
Fuzzy-as-a-Service for Real-Time Human Activity 

Recognition Using IEEE 1855-2016 Standard 

 

Bhavesh Pandya, Amir Pourabdollah and Ahmad Lotfi 
School of Science and Technology 

Nottingham Trent University 

Nottingham, United Kingdom 
Email: {bhavesh.pandya, amir.pourabdollah, ahmad.lotfi} @ntu.ac.uk 

 

Abstract—Fuzzy Logic Systems (FLSs) have shown their 

potentials in Ambient Intelligence (AmI) applications. However, 

the implementation of FLSs is typically linked to dedicated and 

non-scalable hardware/software systems. As a result, some 

specific AmI requirements such as web communications and 

Service-Oriented Architecture (SOA), which can be found in 

many modern systems, are rarely adapted for FLSs. Sharing 

FLSs accessibility as web services (called fuzzy-as-a-service), in 

which the service is developed independently from a specific FLS, 

allows for system autonomy, openness, load balancing, efficient 

resource allocation and eventually cost-efficiency, particularly 

for computationally intense FLSs. In a wider context, such 

features can open new dimensions for FLSs’ applicability in 

Cloud Computing and Internet of Things devices. Recent 

advances in standardising Fuzzy Mark-up Language (IEEE 

1855-2016) and its associated software libraries (such as JFML) 

has made this even more achievable. This paper proposed fuzzy-

as-a-service architecture based on IEEE 1855-2016, JFML and 

SOA. Through a simulated experiment, this paper concerned the 

collection, processing and monitoring the distributed data over 

the web, thus a real-time human activity recognition simulated 

scenario using a rule based FLS is demonstrated.  

Keywords—fuzzy-as-a-service, ambient intelligence, human 

activity recognision, service-oriented architecture, internet of 

things, IoT, fuzzy markup language, FML 

I.  INTRODUCTION 

Improvements in Ambient Intelligence (AmI) and the 
Internet of Things (IoT) have opened new research horizons for 
day-to-day applications such as environmental intelligence. 
The new emerging environments can ascertain from both 
environmental deviationsI and occupants’ behavioural patterns. 
Collected data, including various attributes, such as the 
environmental changes and occupants’ relations with the 
environment, are processed in order to formulate decisions or 
to predict the activities/benefits of occupants at atypical areas. 
However, most of the applied techniques are based on rigid 
observations of the environment and/or activities of the 
individuals, underestimating the value of the naturally 

embedded uncertainty elements in decision making processes 
in human activity related data. The methods of processing 
uncertain data in huge/complex settings would need high 
processing powers, something which is not achievable in 
sensors or stand-alone system.  

Contemporary progress in cloud computing, IoT, and 
service-oriented architectures (SOAs) has caused a transition 
from traditional local or client–server paradigms to a service-
oriented model for AmI [1]. The renowned fact is that FLSs are 
usually implemented on dedicated local hardware and software 
systems, and most of these contemporary systems do not 
comprise distributed, pervasive and scalable architectures. 

By changing the classical approaches to FLSs 
software/hardware architecture, a fuzzy logic system can be 
perceived as-a-service that if maintained on the cloud, permits 
computing to be divested and concealed from devices in an 
intelligent environment, as well as being scalable. The initial 
idea, called fuzzy-as-a-service proposed in [1], is followed in 
this study. This paper proposed a development and 
standardization for the components of the underlying 
architecture and introduced a fully-functional service-oriented 
solution to make it practical and cost-effective to design and 
implement complex FLSs particularly in AmI environments 
[1].   

The development of the distributed architectures for FLSs, 
as will be seen, is a relatively new field with very little 
progress. This study’s innovation is to shift to an open service 
model. This openness can be accomplished by developing the 
system to be fully web-based and device self-sufficient, 
particularly by utilising standard formats for data exchange that 
are both consistent and readable as realistically as possible. For 
example, an individual client computer may outline its 
necessary FLS, an input data can be provided for the specified 
system by the same or other client computer(s), and lastly the 
same or other client(s) can repossess the calculated output [1]. 
The outline of a cloud-based model for a distributed FLS is 
shown in Fig. 1. 



