

Example 3.1: Let (FC(R),+,−) be an MI-pregroup. Then

aS ≤max bT =

{
Tmax(S,T ), if a ≤ b,
Fmax(S,T ), otherwise,

is a C-Boolean valued ordering.
Example 3.1 demonstrates a C-Boolean valued ordering

reflecting transitive closure of the union of the similarities
used in the arithmetic in the determination of the width of the
obtained truth. Let us present two particular examples. First,
if we consider the system of Łukasiewicz similarities C from
Example 2.1, we would come up to the following ordering:

aSp
≤max bSp′ =

{
TSp′′ , p

′′ = min{p, p′}, if a ≤ b,
FSp′′ , p

′′ = min{p, p′}, otherwise.

which can be visually illustrated on Figure 2.

Fig. 2. Fuzzy numbers xSp′
and ySp′′

from Example 2.1, one is determined
by x = 4 and p′ = 0.8 (“left” solid fuzzy set), the other one by y = 5.5
and p′′ = 0.3 (“right” solid fuzzy set). Fuzzy sets xSp′

and ySp′′
cannot be

ordered by≤i of α-cuts however, if we use≤max, we obtain the dashed fuzzy
sets EXTSp′′

(xSp′
) and EXTSp′′

(ySp′′
), respectively, and the subsequent

conclusion xSp′
≤max ySp′′

= TSp′′
.

The way how ≤max is defined is by far not the only way
how to design a C-Boolean valued orderings. Assuming that C
possesses the greatest element >C (i.e. R ⊆ >C for all R ∈ C),
then for example, the mapping ≤>C : FC(R)×FC(R)→ TFC
given by:

aS ≤>C bT =

{
T>C , if EXTR(aS) ≤i EXTR(bT ),

F>C , otherwise,

is a C-Boolean valued ordering too. Note that the composition
of ⊗-similarities S ◦ R = max(S,R) ∈ C for any S, T ∈ C,
which is a simple consequence of the fact that C is nested.
Hence, we find that EXTR(aS) = aS◦R ∈ FC(R), which
ensures the correctness of the definition of ≤>C .

Let us consider, e.g., the product t-norm, and

C = {Sp | p ∈ [1, 5] and Sp(x, y) = e−p|x−y|} .

The ordering ≤>C can be visually demonstrated by Figure 3,
where one can see two extensional fuzzy numbers 4S2.5

and 5.5S1.2
(displayed by solid lines) and their extensional

hulls EXTS5
(4S2.5

) = 4S5
(left dashed fuzzy set) and

EXTS5(5.5S1.2) = 5.5S5 (right dashed fuzzy set) that due to
their interval ordering 4S5 ≤i 5.5S5 allow to order the original
fuzzy numbers 4S2.5

≤>C 5.5S1.2
.

Fig. 3. Demonstration of the C-Boolean valued ordering ≤>C .

Assume that C has all infima, i.e., for any subset D ⊆ C,
we have inf{S ∈ C | S ∈ D} ∈ C. Then, another ordering



applies the rule of the “minimal size” of the similarity relation
that is sufficient in order to get extensional hulls of the given
fuzzy numbers, that are already ordered with respect to ≤i.
Technically, this C-Boolean valued ordering, denoted by ≤inf ,
will seek for the infimum of all such similarities:

aS ≤inf bT =

{
TE , ∃R ∈ C : EXTR(aS) ≤i EXTR(bT ),

F⊥C , otherwise,

where E = inf{R ∈ C | EXTR(aS) ≤i EXTR(bT )}. The
demonstration of such ordering can be illustrated in Figure 4.

Fig. 4. Example of ≤inf applied to fuzzy sets from Figure 2.

All the C-Boolean valued orderings mentioned above are so-
called strongly compatible which means well-behaving with
respect to the ordering of fuzzy sets based on fuzzy pre-order
[20], [21] and thus, (1) reflecting the necessary extension (of
the two fuzzy numbers being ordered) in the C-Boolean valued
truth; (2) respecting the order of R. Formally, these properties
are defined as follows

Definition 3.3: Let ≤C be C-Boolean valued ordering on an
MI-pregroup (FC(R),+,−). The ordering ≤C is called pre-
order compatible if, for any aS , bT ∈ FC(R) and any R ∈ C:

(aS ≤C bT ) = TR ⇒ EXTR(aS) ≤i EXTR(bT ) . (8)

The ordering ≤C is called real-order compatible if, for any
aS , bT ∈ FC(R) and R ∈ C,

EXTR(aS) ≤i EXTR(bT )⇒ (aS ≤C bT ) ∈ TC . (9)

Moreover, if an ordering ≤C is pre-order compatible and also
real-order compatible, it is said to be strongly compatible.

