
Relevance Ranking for Web Search

João Lages
INESC-ID / Instituto Superior Técnico

Lisboa, Portugal
joao.lages@tecnico.ulisboa.pt

Joao Paulo Carvalho
INESC-ID / Instituto Superior Técnico

Lisboa, Portugal
joao.carvalho@inesc-id.pt

Abstract— Relevance ranking is a core problem of Information
Retrieval which plays a fundamental role in various real world
applications, such as search engines. Given a query and a set of
candidate text documents, relevance ranking algorithms
determine how relevant each text document is for the given query.
This degree of relevance allows them to rank the text documents
and perform actions such as returning the best matching
documents for the query. As in other machine learning and
computational intelligence disciplines, deep learning techniques
have recently achieved state of the art results by successfully
capturing relevance matching signals between query-textual
document pairs. This paper focuses on the PositionAware
Convolutional-Recurrent Relevance Matching approach. On a
first phase, it reimplements the original work, reproduces the
published results and performs a number of additional
experiments that identify potential model limitations. On a second
phase, it explores possible model improvements based on deep
learning techniques such as soft self-attention and deep transfer
learning. Experiments on the well-known TREC Web Track data
show that it is possible to obtain small improvements over the
original model and point to a number of limitations of the general
approach due to the information bottlenecks involved.

Keywords—Relevance Ranking, Text Retrieval, Natural
Language Processing, Deep learning

I. INTRODUCTION (HEADING 1)
Document relevance ranking is a core problem in

Information Retrieval (IR) and plays a fundamental role in
popular search engines such as Google, Bing, Baidu, or Yandex.
In traditional Web search, the query consists of only few terms
but the body text of the documents can range vastly in length. A
ranking model aims at evaluating the relation between a query
and different text documents, assigning higher scores to
documents that are more relevant to the input query. In the
absence of click information, the raw body text can be a useful
signal to determine the relevance between a query-document
pair. Traditional machine learning and computational
intelligence algorithms for document relevance ranking relied
on handcrafted features to encode interactions between queries
and documents. This feature engineering work was usually time-
consuming, incomplete and over-specified, which largely
hindered further development of these approaches.

In recent years, new algorithms have been reported in the
area of Information Retrieval [1][2], that apply deep neural
networks for this purpose. As it happened in areas such as vision
or speech processing, the potential of deep learning methods to
advance state of the art retrieval quality has attracted a lot of
attention. The newly introduced neural IR models differ from
previous approaches in that they model the interactions between
query and document directly based on the raw text, without the

need for manual feature engineering. However, unlike many
classical IR models, these new deep learning based approaches
are data-hungry, requiring large scale training data before they
can be employed.

Fig. 1. Overview of a common Web retrieval system. This work is within the
shaded components.

This work is motivated by this recent success of neural IR to
relevance ranking, as well as the large improvements in
performance attained in other areas of NLP by employing deep
learning techniques applied directly to raw text. With the
objective of improving the performance of prior neural
relevance ranking models, this work considers only data in the
form of text and no other information about either the query or
document. A model is therefore developed with the intention of
reranking search results, reordering the previously extracted
texts by their descending relevance score to the given query.
This ranking model is trained using a supervised machine
learning approach, using a set of querydocument pairs labeled
by human annotators.

II. RELATED WORK
Deep learning applied to ad-hoc retrieval provides a new

way of thinking about the problem as a general text matching
task, i.e., query matches document. According to Guo et al. [3],
these approaches can be mainly categorized into representation
focused models and interaction focused models. The
representation focused models, commonly referred to as
semantic matching models, try to embed both queries and
documents in a low-dimensional space with a neural network,
and then conduct matching between the two vectors. Interaction
focused models first build the local interactions between the two
texts and use deep learning to learn the more complicated
interaction patterns for matching. This type of algorithms can be
also referred to as relevance matching models.