 

Fig. 1: The outline of a cloud -based model for a distributed FLS [1]. 

 

A web-based data language for FLS characterizations is the 
key criterion for implementing such an architecture. The 
current standard for this purpose is the IEEE-1855 (2016), also 
known as FML [3], an XML-based mark-up language allowing 
the human readable and hardware-independent definition of an 
FLS. FML and FML-compatible pieces of software such as 
JFML [4] are used as the basic design standard in this study, 
and the extensibility of this standard is a solution to 
architecture growth. 

The remaining sections of the paper are as follows: Section 
II discusses the related work, section III reviews the proposed 
fuzzy-as-a-service architecture design including the design 
attributes and the new software components. Section IV 
explains an experiment of using the fuzzy as-a-service 
architecture for AmI applications, finally section V concludes 
the paper with an overview on the future work. 

II. RELATED WORK 

AmI accumulates best outcomes from three key advances, 
i.e., omnipresent computing, omnipresent communication, and 
smart convenient interfaces. Useful and spatial distribution of 
activities is a characteristic advocated to utilize multispecialty 
worldview to structure and objectify AmI systems. A great deal 
of research has been performed for uncertain decision making 
in AmI environments, some of which focused on FLSs 
utilisation, and a few of which implemented standardized 
networked solutions.  

Acampora et al. [2, 3] proposed using IEEE-1855 for 
developing fuzzy logic systems for controlling AmI 
environments. They focused on issues such as complexity and 
confusion of human activities with variability of hardware 
devices in Ambient Assisted Living (AAL) environments. 
Their proposed solution was implementing a revolutionary 
self-organizing feature map method to automatically identify a 
moving object’s position in an enclosed environment and a 
stratagem to generate context aware FML services to optimize 
user comfort and hardware interoperability.  

Soto-hidalgo et al. [4] proposed an open source Java 
library, i.e., JFML, which presented a complete implementation 
of the IEEE standard having a capacity to impart fuzzy systems 
as per different norms and programming. Herein, the authors 

offered three contextual examinations that delineated the 
capability of JFML in AmI, and the benefits of trading FML-
aware FLSs along with accessible software.  

Following the JFML introduction, some of its applications 
and follow-up implementations have recently emerged. Arcos 
et al. [5] developed an interoperability unit to design and run 
FLS for embedded systems in JFML, particularly for Arduino 
boards. Moreover, they defined a transmission protocol 
between JFML and Arduino boards, which removed regulated 
computing capability proffered by embedded systems. To 
delineate the competence of the new interoperability module, 
they exhibited contextual analysis by dividing fuzzy controller 
stamped by IEEE-1855 to handle mobile robots in different 
situations. The new module could effortlessly map a 
controller’s input/output variables by means of distance sensors 
and motors, connect to an Arduino board’s microcontroller, 
and manage the mobile robotic by conducting fuzzy inference 
from an outward PC that maintains communication via USB. 

 Alcala-Fdez et al. [6] expounded a Python wrapper for 
JFML (Py4JFML) that permits to use all JFML functionalities 
via Python programming language. By such a Java-Python 
bridging, the likelihood of using IEEE standard for denoting 
fuzzy systems was engorged to both developers and engineers 
with infinitesimal redundancy of code. The authors carried out 
some experiments that revealed complete interoperability 
between Python programs and JFML devoid of any concrete 
overhead.  

Besides the above FML-aware solutions, there are related 
works on healthcare monitoring systems with rapidly growing 
applications in AAL environments [9, 10]. Simultaneously, the 
demand for wearable devices is also increasing keeping in 
mind cost effectiveness as well as user comfort [11, 12,]. Thato 
et al. [13] used latest virtual technologies to build a low-cost 
and customizable AAL system suited to the climate of South 
Africa. The authors conducted a survey of different AAL 
technologies and characteristics of the system, which were 
considered to be useful in defining the architecture.  

