
Fuzzy-as-a-Service for Real-Time Human Activity

Recognition Using IEEE 1855-2016 Standard

Bhavesh Pandya, Amir Pourabdollah and Ahmad Lotfi
School of Science and Technology

Nottingham Trent University

Nottingham, United Kingdom
Email: {bhavesh.pandya, amir.pourabdollah, ahmad.lotfi} @ntu.ac.uk

Abstract—Fuzzy Logic Systems (FLSs) have shown their

potentials in Ambient Intelligence (AmI) applications. However,

the implementation of FLSs is typically linked to dedicated and

non-scalable hardware/software systems. As a result, some

specific AmI requirements such as web communications and

Service-Oriented Architecture (SOA), which can be found in

many modern systems, are rarely adapted for FLSs. Sharing

FLSs accessibility as web services (called fuzzy-as-a-service), in

which the service is developed independently from a specific FLS,

allows for system autonomy, openness, load balancing, efficient

resource allocation and eventually cost-efficiency, particularly

for computationally intense FLSs. In a wider context, such

features can open new dimensions for FLSs’ applicability in

Cloud Computing and Internet of Things devices. Recent

advances in standardising Fuzzy Mark-up Language (IEEE

1855-2016) and its associated software libraries (such as JFML)

has made this even more achievable. This paper proposed fuzzy-

as-a-service architecture based on IEEE 1855-2016, JFML and

SOA. Through a simulated experiment, this paper concerned the

collection, processing and monitoring the distributed data over

the web, thus a real-time human activity recognition simulated

scenario using a rule based FLS is demonstrated.

Keywords—fuzzy-as-a-service, ambient intelligence, human

activity recognision, service-oriented architecture, internet of

things, IoT, fuzzy markup language, FML

I. INTRODUCTION

Improvements in Ambient Intelligence (AmI) and the
Internet of Things (IoT) have opened new research horizons for
day-to-day applications such as environmental intelligence.
The new emerging environments can ascertain from both
environmental deviationsI and occupants’ behavioural patterns.
Collected data, including various attributes, such as the
environmental changes and occupants’ relations with the
environment, are processed in order to formulate decisions or
to predict the activities/benefits of occupants at atypical areas.
However, most of the applied techniques are based on rigid
observations of the environment and/or activities of the
individuals, underestimating the value of the naturally

embedded uncertainty elements in decision making processes
in human activity related data. The methods of processing
uncertain data in huge/complex settings would need high
processing powers, something which is not achievable in
sensors or stand-alone system.

Contemporary progress in cloud computing, IoT, and
service-oriented architectures (SOAs) has caused a transition
from traditional local or client–server paradigms to a service-
oriented model for AmI [1]. The renowned fact is that FLSs are
usually implemented on dedicated local hardware and software
systems, and most of these contemporary systems do not
comprise distributed, pervasive and scalable architectures.

By changing the classical approaches to FLSs
software/hardware architecture, a fuzzy logic system can be
perceived as-a-service that if maintained on the cloud, permits
computing to be divested and concealed from devices in an
intelligent environment, as well as being scalable. The initial
idea, called fuzzy-as-a-service proposed in [1], is followed in
this study. This paper proposed a development and
standardization for the components of the underlying
architecture and introduced a fully-functional service-oriented
solution to make it practical and cost-effective to design and
implement complex FLSs particularly in AmI environments
[1].

The development of the distributed architectures for FLSs,
as will be seen, is a relatively new field with very little
progress. This study’s innovation is to shift to an open service
model. This openness can be accomplished by developing the
system to be fully web-based and device self-sufficient,
particularly by utilising standard formats for data exchange that
are both consistent and readable as realistically as possible. For
example, an individual client computer may outline its
necessary FLS, an input data can be provided for the specified
system by the same or other client computer(s), and lastly the
same or other client(s) can repossess the calculated output [1].
The outline of a cloud-based model for a distributed FLS is
shown in Fig. 1.

Fig. 1: The outline of a cloud -based model for a distributed FLS [1].

A web-based data language for FLS characterizations is the
key criterion for implementing such an architecture. The
current standard for this purpose is the IEEE-1855 (2016), also
known as FML [3], an XML-based mark-up language allowing
the human readable and hardware-independent definition of an
FLS. FML and FML-compatible pieces of software such as
JFML [4] are used as the basic design standard in this study,
and the extensibility of this standard is a solution to
architecture growth.