Salakhutdinov and Hinton [4] introduced one of the first
deep neural models for ad-hoc retrieval, the Semantic Hashing
model. The algorithm is a deep auto-encoder, trained on
unlabeled document corpus, that represents words in onehot
vectors and uses binary hidden units to encode those documents
so that they can be posteriorly quickly retrieved using a hash

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

function. The model is first pre-trained layer-bylayer and then
trained further end-to-end for additional tuning. Given a search
query, a corresponding hash is generated and the relevant
candidate documents that match the same hash vector are
retrieved. A standard IR model (e.g., BM25) can then be
employed to rank between the selected documents.

More recently, Huang et al. [5] applied siamese networks to
ad-hoc retrieval. Their Deep Semantic Similarity Model
(DSSM) trains on query and document title pairs where both the
pieces of texts are represented as bags-of-charactertrigraphs.
The DSSM architecture consists of two deep models - one for
the query and the other for the document - with all fully-
connected layers and cosine distance as the choice of similarity
function in the middle. This architecture was later improved by
Shen et al. [6] by making use of convolutional layers.

This use of Convolutional Neural Networks (CNNs)
encouraged posterior interaction-focused models [7], although
with still worse results than traditional IR approaches. Still, the
Deep Relevance Matching Model (DRMM) [3] was able to
significantly outperform them by modeling query-document
interactions using matching histograms. Mitra et al. [8]
introduced a state-of-the-art model that makes use of both local
interactions and distributed representations, arguing that a
combination of the two approaches is preferred.

Subsequently, Xiong et al. [9] and Hui et al. [10] published
results on interaction-focused models that would take as inputs
only the similarity matrices between the query and document
terms, tq and td, respectively. While the former method applied
RBF kernels to that matrix, the latter used multiple convolutions
with different kernel sizes along with pooling layers. This last
model, the Position-Aware Convolutional-Recurrent Relevance
Matching model (PACRR), will be analyzed in detail in the
following section.

III. BASELINE MODEL
The baseline framework adopted in this work is based on the

PACRR model [10]. Being a relevance matching model, the
core concept of this architecture is to construct first a word
similarity matrix between the query and the document words and
use convolutional neural networks to account for soft pattern
matches involving one or more adjacent words (n-grams). These
signals are then non-linearly combined to produce a single
query-document relevance score. The result is a non-linear
function mapping a query document pair to a relevance scalar
value. Following the usual neural network approach, this model
can be trained end-to end using gradient descent techniques. An
overview of the architecture excluding the pre-processing step
can be seen in Figure 2.

A. Pre-processing and Word Embeddings

On a first step, a vector representation for each word in the
input query and document must be obtained. For this purpose,
the raw text is stripped of irrelevant components (e.g., HTML
tags) and tokenized into words. Stop-word removal is also
applied to both document and query, i.e., removing common
English words like ’and’, ’or’ and ’the’. Finally, following the
standard procedure in other Natural Language Processing tasks,
each different word in the vocabulary is assigned a real-value
vector representation termed word embedding. In principle,

word embeddings can be trained using the available document
query data as any other parameters of the model. In practice, this
demands large amounts of data to prevent overfitting. For this
reason, pre-trained embeddings are utilized for each word and
fixed during training. Pre-trained embeddings can be seen as a
simple form of transfer learning where word representations are
trained from another task. Following [10], 300-dimensional
Word2Vec CBOW embeddings [11,12] are computed from the
whole text corpus, comprising documents and queries. CBOW
is trained by predicting the center word of a word window giving
its surrounding context and negative sampling is used to speed
up training time.

Fig. 2. Overview of the baseline model.

Thenceforth, query and document terms (tq and td) are
represented by 300-dimensional pre-trained vectors. Since
queries and documents may have an arbitrary number of words,
the resulting query and document representation has variable
size. This presents an additional difficulty for the sub-sequent

model stages that need to dynamically adapt to these sizes. To
solve this problem, query |q| and document |d| sizes are cropped
to fixed maximum values lq and ld, respectively. This is achieved
by selecting the first lq or ld terms for query and document,
respectively, when either |q| or |d| exceed the maximum fixed
dimension. If the actual dimension of the query or document is
lower than the desired, then the remaining vectors are padded
with zeros.