Davide et al. [14] provided a comprehensive overview of 
AAL field, which comprised more than 10-year systematic 
study of pertinent information based on investor requirements, 
linking the gap in established assessments concentrated on 
technologies. The results of the review distinctly revealed that 
the view of entire AAL ecosystem has been ignored by the 
AAL community. Conversely, the proposed solutions tend to 
be more specific to existing technologies rather than meeting 
interests of numerous stakeholders. Another foremost 
shortcoming highlighted by the review was lack of adequate 
evaluation of different solutions.  

Ashish and Jigarkumar [15] provided a review of diverse 
activity approaches and application of behavioural examination 
to recognize seventeen key problems associated with AALs. 
Their primary goal was to provide a standard to choose the 
paramount approach to regulate smart environment activity and 
human behaviour. Similarly, Hong et al. [16] examined the 
current status of AAL science, addressed AAL’s promises and 
potential benefits, and specified obstacles that were faced to 
build real-world and competent AAL programs for the elderly.  



Author [26], recommended the latest JFML the technique 
for both Arduino and Raspberry Pi that enables the automated 
development of runnable files for non-expert users without 
specific knowledge on embedded systems or sufficient 
programming capabilities. The author also explained how 
JFML maps FLC variables with sensors and actuators 
independently. This communication protocol and embedded 
systems are integrated with various communication mechanism 
such as (Wi-Fi, Bluetooth, and USB). 

In Summary, the reviewed literature shows the adaptation 
of smart solutions, particularly using FLSs for AmI 
applications. The research gap seems to be the rarity of the 
standard FLS adaptations for addressing the growing 
requirements in AmI. Based on this, in the next section the 
proposed solution is explained. 

III. ARCHITECTURE DESIGN 

The inspiration following a service-oriented approach for 
FLSs is centred on the possibility of using FLSs in a 
decentralized AmI context. A number of general attributes that 
are considered in the architectural design are discussed in the 
first section, then a brief description of the utilized specific 
software components is presented as well as the implemented 
functionalities in order to address the described attributes. 

A. Design Attributes 

1) Distributed architecture: The elements of the FLS are to 
be tangibly distributed within the ambient intelligence model. 
Sensors collecting input data for the FLS, processors and 
running the FLS, and delivering the results to some output 
devices (such as actuators or monitoring stations) are 
distributed in such an environment. From the standpoint of 
efficiency, flexibility, and redundancy, it is advantageous not 
only to distribute input/output devices but also to distribute the 
necessary processing power to numerous servers. This model 
may require smart load-balancing that is not feasible with static 
hardware/software designs. This paper does not focus on an 
optimized load balancing method, however the possibility of 
achieving this is demonstrated through the experiment. 

2) High-power computation requirements: For FLS 
implementations, computational power is an identified 
bottleneck [21]. When the number of inputs, outputs and rules 
in an FLS are augmented, the system complexity may increase 
dramatically. Moreover, owing to their extraordinary 
computational complexity, the usage of more advanced FLSs, 
such as non-singleton or type-2 systems, becomes limited. A 
cloud-based approach is favoured to fixed hardware solutions 
that can animatedly assign memory and processors among the 
available resources.  

3) Reuse of computation results: A server can record the 
inputs originating from and the output sent to different 
input/output devices for one single FLS in order to avoid 
repeated computations. For example, if a system inputs have 
been processed in the (recent) past, it is possible to reuse the 

saved outputs as a ready answer for future requests by the same 
or any other user having the same input parameters. In 
addition, in some other contexts, the concept of a single FLS 
for a specific application can be apportioned and reclaimed by 
numerous other applications. This can only be done if an FLS 
server can be probed for the definitions of FLSs and their 
history of input/output. 