The remaining sections of the paper are as follows: Section
II discusses the related work, section III reviews the proposed
fuzzy-as-a-service architecture design including the design
attributes and the new software components. Section IV
explains an experiment of using the fuzzy as-a-service
architecture for AmI applications, finally section V concludes
the paper with an overview on the future work.

II. RELATED WORK

AmI accumulates best outcomes from three key advances,
i.e., omnipresent computing, omnipresent communication, and
smart convenient interfaces. Useful and spatial distribution of
activities is a characteristic advocated to utilize multispecialty
worldview to structure and objectify AmI systems. A great deal
of research has been performed for uncertain decision making
in AmI environments, some of which focused on FLSs
utilisation, and a few of which implemented standardized
networked solutions.

Acampora et al. [2, 3] proposed using IEEE-1855 for
developing fuzzy logic systems for controlling AmI
environments. They focused on issues such as complexity and
confusion of human activities with variability of hardware
devices in Ambient Assisted Living (AAL) environments.
Their proposed solution was implementing a revolutionary
self-organizing feature map method to automatically identify a
moving object’s position in an enclosed environment and a
stratagem to generate context aware FML services to optimize
user comfort and hardware interoperability.

Soto-hidalgo et al. [4] proposed an open source Java
library, i.e., JFML, which presented a complete implementation
of the IEEE standard having a capacity to impart fuzzy systems
as per different norms and programming. Herein, the authors

offered three contextual examinations that delineated the
capability of JFML in AmI, and the benefits of trading FML-
aware FLSs along with accessible software.

Following the JFML introduction, some of its applications
and follow-up implementations have recently emerged. Arcos
et al. [5] developed an interoperability unit to design and run
FLS for embedded systems in JFML, particularly for Arduino
boards. Moreover, they defined a transmission protocol
between JFML and Arduino boards, which removed regulated
computing capability proffered by embedded systems. To
delineate the competence of the new interoperability module,
they exhibited contextual analysis by dividing fuzzy controller
stamped by IEEE-1855 to handle mobile robots in different
situations. The new module could effortlessly map a
controller’s input/output variables by means of distance sensors
and motors, connect to an Arduino board’s microcontroller,
and manage the mobile robotic by conducting fuzzy inference
from an outward PC that maintains communication via USB.

 Alcala-Fdez et al. [6] expounded a Python wrapper for
JFML (Py4JFML) that permits to use all JFML functionalities
via Python programming language. By such a Java-Python
bridging, the likelihood of using IEEE standard for denoting
fuzzy systems was engorged to both developers and engineers
with infinitesimal redundancy of code. The authors carried out
some experiments that revealed complete interoperability
between Python programs and JFML devoid of any concrete
overhead.

Besides the above FML-aware solutions, there are related
works on healthcare monitoring systems with rapidly growing
applications in AAL environments [9, 10]. Simultaneously, the
demand for wearable devices is also increasing keeping in
mind cost effectiveness as well as user comfort [11, 12,]. Thato
et al. [13] used latest virtual technologies to build a low-cost
and customizable AAL system suited to the climate of South
Africa. The authors conducted a survey of different AAL
technologies and characteristics of the system, which were
considered to be useful in defining the architecture.

Davide et al. [14] provided a comprehensive overview of
AAL field, which comprised more than 10-year systematic
study of pertinent information based on investor requirements,
linking the gap in established assessments concentrated on
technologies. The results of the review distinctly revealed that
the view of entire AAL ecosystem has been ignored by the
AAL community. Conversely, the proposed solutions tend to
be more specific to existing technologies rather than meeting
interests of numerous stakeholders. Another foremost
shortcoming highlighted by the review was lack of adequate
evaluation of different solutions.

Ashish and Jigarkumar [15] provided a review of diverse
activity approaches and application of behavioural examination
to recognize seventeen key problems associated with AALs.
Their primary goal was to provide a standard to choose the
paramount approach to regulate smart environment activity and
human behaviour. Similarly, Hong et al. [16] examined the
current status of AAL science, addressed AAL’s promises and
potential benefits, and specified obstacles that were faced to
build real-world and competent AAL programs for the elderly.

Author [26], recommended the latest JFML the technique
for both Arduino and Raspberry Pi that enables the automated
development of runnable files for non-expert users without
specific knowledge on embedded systems or sufficient
programming capabilities. The author also explained how
JFML maps FLC variables with sensors and actuators
independently. This communication protocol and embedded
systems are integrated with various communication mechanism
such as (Wi-Fi, Bluetooth, and USB).