B. Distance Matrix and Relevance Matching Components

Word distance is obtained by applying the cosine similarity
between document and query vectors. This yields the query-
document similarity matrix simlq×ld, which is then reshaped to
have a 3D shape (lq × ld × 1), and two 2D convolutional layers
are applied to it with different kernel sizes, 2 × 2 and 3 × 3,
corresponding to bi-gram and trigram matching, respectively.
The original matrix accounts for unigram matching.

Each convolutional layer applies nf different filters to its
input, where nf is a hyperparameter. At the end of this step we
end up with two 3D matrices, and , as well
as the initial 2D similarity matrix simlq×ld. In order to capture the
strongest similarity signals for each query term, max pooling is
performed over the filter dimension nf to keep only the strongest
signal from the nf different filters.

The model then captures the top-k matching signals, for each
query term and for each of the 3 matrices, by applying k-max
pooling layers. This layer is implemented in such a way that, for
each row, the higher k values are retained, keeping the same
number of matching signals for each query term tq. Previous to
inputing the matching signals to the multilayer perceptron, the
query IDF vector, IDFlq×1, is passed through a softmax layer for
normalization, such that a vector of probabilities is joined with
the matrix P thereafter.

Additionally, a vector containing the IDF score of each
query term tq is also computed, IDFlq×1. This vector has length lq

and will be passed directly to the last layers of the model as we
can see in Figure 2.

The matrix P along with IDFlq×1 are then flattened into a
single vector of size lq×(3k+1) and passed to a feed-forward
network with two hidden layers and a final single neuron that
produces the final relevance score, rel(q,d).

C. Training Phase

To train a neural network in a supervised manner, it is
necessary to repetitively feed it train data pairs (x,y) in order to
minimize a certain loss function. In our case, since the final
objective is to rerank documents, we are not interested in
predicting a !	# 	label, as that does not allow proper ranking. The
neural model needs to distinguish relevant documents from less
relevant (but likely not completely non-relevant).

The most common approach for neural ad-hoc retrieval is to
train pairwise with a set of documents D+ and a set of documents
D− for the same query q, where D+ are more relevant than D−.
This allows the model to distinguish, and therefore to rank,
relevances between documents. In this architecture only a single
relevant document d+ is used and the number of D− documents is
a parameter that was fixed to 6. So this means that, for each
training sample the model described in Figure 2 is actually

repeated seven times, with a loss function gathering all the
outputs as in (1).

 (1)

IV. PROPOSED CHANGES
The previously described framework has some strong

assumptions and simplifications that we explore in this work. In
this section, we will go through some of these problems and
suggest a modification, always with the objective of enhancing
a particular building block of the original model that may cause
an information bottleneck, i.e., loss or disregard of relevant data.

A. Lack of regularization

Deep neural networks contain multiple non-linear hidden
layers that allow them to learn very complicated relationships
between their inputs and outputs. However, these functions are
non-convex and therefore the gradient descent algorithm does
not give us a formal guarantee of convergence to the optimal
solution and overfitting can also occur. The original architecture
pictured in Figure 2 has no kind of regularization mechanisms
applied, making the neural network subjective to overfitting. In
order to prevent this and make the results more consistent, many
methods have been developed, that are now common practice in
deep learning. These include stopping the training as soon as
performance on a validation set starts to get worse, introducing
weight penalties of various kinds such as L1 and L2
regularization or the simple dropout mechanism [15]. In this
way, we present a way of regularizing the architecture by adding
dropout layers after different blocks with trainable weights, that
is, following the CNNs (after the max pooling operation) and the
hidden layers of the MLP.

B. Parameterless pooling operations

Reducing the dimensionality of 3D and 2D matrices is a
fundamental part of the baseline model represented in Figure 2.
Although using parameterless pooling operations solves this
issue without the introduction of new trainable variables, they
can also be detrimental to the model’s performance since the
network is not considering a lot of information that was removed
by an aggressive pooling function like maximum. Considering
this a limitation, we propose changes to the two pooling layers
used in the baseline model, as depicted in Figure 3.