4) Openness and accessibility: These are conventional 
incentives for any form of FLS use, not limited to AmI 
applications. In fact, the currently available FLS computing 
tools are mostly suited for single-station applications, such as 
the special tools and libraries for fuzzy logic computing built in 
MATLAB and R software [2, 3]. A cloud-based solution where 
the FLS is accessible as a Web Service will eliminate the need 
of users/clients to have or learn any specific software, library or 
programming/scripting language. This will also facilitate users 
by system autonomy - specially pertinent for research or 
educational purposes where it is necessary to access and share 
software tools and data. This can also be extended to shared 
FLS repositories developed by the users’ communities for 
different application domains. 

5) Incorporating Cloud Computing and IoT: Cloud 
computing can be viewed as a valuable extension of the 
permanent hardware client–server architecture to make system 
resource allocation more versatile based on the computational 
power available for a given FLS. This will make it possible to 
access the FLS computation as a service from any computer. 
With this accessibility scope, any IoT system placed in any 
topographical location can use an FLS repositories in the sense 
of IoT. 

B. Software Components of the Developed System 

1) IEEE 1855-2016 (also known as Fuzzy Markup 
Language - FML), presented in [23] and standardized in [24-
25], is an XML-based language that enables the modelling of 
an FLS in a human understandable, platform-independent and 
Web-compatible format. Before that, a portion of IEC61131 [7] 
devoted to fuzzy controllers could be used to describe a 
specific range of FLSs (known as FCL). IEEE-1855 has the 
benefit of being straightforwardly applicable to programming 
logic as much as server-side programming is concerned.  

An FLS defined in IEEE-1855 can be immediately 
translated into numerous programming language codes (e.g., 
Java) [8] using an extensible stylesheet language translator 
(XSLT), so minimal server-side effort is needed to encode an 
FLS description in local program logic. In addition, IEEE-1855 
permits different agents to monitor the same FLS, 
communicating with the environment from different locations, 
as shown in [7]. The details of this standard are out of the 
scope of this paper and can be found in [5]. Fig. 2 shows a 
fuzzy controller tree structure modelled in FML. This paper 
focused on the known capabilities of FML in describing an 
FLS by all the necessary parameters of its input fuzzy sets, 
rule-base, inference method, output fuzzy sets and 
defuzzification methods.  



 

Fig. 2: The object model tree structure of FML in defining a Fuzzy 
controller [17]. 

 

2) SOA and distributed architectures: SOAs are 
characterized as a set of self-contained, networked, loosely 
coupled, and reusable software components generally used by 
customers with no or minimal reliance on their hardware or 
software platforms [10, 11]. The key resources are distributed 
in SOA for FLSs across one or more servers that several clients 
touch. The embedded autonomy of the SOA here means that 
(a) the Web service is developed independently of a specific 
FLS, if the FLS can be described by the standard format, and 
(b) that it allows for serving multiple FLSs simultaneously. The 
suggested architectures are moreover not based on a 
completely service-oriented model in the works described or 
are not based on a structured data exchange format. 

3) Web Services: Web services is a standardized way or 
medium to propagate communication between clients and 
server applications on the World Wide Web. Some known 
implementation of web services include SOAP, WSDL, and 
REST. RESTful web services are designed to function best on 
the Cloud. REST determines constraints, such as the uniform 
interface, that when applied to a web service induces desirable 
properties, such as consistency and scalability, that allow 
services to work best on the Web. Data and functionality are 
called tools in the REST architectural style and are accessed 
via URIs, usually web links. Using a set of simple, well-
defined operations, the resources are used. A web service 
invocation is configured for each function through an API that 
comprises a HTTP request and response. The developed API 
functionalities are listed later in this paper. 