In Summary, the reviewed literature shows the adaptation
of smart solutions, particularly using FLSs for AmI
applications. The research gap seems to be the rarity of the
standard FLS adaptations for addressing the growing
requirements in AmI. Based on this, in the next section the
proposed solution is explained.

III. ARCHITECTURE DESIGN

The inspiration following a service-oriented approach for
FLSs is centred on the possibility of using FLSs in a
decentralized AmI context. A number of general attributes that
are considered in the architectural design are discussed in the
first section, then a brief description of the utilized specific
software components is presented as well as the implemented
functionalities in order to address the described attributes.

A. Design Attributes

1) Distributed architecture: The elements of the FLS are to
be tangibly distributed within the ambient intelligence model.
Sensors collecting input data for the FLS, processors and
running the FLS, and delivering the results to some output
devices (such as actuators or monitoring stations) are
distributed in such an environment. From the standpoint of
efficiency, flexibility, and redundancy, it is advantageous not
only to distribute input/output devices but also to distribute the
necessary processing power to numerous servers. This model
may require smart load-balancing that is not feasible with static
hardware/software designs. This paper does not focus on an
optimized load balancing method, however the possibility of
achieving this is demonstrated through the experiment.

2) High-power computation requirements: For FLS
implementations, computational power is an identified
bottleneck [21]. When the number of inputs, outputs and rules
in an FLS are augmented, the system complexity may increase
dramatically. Moreover, owing to their extraordinary
computational complexity, the usage of more advanced FLSs,
such as non-singleton or type-2 systems, becomes limited. A
cloud-based approach is favoured to fixed hardware solutions
that can animatedly assign memory and processors among the
available resources.

3) Reuse of computation results: A server can record the
inputs originating from and the output sent to different
input/output devices for one single FLS in order to avoid
repeated computations. For example, if a system inputs have
been processed in the (recent) past, it is possible to reuse the

saved outputs as a ready answer for future requests by the same
or any other user having the same input parameters. In
addition, in some other contexts, the concept of a single FLS
for a specific application can be apportioned and reclaimed by
numerous other applications. This can only be done if an FLS
server can be probed for the definitions of FLSs and their
history of input/output.

4) Openness and accessibility: These are conventional
incentives for any form of FLS use, not limited to AmI
applications. In fact, the currently available FLS computing
tools are mostly suited for single-station applications, such as
the special tools and libraries for fuzzy logic computing built in
MATLAB and R software [2, 3]. A cloud-based solution where
the FLS is accessible as a Web Service will eliminate the need
of users/clients to have or learn any specific software, library or
programming/scripting language. This will also facilitate users
by system autonomy - specially pertinent for research or
educational purposes where it is necessary to access and share
software tools and data. This can also be extended to shared
FLS repositories developed by the users’ communities for
different application domains.

5) Incorporating Cloud Computing and IoT: Cloud
computing can be viewed as a valuable extension of the
permanent hardware client–server architecture to make system
resource allocation more versatile based on the computational
power available for a given FLS. This will make it possible to
access the FLS computation as a service from any computer.
With this accessibility scope, any IoT system placed in any
topographical location can use an FLS repositories in the sense
of IoT.

B. Software Components of the Developed System

1) IEEE 1855-2016 (also known as Fuzzy Markup
Language - FML), presented in [23] and standardized in [24-
25], is an XML-based language that enables the modelling of
an FLS in a human understandable, platform-independent and
Web-compatible format. Before that, a portion of IEC61131 [7]
devoted to fuzzy controllers could be used to describe a
specific range of FLSs (known as FCL). IEEE-1855 has the
benefit of being straightforwardly applicable to programming
logic as much as server-side programming is concerned.

An FLS defined in IEEE-1855 can be immediately
translated into numerous programming language codes (e.g.,
Java) [8] using an extensible stylesheet language translator
(XSLT), so minimal server-side effort is needed to encode an
FLS description in local program logic. In addition, IEEE-1855
permits different agents to monitor the same FLS,
communicating with the environment from different locations,
as shown in [7]. The details of this standard are out of the
scope of this paper and can be found in [5]. Fig. 2 shows a
fuzzy controller tree structure modelled in FML. This paper
focused on the known capabilities of FML in describing an
FLS by all the necessary parameters of its input fuzzy sets,
rule-base, inference method, output fuzzy sets and
defuzzification methods.

Fig. 2: The object model tree structure of FML in defining a Fuzzy
controller [17].