Even though max pooling has been a standard operation
when applied to images, we argue that a non-linear
dimensionality reduction might be more suitable when dealing
with similarity matrices. Without increasing the learnable
parameters of the network too much and motivated by its
success in computer vision [13][14], a 1 × 1 convolution is
proposed to replace the max pooling layer, which allows the
neural model to learn a more suitable function to reduce 3D
matrices into 2D without imposing the max operation, as it was
done previously.

Moreover, intuitively, the application of k-max pooling
layers seems like a necessary step that allows us to employ a
parameterless way of reducing the matrices size to something
that is feasible for an MLP to handle. Notwithstanding, choosing

document query data as any other parameters of the model. In
practice, this demands large amounts of data to prevent over-
fitting. For this reason, pre-trained embeddings are utilized for
each word and fixed during training. Pre-trained embeddings
can be seen as a simple form of transfer learning where word
representations are trained from another task. Following [10],
300-dimensional Word2Vec CBOW embeddings [11] [12] are
computed from the whole text corpus, comprising documents
and queries. CBOW is trained by predicting the center word
of a word window giving its surrounding context and negative
sampling is used to speed up training time.

Thenceforth, query and document terms (tq and td) are rep-
resented by 300-dimensional pre-trained vectors. Since queries
and documents may have an arbitrary number of words, the
resulting query and document representation has variable size.
This presents an additional difficulty for the sub-sequent model
stages that need to dynamically adapt to these sizes. To solve
this problem, query |q| and document |d| sizes are cropped to
fixed maximum values lq and ld, respectively. This is achieved
by selecting the first lq or ld terms for query and document,
respectively, when either |q| or |d| exceed the maximum fixed
dimension. If the actual dimension of the query or document is
lower than the desired, then the remaining vectors are padded
with zeros.

B. Distance Matrix and Relevance Matching Components

Word distance is obtained by applying the cosine similarity
between document and query vectors. This yields the query-
document similarity matrix simlq⇥ld , which is then reshaped
to have a 3D shape (lq ⇥ ld ⇥ 1), and two two-dimensional
convolutional layers are applied to it with different kernel
sizes, 2 ⇥ 2 and 3 ⇥ 3, corresponding to bi-gram and tri-
gram matching, respectively. The original matrix accounts for
unigram matching.

Each convolutional layer applies nf different filters to its
input, where nf is a hyperparameter. At the end of this step
we end up with two 3D matrices, C2

lq⇥ld⇥nf
and C3

lq⇥ld⇥nf
,

as well as the initial 2D similarity matrix simlq⇥ld . In order
to capture the strongest similarity signals for each query term,
max pooling is performed over the filter dimension nf to keep
only the strongest signal from the nf different filters.

The model then captures the top k matching signals, for
each query term and for each of the 3 matrices, by applying
k-max pooling layers. This layer is implemented in such a way
that, for each row, the higher k values are retained, keeping
the same number of matching signals for each query term tq .

Previous to inputing the matching signals to the multilayer
perceptron, the query IDF vector, IDFlq⇥1, is passed through
a softmax layer for normalization, such that a vector of
probabilities is joined with the matrix P thereafter.

Additionally, a vector containing the IDF score of each
query term tq is also computed, IDFlq⇥1. This vector has
length lq and will be passed directly to the last layers of the
model as we can see in Figure 2.

The matrix P along with IDFlq⇥1 are then flattened into a
single vector of size lq⇥(3k+1) and passed to a feed-forward

network with 2 hidden layers and a final single neuron that
produces the final relevance score, rel(q, d).

C. Training Phase

To train a neural network in a supervised manner, it is
necessary to repetitively feed it train data pairs (x, y) in order
to minimize a certain loss function. In our case, since the
final objective is to rerank documents, we are not interested in
predicting a ŷ label, as that does not allow proper ranking. The
neural model needs to distinguish relevant documents from
less relevant (but likely not completely non-relevant).