4) JFML: It is a new open-source library for fuzzy logic 
computations based on FML (IEEE 1588-2016) data format 
[4]. Being developed in Java, JFML can act as a cross-platform 
back-end application server for the developed fuzzy-as-a-
service. Moreover, JFML follows a strict object-oriented 
approach and a modular architecture based on the same tree 
structure that FML uses to describe FLSs, permitting 

developers to extend JFML devoid of modifying the grammar 
of the language. JFML permits the use of all standard fuzzy 
inference systems included in XSD, which also includes all 
membership functions, fuzzy operators, etc. (readers are 
referred to [4] for more information). Researchers may need to 
use other components, however, that are excluded in XSD’s 
current definition. Thus, JFML offers custom methods for all 
the elements indicated in the XSD, providing a way to extend 
the library in compliance with this standard without having to 
change the grammar of the language. 

C. API Functionalities 

Several tasks are considered to be the key functional 
necessities for the solution creation. A web service invocation 
is configured for each function through an API that comprises a 
HTTP request and response. Fig. 3 shows a list of these 
invocations as a request/response series between the client and 
server sides. Since the parameters, inputs, and outputs of the 
FLS model are being reused in the process, they need to be 
stored on a database on the server side. It is also evident that 
the approach is presently restricted to singleton type-1 FLSs. 
As part of future research, the other forms of FLS will be 
considered.  

IEEE standard 1855-2016 and its extension are used as the 
core schema in the API data exchange. The extension is added 
to the schema in order to support exchanging input/output 
values between the clients and the servers. Briefly, the “type” 
attribute determines if the HTTP packet is a request or a 
response, whereas the name of the requested functionality is 
encoded in “service” attribute of both request and response 
packets as shown in Fig. 3. 

 

Fig. 3: Schema of request/response the designed fuzzy-as-a-service 
API. The fuzzySystem element is the core element that follows the 
IEEE1855-2016 standard, whereas the other elements are to be 

considered as extensions for the Web services. 

 



Presenting the full details of the API input/output 
parameters is beyond the size of this paper. However, the main 
supported functionalities of the developed API are as 
summarized here. 

1) Creation/Modification of a fuzzy logic system 

(createFLS/editFLS calls): This feature is provided for the 

client(s) responsible for the FLS project first creation and/or 

modification. IEEE 1855-2016 is used to describe the 

created/modified FLS, so the client machines compose a 

request that contains the FLS description in the standard 

format. 

2) Querying an FLS (queryFLS call): The FLS status 
information stored on the server may need to be retrieved by 
different client forms. The FLS state includes its life and stored 
constraints or the latest input values. 

3) Setting input (setInput call): For the FLS inputs, 
customers must be able to set individual values. It is also 
required that any number of inputs can be included in a single 
invocation by a specific client system. In a multi-input multi-
output FLS, this balances data collection burden by allowing 
the system to capture individual or clustered outputs from 
various devices. Every collected input can be stored in the 
server, but during the execution of FLS, only the last collection 
will be used.  

4) Getting output (getOutput call): The FLS output value(s) 
must also be calculated and obtained by the server on the 
clients’ requests. It is favoured that the server(s) may return the 
requested output either as a fuzzy set (a data array) or as a 
defuzzified value, but for brevity, it is restricted the requisite to 
the defuzzified values. Particularly in a multi-input multi-
output system, being able to request any number of output 
values means that the system can evade redundant and 
unsolicited output computation. The same FLS can be specified 
on several servers in a complex FLS computing situation, but 
each server can provide a part of the performance. The sensors 
can send their data to multiple servers in this scenario, but an 
output device can selectively request their required data from a 
single server while the other servers are busy offering data to 
other output devices. The server may also have access to a 
lookup table of the previous FLS runs, so it can avoid 
reiterating the calculation if in the past the same FLS has been 
running with the same inputs. The system will reply to the user 
if the requested output can be either measured or retrieved 

5) Deletion of fuzzy logic system (deleteFLS call): 
Eventually, clients must be able to request to delete an FLS 
from the list of specified FLSs in the database if there is no 
longer any need for either the FLS description or its past 
history of input/output. Optionally, the device may be designed 
to remove the FLSs after a period of inactivity.  