2) SOA and distributed architectures: SOAs are
characterized as a set of self-contained, networked, loosely
coupled, and reusable software components generally used by
customers with no or minimal reliance on their hardware or
software platforms [10, 11]. The key resources are distributed
in SOA for FLSs across one or more servers that several clients
touch. The embedded autonomy of the SOA here means that
(a) the Web service is developed independently of a specific
FLS, if the FLS can be described by the standard format, and
(b) that it allows for serving multiple FLSs simultaneously. The
suggested architectures are moreover not based on a
completely service-oriented model in the works described or
are not based on a structured data exchange format.

3) Web Services: Web services is a standardized way or
medium to propagate communication between clients and
server applications on the World Wide Web. Some known
implementation of web services include SOAP, WSDL, and
REST. RESTful web services are designed to function best on
the Cloud. REST determines constraints, such as the uniform
interface, that when applied to a web service induces desirable
properties, such as consistency and scalability, that allow
services to work best on the Web. Data and functionality are
called tools in the REST architectural style and are accessed
via URIs, usually web links. Using a set of simple, well-
defined operations, the resources are used. A web service
invocation is configured for each function through an API that
comprises a HTTP request and response. The developed API
functionalities are listed later in this paper.

4) JFML: It is a new open-source library for fuzzy logic
computations based on FML (IEEE 1588-2016) data format
[4]. Being developed in Java, JFML can act as a cross-platform
back-end application server for the developed fuzzy-as-a-
service. Moreover, JFML follows a strict object-oriented
approach and a modular architecture based on the same tree
structure that FML uses to describe FLSs, permitting

developers to extend JFML devoid of modifying the grammar
of the language. JFML permits the use of all standard fuzzy
inference systems included in XSD, which also includes all
membership functions, fuzzy operators, etc. (readers are
referred to [4] for more information). Researchers may need to
use other components, however, that are excluded in XSD’s
current definition. Thus, JFML offers custom methods for all
the elements indicated in the XSD, providing a way to extend
the library in compliance with this standard without having to
change the grammar of the language.

C. API Functionalities

Several tasks are considered to be the key functional
necessities for the solution creation. A web service invocation
is configured for each function through an API that comprises a
HTTP request and response. Fig. 3 shows a list of these
invocations as a request/response series between the client and
server sides. Since the parameters, inputs, and outputs of the
FLS model are being reused in the process, they need to be
stored on a database on the server side. It is also evident that
the approach is presently restricted to singleton type-1 FLSs.
As part of future research, the other forms of FLS will be
considered.

IEEE standard 1855-2016 and its extension are used as the
core schema in the API data exchange. The extension is added
to the schema in order to support exchanging input/output
values between the clients and the servers. Briefly, the “type”
attribute determines if the HTTP packet is a request or a
response, whereas the name of the requested functionality is
encoded in “service” attribute of both request and response
packets as shown in Fig. 3.

Fig. 3: Schema of request/response the designed fuzzy-as-a-service
API. The fuzzySystem element is the core element that follows the
IEEE1855-2016 standard, whereas the other elements are to be

considered as extensions for the Web services.

Presenting the full details of the API input/output
parameters is beyond the size of this paper. However, the main
supported functionalities of the developed API are as
summarized here.

1) Creation/Modification of a fuzzy logic system

(createFLS/editFLS calls): This feature is provided for the

client(s) responsible for the FLS project first creation and/or

modification. IEEE 1855-2016 is used to describe the

created/modified FLS, so the client machines compose a

request that contains the FLS description in the standard

format.

2) Querying an FLS (queryFLS call): The FLS status
information stored on the server may need to be retrieved by
different client forms. The FLS state includes its life and stored
constraints or the latest input values.

3) Setting input (setInput call): For the FLS inputs,
customers must be able to set individual values. It is also
required that any number of inputs can be included in a single
invocation by a specific client system. In a multi-input multi-
output FLS, this balances data collection burden by allowing
the system to capture individual or clustered outputs from
various devices. Every collected input can be stored in the
server, but during the execution of FLS, only the last collection
will be used.

4) Getting output (getOutput call): The FLS output value(s)
must also be calculated and obtained by the server on the
clients’ requests. It is favoured that the server(s) may return the
requested output either as a fuzzy set (a data array) or as a
defuzzified value, but for brevity, it is restricted the requisite to
the defuzzified values. Particularly in a multi-input multi-
output system, being able to request any number of output
values means that the system can evade redundant and
unsolicited output computation. The same FLS can be specified
on several servers in a complex FLS computing situation, but
each server can provide a part of the performance. The sensors
can send their data to multiple servers in this scenario, but an
output device can selectively request their required data from a
single server while the other servers are busy offering data to
other output devices. The server may also have access to a
lookup table of the previous FLS runs, so it can avoid
reiterating the calculation if in the past the same FLS has been
running with the same inputs. The system will reply to the user
if the requested output can be either measured or retrieved

5) Deletion of fuzzy logic system (deleteFLS call):
Eventually, clients must be able to request to delete an FLS
from the list of specified FLSs in the database if there is no
longer any need for either the FLS description or its past
history of input/output. Optionally, the device may be designed
to remove the FLSs after a period of inactivity.