We will demonstrate the properties on examples that do not
meet them. For example, consider the following modification
of ≤>C (only >C is replaced by ⊥C):

aS ≤⊥C bT =

{
T⊥C , if a ≤ b,
F⊥C , otherwise,

that is real-order compatible but it is not pre-order compatible
as the use of the narrowest similarity ⊥C in T⊥C does not
reflect the necessary extensions of the two fuzzy sets being
compared, for more details, see [22].

The following example of ≤C that is neither pre-order com-
patible nor real-order compatible [22] adopts the principles

of ≤max but it reverses its order and so, it would rank “about
7” below “about 5”:

aS ≤rev
max bT =

{
Tmax(S,T ), if b ≤ a,
Fmax(S,T ), otherwise.

When studying ordered structures that serve for the arith-
metics, both qualities of the algebraic structure should be
connected. If we impose the standard property connecting
the additive operation and the ordering that is given for any
aT , bS , cR ∈ FC(R) as follows:

aS ≤C bT ⇔ aS + cR ≤C bT + cR,

we obtain the so-called C-ordered MI-pregroup
(FC(R),+,−,≤C). A sufficient condition on the ordering
≤C under which an MI-pregroup becomes the C-ordered
MI-pregroup, is provided in [22].

B. C-valued metrics on FC(R)

Now, we may define “metric-like functions” operating on
extensional fuzzy numbers. From the mathematical point of
view, it is a necessary step for the development of further of
mathematical analysis with extensional fuzzy numbers. From
the application point of view the construction may have a huge
potential for distinct applications calculating with imprecise
or vague quantities, which typically falls into social sciences
including economy [19], especially in time series modelling
where we need to aggregate such quantities (e.g. due to the
imprecise measurement or the lack of information) to one
or more quantities representing their important attributes and
measure their dispersion to optimize model parameters.

Recall that we assume a system C of separated nested
⊗-similarities on R. The motivation for the separated ⊗-
similarities comes from the metric axiom saying that d(x, y) =
0 if and only if x = y. Therefore, to design the metric-
like functions for extensional fuzzy numbers in the spirit of
the metric functions, the separateness of ⊗-similarities is a
natural requirement. Define xS − yT = xS + (−yT ) for any
xS , yT ∈ FC(R).

Definition 3.4: Let (FC(R),+,−,≤C) be a C-ordered MI-
pregroup. A mapping dC : FC(R) × FC(R) → FC(R)
preserving the following axioms for all R,S, T ∈ C:

dC(xS , yT ) ≥C 0R ,

dC(xS , yT ) = 0R ⇔ xS − yT = 0R ,

dC(xS , yT ) = dC(yT , xS) ,

dC(xS , zR) ≤C dC(xS , yT ) + dC(yT , zR)

will be called C-valued metric function on FC(R).
On can easily see that from the separateness of the ⊗-
similarities we obtain that if dC(xS , yT ) = 0R then x = y.
Indeed, if dC(xS , yT ) = 0R, then xS − yT = (x− y)U = 0R
for a certain U = max(S, T ) ∈ C. Hence, we obtain
U(x − y, 0) = R(0, 0) = 1. Since U is separated, we find
that x− y = 0, i.e., x = y.



Let us start from examples. Let us consider
(FC(R),+,−,≤max) and we will obtain the following
definition of the absolute value

|xS | =

{
xS , 0E ≤max xS ∀E ∈ C
−xS , otherwise.