6) Serving different FLSs simultaneously: Each FLS is 
given a unique identifier once it is created. This is called URI, 
as shown in Fig. 3. Each following API request/response 
includes the URI as a mandatory parameter. As a result, the 
same Web server serves multiple FLSs. 

The above architectural components and API functionalities 
collectively deliver the so-called fuzzy-as-a-service. Obviously, 
this architecture is be itself an empty platform that must be 
populated by different FLSs for serving different applications. 
In the next section, the design of FLS is explained for human 
activity detection scenario and its configuration to act as a real-
time Web service.  

IV. DEVELOPING A FUZZY-AS-A-SERVICE FOR HUMAN 

ACTIVITY RECOGNISTION  

 
A. The Experiment Settings 

 To demonstrate the utility of the described architecture, a 
fuzzy-as-a-service solution for a human activity classification 
scenario is developed. To validate the system, a dataset of 
accelerometer/gyroscope measurements coming from body 
sensors of individuals and labelled with their walking/running 
status is used. A fuzzy rule-based system is designed, in which 
the rules are trained by sample input/output pairs. Then the 
designed FLS is set up on the Web server in order to classify 
the individual´s current status as running or walking. All the 
FLS definitions, input data collection, data processing and 
output classification (running/walking) data are being carried 
out in real-time purely via API calls.  

The experiment and its findings were confined to a 
particular sample scenario and has been used in this paper as a 
proof-of-concept, so that the suggested approach will be 
implemented in future works in a practical problem where 
more rigorous research will be conducted for real-world 
scenarios and actual sensors/output devices are established.  

In a real-world scenario, the setInput API calls should be 
sent by Web-connected sensors, or through some Web-
connected interfaces. In our simulation, a client-side computer 
program is developed that reads the sensory data from the 
dataset and send them back-to-back to the Web server in the 
same rate that they were originally produced by the sensors. 
Another program (running on a different client PC) is also 
written that simulates a “monitoring station”, in which the 
runner/walker status is requested from the Web server in some 
different rate from that f the data collection (by sending back-
to-back getOutput API calls). On each getOutput request, the 
server runs the necessary FLS calculation and delivers the real-
time running/walking status back to the monitoring station. As 
a result, the human activity is detected in real-time. This 
process is illustrated in Fig. 4.   

A Web application server is developed to serve the 
necessary HTTP messages to/from clients following the above 
SOA model. JFML [4] is used for fuzzy logic computing 
within the developed application server. The server is using 
Apache Tomcat as a generic Java servlet implementation. This 
setting on the server side can fit into numerous applications, 
specifically where the client-side agents are sensors and/or 
actuators/monitoring stations are distributed in a smart 
environment. 



Fig. 4: The elements of the carried-out experiment for human activity 
monitoring 

 
B. Dataset 
 To evaluate the performance of the proposed system, a 
dataset taken from Kaggle.com open repository called “Run or 
Walk”. The dataset contains 88588 sensor data samples from 
accelerometer and gyroscope collected from smart phone 
located on a person’s wrist and an average of about 5 seconds 
frequency. This dataset contains six attributes including 
accelerometer and gyroscope sensor data, each in 3 
dimensions, along with their timestamps. The dataset is also 
labelled with the actual status where 1 indicates that person is 
running and 0 indicates person is walking.  

 The dataset includes about 90K data samples where about 
60K samples were used for training and the remaining data was 
used for testing. A sample part of the Run or Walk dataset is 
shown in Fig. 5. 
 

 
Fig. 5: A sample parts of the run/walk dataset used in this 

experiment for both training and testing. 

 
C. Rule-base Training 
 Rule-base training was carried out using the training set 
part of the dataset, based on the known Wang-Mendel’s 
“learning from example” algorithm [20, 27]. This algorithm 
was independently carried out prior to the main Web services 
experiment. For each input data, 5 evenly distributed triangular 
fuzzy sets were used, whereas the binary output data was 
represented as two singleton fuzzy sets located at 0 and 1.  