6) Serving different FLSs simultaneously: Each FLS is
given a unique identifier once it is created. This is called URI,
as shown in Fig. 3. Each following API request/response
includes the URI as a mandatory parameter. As a result, the
same Web server serves multiple FLSs.

The above architectural components and API functionalities
collectively deliver the so-called fuzzy-as-a-service. Obviously,
this architecture is be itself an empty platform that must be
populated by different FLSs for serving different applications.
In the next section, the design of FLS is explained for human
activity detection scenario and its configuration to act as a real-
time Web service.

IV. DEVELOPING A FUZZY-AS-A-SERVICE FOR HUMAN

ACTIVITY RECOGNISTION

A. The Experiment Settings

 To demonstrate the utility of the described architecture, a
fuzzy-as-a-service solution for a human activity classification
scenario is developed. To validate the system, a dataset of
accelerometer/gyroscope measurements coming from body
sensors of individuals and labelled with their walking/running
status is used. A fuzzy rule-based system is designed, in which
the rules are trained by sample input/output pairs. Then the
designed FLS is set up on the Web server in order to classify
the individual´s current status as running or walking. All the
FLS definitions, input data collection, data processing and
output classification (running/walking) data are being carried
out in real-time purely via API calls.

The experiment and its findings were confined to a
particular sample scenario and has been used in this paper as a
proof-of-concept, so that the suggested approach will be
implemented in future works in a practical problem where
more rigorous research will be conducted for real-world
scenarios and actual sensors/output devices are established.

In a real-world scenario, the setInput API calls should be
sent by Web-connected sensors, or through some Web-
connected interfaces. In our simulation, a client-side computer
program is developed that reads the sensory data from the
dataset and send them back-to-back to the Web server in the
same rate that they were originally produced by the sensors.
Another program (running on a different client PC) is also
written that simulates a “monitoring station”, in which the
runner/walker status is requested from the Web server in some
different rate from that f the data collection (by sending back-
to-back getOutput API calls). On each getOutput request, the
server runs the necessary FLS calculation and delivers the real-
time running/walking status back to the monitoring station. As
a result, the human activity is detected in real-time. This
process is illustrated in Fig. 4.

A Web application server is developed to serve the
necessary HTTP messages to/from clients following the above
SOA model. JFML [4] is used for fuzzy logic computing
within the developed application server. The server is using
Apache Tomcat as a generic Java servlet implementation. This
setting on the server side can fit into numerous applications,
specifically where the client-side agents are sensors and/or
actuators/monitoring stations are distributed in a smart
environment.

Fig. 4: The elements of the carried-out experiment for human activity
monitoring

B. Dataset
 To evaluate the performance of the proposed system, a
dataset taken from Kaggle.com open repository called “Run or
Walk”. The dataset contains 88588 sensor data samples from
accelerometer and gyroscope collected from smart phone
located on a person’s wrist and an average of about 5 seconds
frequency. This dataset contains six attributes including
accelerometer and gyroscope sensor data, each in 3
dimensions, along with their timestamps. The dataset is also
labelled with the actual status where 1 indicates that person is
running and 0 indicates person is walking.

 The dataset includes about 90K data samples where about
60K samples were used for training and the remaining data was
used for testing. A sample part of the Run or Walk dataset is
shown in Fig. 5.

Fig. 5: A sample parts of the run/walk dataset used in this

experiment for both training and testing.

C. Rule-base Training
 Rule-base training was carried out using the training set
part of the dataset, based on the known Wang-Mendel’s
“learning from example” algorithm [20, 27]. This algorithm
was independently carried out prior to the main Web services
experiment. For each input data, 5 evenly distributed triangular
fuzzy sets were used, whereas the binary output data was
represented as two singleton fuzzy sets located at 0 and 1.

 As a result, a total of 247 rules were created based on the
six inputs and one output. The number of rules is relatively
high, so it leads to a computationally intense FLS. Achieving a
real-time data processing with such a system might to respond
in real-time if implemented locally in the environment using
low processing power of the embedded devices. Therefore, this
could be a suitable use case for checking if the Web service can
provide a real-time processing.