We can check that right-hand side condition 0E ≤max xS
is equivalent to the condition 0 ≤ x and thus, the definition
may be written as

|xS | =

{
xS , 0 ≤ x
−xS , otherwise

which is consequently in a concise form:

|xS | = |x|S . (10)

If we fix the structure (FC(R),+,−,≤>C ) and mimic the
same definition of the absolute value

|xS | =

{
xS , 0E ≤>C xS ∀E ∈ C
−xS , otherwise

in which, we will expand the right-hand side 0E ≤>C xS as
EXT>C (0E) ≤i EXT>C (xS), we will end up with 0>C ≤i
xR which leads to 0 ≤ x, and consequently to (10).

If we consider the structure (FC(R),+,−,≤inf) and:

|xS | =

{
xS , 0E ≤inf xS ∀E ∈ C
−xS , otherwise

we may expand the right-hand side 0E ≤inf xS as an
existence of R ∈ C such that EXTR(0E) ≤i EXTR(xS)
which is equivalent to 0max(R,E) ≤i xmax(R,S). These two
fuzzy numbers may preserve interval ordering for all α-cuts
(including 1-cut) only if 0 ≤ x and thus, (10) holds.

As we can observe, in all the three examples above led to
formula (10). This, at first sight tiny observation, is extremely
important. Indeed, the absolute value is a function and thus,
stems from the given arithmetic. And observe, that no matter
which C-Boolean valued ordering we adopt, we will land
to the same absolute value. Furthermore, it also follows the
technical part of the arithmetic in which, the operations on
extensional fuzzy numbers were calculated as operations on
crisp numbers with additionally applied tolerance to close
values by the calculus on similarity relations. The absolute
values acts according to (10) in the same way: instead of the
absolute value of an extensional fuzzy number, we determine
the absolute value of the crisp number, and in the second step,
we build its extensional hull.

The natural question that rises on can be formulated as
follows: “do all absolute values of extensional fuzzy numbers
lead to formula (10)?”

The answer to the question above is, on a general level,
negative. It can be easily checked by a counterexample.
Consider the C-Boolean valued ordering (FC(R),+,−,≤max)
that reverses the order of the real line. Then

|xS | =

{
xS , 0E ≤rev

max xS , ∀E ∈ C,
−xS , otherwise

and the right hand side 0E ≤rev
max xS occurs when x ≤ 0 and

thus |xS | = −|x|S .
We may have noticed, that while the three positive cases

when formula (10) held, occurred in the case of pre-order
compatibility, the counterexample was built on a C-Boolean
valued ordering that is not pre-order compatible. As we show
below, this observation can be generalized to all such cases
proved formally.

Lemma 3.1: [22] Let (FC(R),+,−,≤C) be a C-ordered MI-
pregroup such that ≤C is pre-order compatible. If aS ≤C bT
for certain S, T ∈ C then a ≤ b.

Theorem 3.2: Consider a C-ordered MI-pregroup
(FC(R),+,−,≤C) with ≤C being strongly compatible.
Let S ∈ C, and let the absolute value | · | : FC(R) → FC(R)
be defined as:

|xS | =

{
xS , 0E ≤C xS , ∀E ∈ C
−xS , otherwise.

Then the following holds |xS | = |x|S .
Sketch of the proof: If 0E ≤C xS for all E ∈ C then by

Lemma 3.1 we get 0 ≤ x and hence, |xS | = xS = |x|S . We
have to ensure that the case of 0E ≤C xS and simultaneously
0F 6≤C xS for some E,F ∈ C dos not occur. From 0E ≤C xS
by lemma 3.1, we get 0 ≤ x. Let us take R = max(S, F ).
Then we get

EXTR(0F ) = 0R ≤i xR = EXTR(xS)

which, with the help of the real-order compatibility leads to
0F ≤C xS . Finally, by similar arguments, one can show that
if 0E 6≤C xS for all E ∈ C, then x < 0. Hence, we simply get
|xS | = −xS = |x|S . �

As pointed out above, the most natural metric or distance
of two fuzzy numbers would be the absolute value of the
difference of these two fuzzy numbers. In our case, restricted
to the set of extensional fuzzy numbers, the calculations
should not be so complicated and thus, under the restriction
to the structures with pre-order compatible C-Boolean valued
orderings, we will check if such a construction meets the
axioms of Definition 3.4.

Proposition 3.3: Consider a C-ordered MI-pregroup
(FC(R),+,−,≤C) with strongly compatible ≤C . Then
dC(xS , yT ) = |xS − yT | is a C-valued metric function.