 As a result, a total of 247 rules were created based on the 
six inputs and one output. The number of rules is relatively 
high, so it leads to a computationally intense FLS. Achieving a 
real-time data processing with such a system might to respond 
in real-time if implemented locally in the environment using 
low processing power of the embedded devices. Therefore, this 
could be a suitable use case for checking if the Web service can 
provide a real-time processing.    
 

List 1: Partial KB and RB of the adopted FML 

 

<?xml version="1.0" encoding="UTF-8" ?> 

   <fuzzyController type="request" service="createFLS"> 

<URI>FLS7</URI> 

<service>createFLS</service> 

      <fuzzySystem name="Bhavesh"> 

   <knowledgeBase> 

      <fuzzyVariable name="ax" scale="" domainleft="0.0" domainright="2.5" 

type="input"> 

    <fuzzyTerm name="1" complement="false"> 

</fuzzyVariable> 

        ..... 

      <fuzzyVariable name="gz" scale="" domainleft="0.0" domainright="2.5" 

type="input"> 

 <fuzzyTerm name="1" complement="false"> 

    <triangularShape param1="-0.625" param2="0.0" param3="0.625"/> 

   </fuzzyTerm> 

   </fuzzyVariable> 

  <fuzzyVariable name="y" scale="" domainleft="-5.0"   domainright="5.0" 

type="output" accumulation="MAX" defuzzifier="COG" defaultValue="0.0"> 

  <fuzzyTerm name="0" complement="false">   </fuzzyTerm> 

            <fuzzyTerm name="1" complement="false">   </fuzzyTerm> 

    </fuzzyVariable>  

    </knowledgeBase>  

<mamdaniRuleBase activationMethod="MIN" andMethod="MIN" orMethod="MAX" 

networkAddress="127.0.0.1"> 

 

………….. 

<rule name="1" andMethod="MIN" 

orMethod="MAX" connector="AND" 

weight="1.0" 

networkAddress="127.0.0.1"> 

      <antecedent> 

        <clause> 

          <variable>ax</variable> 

          <term>1</term> 

        </clause> 

        ........ 

        <clause> 

          <variable>gz</variable> 

          <term>1</term> 

        </clause> 

      </antecedent> 

      <consequent> 

        <then> 

          <clause> 

           <variable>y</variable> 

            <term>1</term> 

          </clause> 

        </then> 

      </consequent> 

    </rule> 

…………. 

<rule name="247" andMethod="MIN" 

orMethod="MAX" connector="AND" 

weight="1.0" 

networkAddress="127.0.0.1"> 

      <antecedent> 

        <clause> 

          <variable>ax</variable> 

          <term>4</term> 

        </clause> 

        ...... 

        <clause> 

          <variable>gz</variable> 

          <term>1</term> 

        </clause> 

      </antecedent> 

      <consequent> 

        <then> 

          <clause> 

         <variable>y</variable> 

            <term>1</term> 

          </clause> 

        </then> 

      </consequent> 

    </rule> 

 

  </mamdaniRuleBase> 

</fuzzySystem> 

</fuzzyController> 

 

 

D. FLS Definition 
The outcome of the training was used to compose the FLS 

description in FML format. As shown in List 1, the same 
triangular fuzzy sets for inputs and singleton fuzzy sets for 
output was embedded in the FLS description. Other parameters 



set for the FLS include centroid defuzzification and Mamdani 
inference with min and max operators for the t-norm and t-
conorm respectively. Finally, the FLS description was 
composed in FML format and was sent to the server via a 
single API call from a simulated “FLS designing station” client 
machine as shown in Fig. 4. It is noticeable that the same 
machine can later modify the FLS parameters dynamically. It 
can even intervene in the middle of an experiment, by 
resending an updated FLS description via another API call, in 
which the FLS outputs will be automatically adjusted in real-
time according to the new FLS parameters. It is an important 
feature to be considered in adaptable and dynamically trained 
FLSs.   