List 1: Partial KB and RB of the adopted FML

<?xml version="1.0" encoding="UTF-8" ?>

 <fuzzyController type="request" service="createFLS">

<URI>FLS7</URI>

<service>createFLS</service>

 <fuzzySystem name="Bhavesh">

 <knowledgeBase>

 <fuzzyVariable name="ax" scale="" domainleft="0.0" domainright="2.5"

type="input">

 <fuzzyTerm name="1" complement="false">

</fuzzyVariable>

 <fuzzyVariable name="gz" scale="" domainleft="0.0" domainright="2.5"

type="input">

 <fuzzyTerm name="1" complement="false">

 <triangularShape param1="-0.625" param2="0.0" param3="0.625"/>

 </fuzzyTerm>

 </fuzzyVariable>

 <fuzzyVariable name="y" scale="" domainleft="-5.0" domainright="5.0"

type="output" accumulation="MAX" defuzzifier="COG" defaultValue="0.0">

 <fuzzyTerm name="0" complement="false"> </fuzzyTerm>

 <fuzzyTerm name="1" complement="false"> </fuzzyTerm>

 </fuzzyVariable>

 </knowledgeBase>

<mamdaniRuleBase activationMethod="MIN" andMethod="MIN" orMethod="MAX"

networkAddress="127.0.0.1">

…………..

<rule name="1" andMethod="MIN"

orMethod="MAX" connector="AND"

weight="1.0"

networkAddress="127.0.0.1">

 <antecedent>

 <clause>

 <variable>ax</variable>

 <term>1</term>

 </clause>

 <clause>

 <variable>gz</variable>

 <term>1</term>

 </clause>

 </antecedent>

 <consequent>

 <then>

 <clause>

 <variable>y</variable>

 <term>1</term>

 </clause>

 </then>

 </consequent>

 </rule>

………….

<rule name="247" andMethod="MIN"

orMethod="MAX" connector="AND"

weight="1.0"

networkAddress="127.0.0.1">

 <antecedent>

 <clause>

 <variable>ax</variable>

 <term>4</term>

 </clause>

 <clause>

 <variable>gz</variable>

 <term>1</term>

 </clause>

 </antecedent>

 <consequent>

 <then>

 <clause>

 <variable>y</variable>

 <term>1</term>

 </clause>

 </then>

 </consequent>

 </rule>

 </mamdaniRuleBase>

</fuzzySystem>

</fuzzyController>

D. FLS Definition
The outcome of the training was used to compose the FLS

description in FML format. As shown in List 1, the same
triangular fuzzy sets for inputs and singleton fuzzy sets for
output was embedded in the FLS description. Other parameters

set for the FLS include centroid defuzzification and Mamdani
inference with min and max operators for the t-norm and t-
conorm respectively. Finally, the FLS description was
composed in FML format and was sent to the server via a
single API call from a simulated “FLS designing station” client
machine as shown in Fig. 4. It is noticeable that the same
machine can later modify the FLS parameters dynamically. It
can even intervene in the middle of an experiment, by
resending an updated FLS description via another API call, in
which the FLS outputs will be automatically adjusted in real-
time according to the new FLS parameters. It is an important
feature to be considered in adaptable and dynamically trained
FLSs.

(a)

(b)

Fig. 6: Realtime human activity classification process using HTTP
request/responses to the developed Web Services. (a) A sensor client
console view: sending back-to-back XML request to the server to set
the input variables (i.e., the accelerometer and gyroscope data); (b)

Consoles views of two monitoring clients: On the right side the server
acknowledgements per request are received; On the right side, the

output values (i.e., the activity classification) per requests are coming
from the server (the client’s requests for getting the output values are

not shown here).

E. Running the Experiment
Once the FLS is created on the server side, the fuzzy-as-a-

service system is ready to serve setInput and getOupput
requests coming from different clients simultaneously.

Two client programs independently started to send back-to-
back setInput and getOutput requests to the server in different
frequencies. The highest testing rate was two simultaneous
requests every one second - whereas the original data collection
frequency was about 5 seconds. In this case, the server was
able to calculate the results based on the latest coming input
and to send the defuzzified output back within the 1-second
window, without missing any of the coming requests. This
shows the ability of processing data in a computationally
intense FLS over the developed Web services in a more
sampling rate that would be necessary in the real-world
scenario. Fig. 6 shows a sample running of the system where it
serves the requests of the both clients in parallel.