Sketch of the proof: The non-negativity |xS−yT | ≥C 0E is
ensured by the use of strongly compatible order ≤C and the
use of Theorem 3.2.

The second axiom follows from the fact that

|xS − yT | = |(x− y)max(S,T )| = |x− y|max(S,T )

and this can be equal to 0E if and only if |x − y| = 0 and
max(S, T ) = E.

The symmetry is proved as follows:

|xS − yT | = |(x− y)max(S,T )| = |x− y|max(S,T )



which due to |x− y| = |y − x| equals to

|y − x|max(S,T ) = |(y − x)max(S,T )| = |yT − xS |.

The triangle inequality is proved again using the strong
compatibility. �

C. Generalization to higher dimensions

We have shown that if we approach the metric-like function
on fuzzy numbers from their arithmetic as the starting point,
we may get very natural results. Indeed, the distance of two
fuzzy numbers is naturally expected to be equal to the absolute
value of their difference which is again a fuzzy number.
However, this resultn, if being left for the single dimension
only, is interesting only from the motivation point of view.
But in order to employ the machinery in real applications, e.g.,
in approximation and interpolation of vague data, automated
approximate reasoning, calculations with vague quantities in
social sciences and (economics and finance), we necessarily
have to step to higher dimensions.

As the construction of extensional fuzzy numbers from crisp
reals is well founded, the natural approach to increase the
dimension is based on dealing with n-dimensional vectors of
extensional fuzzy numbers. So, the set FnC (R) will serve as the
domain of our metric-like functions, whenever we will need
to apply some operations to vectors x̄S = (x1,S , . . . , xn,S),
ȳT = (y1,T , . . . , yn,T ) from FnC (R), they will be applied
component-wise:

x̄S − ȳT = (x1S − y1T , . . . , xnS − ynS).

Definition 3.5: Let (FnC (R),+,−,≤C) be a C-ordered MI-
pregroup. A mapping dC : FnC (R) × FnC (R) → FC(R)
preserving the following axioms for all R,S, T ∈ C:

dC(x̄S , ȳT ) ≥C 0R ,

dC(x̄S , ȳT ) = 0R ⇔ x̄S − ȳT = 0̄R ,

dC(x̄S , ȳT ) = dC(ȳT , x̄S) ,

dC(x̄S , z̄R) ≤C dC(x̄S , ȳT ) + dC(ȳT , z̄R)

will be called C-valued metric function on FnC (R).
Now, we may define distinct metric-like functions on FnC (R)

that mimic the classical metric functions on vectors of reals
and show that they meet the axioms of Definition 3.5.

Proposition 3.4: Let (FnC (R),+,−,≤C) be a C-ordered MI-
pregroup with strongly compatible ≤C . The mapping dM :
FnC (R) × FnC (R) → FC(R) called Manhattan distance on
FnC (R) and defined by

dM (x̄S , ȳT ) =

n∑
i=1

|xiS − yiT |

is a C-valued metric function on FnC (R).
Sketch of the proof: Satisfaction of the first axiom

dM (x̄S , ȳT ) ≥C 0R follows from the non-negative nature of
the absolute value assured by Theorem 3.2.

The proof of the satisfaction of the second axiom is also
based on the fact that a summation of non-negative fuzzy num-
bers may be equal to 0R if and only if all the summands are

equal to 0E for some E ∈ C. Then each summand |xiS−yiT |
is equal to 0max(S,T ) and the summation

∑n
i 0max(S,T ) is

equal to 0R if and only if max(S, T ) = R which leads
x̄S − ȳT = 0̄R.

Satisfaction of the third axiom is easily proved using the
fact:

n∑
i=1

|xiS − yiT | =
n∑
i=1

|yiT − xiS | .

The triangle inequality is derived from the triangle inequal-
ity of the absolute value of the difference of two extensional
fuzzy numbers, see Proposition 3.3. �

The Manhattan metric is one of the “classical” distances
used on the Rn. Another classical alternative is the maximum
metric. We can again mimics its construction for the vectors
of extensional fuzzy numbers. However, first of all, we have
to define the maximum function on (FC(R),+,− ≤C) which
can be naturally done as follows:

xS ∨ yT =

{
xS , xS ≤C yT
yT , yT ≤C xS .