 

(a) 

 

 

(b) 

 

Fig. 6: Realtime human activity classification process using HTTP 
request/responses to the developed Web Services. (a) A sensor client 
console view: sending back-to-back XML request to the server to set 
the input variables (i.e., the accelerometer and gyroscope data); (b) 

Consoles views of two monitoring clients: On the right side the server 
acknowledgements per request are received; On the right side, the 

output values (i.e., the activity classification) per requests are coming 
from the server (the client’s requests for getting the output values are 

not shown here). 

E. Running the Experiment 
Once the FLS is created on the server side, the fuzzy-as-a-

service system is ready to serve setInput and getOupput 
requests coming from different clients simultaneously.  

Two client programs independently started to send back-to-
back setInput and getOutput requests to the server in different 
frequencies. The highest testing rate was two simultaneous 
requests every one second - whereas the original data collection 
frequency was about 5 seconds. In this case, the server was 
able to calculate the results based on the latest coming input 
and to send the defuzzified output back within the 1-second 
window, without missing any of the coming requests. This 
shows the ability of processing data in a computationally 
intense FLS over the developed Web services in a more 
sampling rate that would be necessary in the real-world 
scenario. Fig. 6 shows a sample running of the system where it 
serves the requests of the both clients in parallel. 

The accuracy of the activity classification performed by this 
FLS Web Service is also shown in Table 1. This shows a 
noticeably high accuracy processed in real-time. Although the 
classification performance of the FLS is provided here, it is 
noticeable that the purpose of this experiment is not to check if 
the designed FLS can do any more or less accurate than other 
classifiers. Instead, this should be considered as a proof-of-
concept for achieving a real-time FLS execution over using 
Web services, which does not have any similar implementation 
as far as we are aware. A comparative study between the 
performance of this system against a non-Web solution is our 
subject of a future work. 

Table 1: Human activity monitoring result. 

Data samples Type Accuracy 

59058 Training 97.23% 

29530 Testing 97.42% 

88588 Overall 97.30% 

 

V. CONCLUSION AND FUTURE WORK 

As an example of implementing the recently accepted 
IEEE-1855-2016 standard, this study offers a novel approach 
for a web-based service-oriented FLS architecture. It is shown 
through experimenting with human activity monitoring 
datasets, that the proposed service-oriented architecture is 
capable of undertaking real-time data processing using a 
complex fuzzy rule-based system. The accuracy and the 
response time of the developed system was shown to be 
relatively high. 

Although the architecture is viewed in the sense of AmI 
environments, it can be extended to a much broader application 
field, i.e., wherever an FLS’s storage logic requires to be 
abstracted from its logic of information and presentation. The 
main motivation is to allow the versatile delivery from the 
clients to dedicated servers of potentially complex computation 
needed for FLSs. Unambiguously, the use of virtualized cloud 
services provides the system with elasticity, essentially 
allowing universally accessible fuzzy-as-a-service. The other 
benefits of such an architecture are network share, 
hardware/software autonomy, reuse of existing data, balancing 
the load between FLS devices, and cost-efficiency.  



The technical standpoint of the proposed system has several 
facets of extension. The FLS community are encouraged to 
participate and provide input on the design in terms of feature 
prioritization, as well as supporting the collective development 
effort in deployable applications. This refines the proposed 
schema and/or invocation formats of the API and offer more 
detailed specialized feedback for other architecture 
implementation. Note that this study only discusses a specific 
case of fuzzy logic systems (i.e., the rule-based systems). Other 
fuzzy services can be considered in the near future, such as 
fuzzy querying about fuzzy databases or fuzzy ontologies. In 
addition, expanding web services to the Semantic Web (e.g., 
developing cloud-based searchable repositories of FLSs) will 
be a noteworthy choice due to the close relationship between 
FML and fuzzy ontologies. 
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