The accuracy of the activity classification performed by this
FLS Web Service is also shown in Table 1. This shows a
noticeably high accuracy processed in real-time. Although the
classification performance of the FLS is provided here, it is
noticeable that the purpose of this experiment is not to check if
the designed FLS can do any more or less accurate than other
classifiers. Instead, this should be considered as a proof-of-
concept for achieving a real-time FLS execution over using
Web services, which does not have any similar implementation
as far as we are aware. A comparative study between the
performance of this system against a non-Web solution is our
subject of a future work.

Table 1: Human activity monitoring result.

Data samples Type Accuracy

59058 Training 97.23%

29530 Testing 97.42%

88588 Overall 97.30%

V. CONCLUSION AND FUTURE WORK

As an example of implementing the recently accepted
IEEE-1855-2016 standard, this study offers a novel approach
for a web-based service-oriented FLS architecture. It is shown
through experimenting with human activity monitoring
datasets, that the proposed service-oriented architecture is
capable of undertaking real-time data processing using a
complex fuzzy rule-based system. The accuracy and the
response time of the developed system was shown to be
relatively high.

Although the architecture is viewed in the sense of AmI
environments, it can be extended to a much broader application
field, i.e., wherever an FLS’s storage logic requires to be
abstracted from its logic of information and presentation. The
main motivation is to allow the versatile delivery from the
clients to dedicated servers of potentially complex computation
needed for FLSs. Unambiguously, the use of virtualized cloud
services provides the system with elasticity, essentially
allowing universally accessible fuzzy-as-a-service. The other
benefits of such an architecture are network share,
hardware/software autonomy, reuse of existing data, balancing
the load between FLS devices, and cost-efficiency.

The technical standpoint of the proposed system has several
facets of extension. The FLS community are encouraged to
participate and provide input on the design in terms of feature
prioritization, as well as supporting the collective development
effort in deployable applications. This refines the proposed
schema and/or invocation formats of the API and offer more
detailed specialized feedback for other architecture
implementation. Note that this study only discusses a specific
case of fuzzy logic systems (i.e., the rule-based systems). Other
fuzzy services can be considered in the near future, such as
fuzzy querying about fuzzy databases or fuzzy ontologies. In
addition, expanding web services to the Semantic Web (e.g.,
developing cloud-based searchable repositories of FLSs) will
be a noteworthy choice due to the close relationship between
FML and fuzzy ontologies.

REFERENCES

[1] Pourabdollah, A., Wagner, C., Acampora, G., & Lotfi, A. (2018,
July). Fuzzy Logic As-a-Service for Ambient Intelligence
Environments. In 2018 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE) (pp. 1-7). IEEE.

[2] Acampora, G., & Loia, V. (2005, May). Using fuzzy technology
in ambient intelligence environments. In The 14th IEEE
International Conference on Fuzzy Systems, 2005. FUZZ'05.
(pp. 465-470). IEEE.

[3] Acampora, G., Di Stefano, B., & Vitiello, A. (2016). IEEE
1855: The First IEEE Standard Sponsored by IEEE
Computational Intelligence Society [Society Briefs]. IEEE
Computational Intelligence Magazine, 11(4), 4-6.

[4] Soto-Hidalgo, J. M., Alonso, J. M., Acampora, G., & Alcala-
Fdez, J. (2018). JFML: a java library to design fuzzy logic
systems according to the IEEE std 1855-2016. IEEE Access, 6,
54952-54964.

[5] Arcos, F. J., Soto-Hidalgo, J. M., Vitiello, A., Acampora, G., &
Alcala-Fdez, J. (2018, July). Interoperability for Embedded
Systems in JFML Software: An Arduino-based implementation.
In 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE) (pp. 1-8). IEEE.

[6] Alcala-Fdez, J., Alonso, J. M., Castiello, C., Mencar, C., &
Soto-Hidalgo, J. M. (2019). Py4JFML: A Python wrapper for
using the IEEE Std 1855-2016 through JFML. In IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE 2019)
(pp. 1-6). IEEE

[7] Lee, C. S., Wang, M. H., Wang, C. S., Teytaud, O., Liu, J., Lin,
S. W., & Hung, P. H. (2018). PSO-based fuzzy markup
language for student learning performance evaluation and
educational application. IEEE Transactions on Fuzzy Systems,
26(5), 2618-2633.

[8] Lee, C. S., Wang, M. H., Ko, L. W., Tsai, B. Y., Tsai, Y. L.,
Yang, S. C., ... & Shuo, N. (2019). PFML-based Semantic BCI
Agent for Game of Go Learning and Prediction. arXiv preprint
arXiv:1901.02999.