(11)

The above definition of the maximum requires totality of the
used C-Boolean valued ordering, for details, we refer to [5].
The definition of the maximum given by (11) can be again
applied to FnC (R) component-wise and thus, enable to define
the maximum metric.

Proposition 3.5: Let (FnC (R),+,−,≤C) be a C-ordered MI-
pregroup with strongly compatible ≤C . The mapping d∨ :
FnC (R) × FnC (R) → FC(R) called maximum distance on
FnC (R) and defined by

d∨(x̄S , ȳT ) =

n∨
i=1

|xiS − yiT |

is a C-valued metric function on FnC (R).
Sketch of the proof: The first axiom d∨(x̄S , ȳT ) ≥C 0R

again follows from the non-negative nature of the absolute
value assured by Theorem 3.2.

The maximum metric d∨(x̄S , ȳT ) = |xjS − yjT | for some
particular j, and this absolute value |xjS − yjT | can be equal
to 0R (where R = max(S, T )) if and only if xj−yj = 0. But
then also all other components |xiS − yiT | for i 6= j are equal
to 0R and thus, x̄S − ȳT = 0̄R.

The third axiom is proved using the fact (Proposition 3.3):

|xjS − yjT | = |yjT − xjS | .

The triangle inequality of the maximum metric is derived
from the triangle inequality of the absolute value of the differ-
ence of two extensional fuzzy numbers, see Proposition 3.3.

�

Let us note, that in a very similar way, we could construct
also other C-valued metric functions, including the most
common one – the Euclidean distance. Of course, we have
to keep in mind that such a construction requires technical
steps, e.g., to construct power and mainly squared root and



prove their properties (non-negativity etc.). Due to the limited
extent of this article we do not include these technical steps
and the whole construction into this article and we only
argue that though technically different, in principle the whole
construction is analogous.

IV. CONCLUSIONS AND FUTURE WORK

This article is devoted to the concept of metric (distance) for
extensional fuzzy numbers where the choice of the extensional
fuzzy numbers was made because of their simple arithmetics
[4]. In contrast to the standard approaches to the metric
spaces of fuzzy numbers, we proposed metric-like functions
that assign an extensional fuzzy number to each pair of
extensional fuzzy numbers and moreover, we admitted that
the axioms for our metric-like functions can be satisfied only
in certain C-Boolean valued truth degrees which are special
extensional fuzzy numbers in the unit interval. More precisely,
the proposed definition of C-valued metric functions is based
on the concept of C-valued ordering relation defined on a
set of extensional fuzzy numbers using which an extensional
fuzzy number is less than or equal to another extensional fuzzy
number in a certain C-Boolean valued truth degree [22]. Fur-
ther, we were seeking for a computationally reasonable, and
mainly natural, definition of the absolute value for extensional
fuzzy numbers that should be considered in the definition
of the most natural metric (at least for real numbers) given
as the absolute value of the difference between extensional
fuzzy numbers, where the difference is obtained from the
arithmetic with extensional fuzzy numbers. We showed that
under the assumption that a C-valued ordering is strong, i.e.,
it is connected in an appropriate way with the interval ordering
of α-cuts of extensional hulls, we can introduce very simple
definition of the absolute value such that |xS | = |x|S , where
xS is an extensional fuzzy number, and moreover, the absolute
value of the difference of extensional fuzzy numbers is a C-
valued metric function. This result demonstrates a nice link
between the particular metric for the real numbers and the
extensional fuzzy numbers, namely, there is no difference
between them in principle. Moreover, this analogous behaviour
of the absolute value for the real numbers and the extensional
fuzzy numbers gives us a possibility to construct other metrics
based on the absolute value. This benefit is demonstrated in
several natural constructions of C-valued metric functions for
vectors of extensional fuzzy numbers.

Although, the presented results are only preliminary ones, a
basic theory similar to mathematical analysis for real numbers
can be developed now for the extensional fuzzy numbers. The
introduction of the concepts like limits, derivatives or integrals
in a space of extensional fuzzy numbers is very challenging
for us and it is the main topic for our further research.
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