[9] Ramos, F. B. A., Lorayne, A., Costa, A. A. M., de Sousa, R. R.,
Almeida, H. O., & Perkusich, A. (2016, July). Combining
Smartphone and Smartwatch Sensor Data in Activity
Recognition Approaches: An Experimental Evaluation. In SEKE
(pp. 267-272).

[10] Marques, G., & Pitarma, R. (2018, November). Smartwatch-
based application for enhanced healthy lifestyle in indoor
environments. In International Conference on Computational

Intelligence in Information System (pp. 168-177). Springer,
Cham.

[11] Jiménez, A. R., Seco, F., Peltola, P., & Espinilla, M. (2018,
September). Location of persons using binary sensors and BLE
beacons for ambient assitive living. In 2018 International
Conference on Indoor Positioning and Indoor Navigation (IPIN)
(pp. 206-212). IEEE.

[12] Ahire, S. B., & Khanuja, H. K. (2015). HealthCare
recommendation for personalized framework. International
Journal of Computer Applications, 110(1).

[13] Foko, T.E., Dlodlo, N. and Montsi, L., 2013. An integrated
smart system for ambient-assisted living. In Internet of Things,
Smart Spaces, and Next Generation Networking (pp. 128-138).
Springer, Berlin, Heidelberg.

[14] Calvaresi, D., Cesarini, D., Sernani, P., Marinoni, M., Dragoni,
A.F., & Sturm, A. (2017). Exploring the ambient assisted living
domain: a systematic review. Journal of Ambient Intelligence
and Humanized Computing, 8, 239-257.

[15] Patel, A., and Shah, J. "Sensor-based activity recognition in the
context of ambient assisted living systems: A review." Journal
of Ambient Intelligence and Smart Environments 11, no. 4
(2019): 301-322.

[16] Sun, Hong, Vincenzo De Florio, Ning Gui, and Chris Blondia.
"Promises and challenges of ambient assisted living systems." In
2009 Sixth International Conference on Information
Technology: New Generations, pp. 1201-1207. IEEE, 2009.

[17] Acampora, Giovanni. (2007). Transparent Fuzzy Agents in
Ambient Intelligence Environments.
10.13140/RG.2.1.1249.6401.

[18] Acampora, G., Appiah, K., Hunter, A., & Vitiello, A. (2014).
Interoperable services based on activity monitoring in Ambient
Assisted Living environments. 2014 IEEE Symposium on
Intelligent Agents (IA), 81-88.

[19] Sun, H., Florio, V.D., Gui, N., & Blondia, C. (2009). Promises
and Challenges of Ambient Assisted Living Systems. 2009 Sixth
International Conference on Information Technology: New
Generations, 1201-1207.

[20] Wang, L.X. and Mendel, J.M., 1992. Generating fuzzy rules by
learning from examples. IEEE Transactions on systems, man,
and cybernetics, 22(6), pp.1414-1427.

[21] World Health Organization (2011) Global health and ageing.
World Health Organization, Geneva.

[22] Vimarlund V, Wass S. Big data, smart homes and ambient
assisted living. Yearb Med Inform. 2014;9(1):143–149.
Published 2014 Aug 15. doi:10.15265/IY-2014-0011.

[23] G. Acampora, V. Loia, A. Vitiello, Distributing fuzzy reasoning
through fuzzy markup language: an application to ambient
intelligence, in: A. Giovanni, L. Vincenzo, L. Chang-Shing, W.
Mei-Hui (Eds.), On the Power of Fuzzy Markup Language,
Springer,Berlin, 2013, pp. 33-50.

[24] IEEE-SA Standards Board, IEEE standard for fuzzy markup
language, IEEE Std. (2016), 1855-2016.

[25] G. Acampora, B. di Stefano, A. Vitiello, IEEE 1855TM: the first
IEEE standard sponsored by IEEE Computational Intelligence
Society, IEEE Comput. Intell. Mag. 11(4) (2016), 4-6.

[26] J.M. Soto-Hidalgo, A. Vitiello, Jose M. Alonso, G. Acampora,
and J. Alcala-Fdez. "Design of Fuzzy Controllers for Embedded
Systems with JFML" in International Journal of Computational
Intelligence Systems, vol. 12(1), pp. 204-214, 2019.

[27] Z. Chi, H. Yan, T. Pham. Fuzzy Algorithms: With Applications
to Image Processing and Pattern Recognition. World Scientific,
1996.