The most common approach for neural ad-hoc retrieval
is to train pairwise with a set of documents D+ and a set
of documents D� for the same query q, where D+ are
more relevant than D�. This allows the model to distinguish,
and therefore to rank, relevances between documents. In this
architecture only a single relevant document d+ is used and
the number of D� documents is a parameter that was fixed
to 6. So this means that, for each training sample the model
described in Figure 2 is actually repeated seven times, with a
loss function gathering all the outputs as in equation 1.

L(q, d+, D�) = � log
erel(q,d

+)

erel(q,d+) +
P

d�2D� erel(q,d�)
(1)

IV. PROPOSED CHANGES

The previously described framework has some strong as-
sumptions and simplifications that we explore in this thesis.
In this section, we will go through some of these problems and
suggest a modification, always with the objective of enhancing
a particular building block of the original model that may
cause an information bottleneck, i.e., loss or disregard of
relevant data.

A. Lack of regularization

Deep neural networks contain multiple non-linear hidden
layers that allow them to learn very complicated relationships
between their inputs and outputs. However, these functions are
non-convex and therefore the gradient descent algorithm does
not give us a formal guarantee of convergence to the optimal
solution and overfitting can also occur.

The original architecture pictured in Figure 2 has no kind of
regularization mechanisms applied, making the neural network
subjective to overfitting. In order to prevent this and make the
results more consistent, many methods have been developed,
that are now common practice in deep learning. These include
stopping the training as soon as performance on a validation
set starts to get worse, introducing weight penalties of various
kinds such as L1 and L2 regularization or the simple dropout
mechanism [15].

In this way, we present a way of regularizing the architecture
by adding dropout layers after different blocks with trainable
weights, that is, following the CNNs (after the max pooling
operation) and the hidden layers of the MLP.

only the top k entries of each row is a strong assumption that
might be an impediment for the neural network to learn a better
representation of the problem, and consequently improving its
performance.

Fig. 3. Simplified baseline model: pooling layers marked in red.

Inspired by the soft attention mechanism and its recent
success in other areas, we propose an architecture that allows the
reduction of each row of the similarity matrices, with size ld, into
a single score. This score is obtained with:

 (2)

This mechanism has three variables that are going to be
learned while training: the vector v with dimension (1,σ) and
matrices Wq and Wd, both with size (300,σ), where σ is a
hyperparameter. The width 300 of the matrices is equal to the
length of the Word2Vec embeddings used.

With the final objective of reducing the row’s size from lq to
1, the proposed attention mechanism takes as inputs a row of the
similarity matrices x, the embeddings of the document terms Ed

and the query term embedding Eqx associated with the given row
x, as each row contains the interactions of a query word with all
documents words. Note that, per matrix, this layer is applied lq

times, one for each row. The intuition behind this attention is to
perform a weighted average of the whole row, so that the
information of it can be summarized into a single score. This is
accomplished by first using the embeddings to learn a more
suitable representation of the query term EqxWq and the
document terms EdWd. Those representations are then joined, by
summing elementwise the vector EqxWq with all the rows of
EdWd, and passed through an activation function, tanh. At this
point, the output of the non-linearity has shape (σ,ld) and the
vector v will be responsible to learn a linear transformation to
reduce it to the same length of x, ld. softmax is then applied to
normalize this final vector and the final score is obtained by
calculating the dot product with the row x in case.

C. Static Similarity Matrix

In this architecture we consider the input simlq×ld to be the
biggest information bottleneck, since documents and queries are
only represented by local interactions and other semantic
information about them is lost in the process. We argue that a
considerable improvement to the model’s performance might be
achieved by altering the way query and document terms are

represented, and by analyzing the advantages of using the query
IDF vector. In this work two methods are experimented to
extract more information from the text: 1D convolutions and a
soft attention mechanism.

Fig. 4. Simplified baseline model: similarity matrix construction marked in
red.

Not to confuse with 1 × 1 convolutions, one-dimensional
convolutions act on 2D inputs. Commonly used in Natural
Language Processing, it is normal to employ them after an
embedding layer, in order to model word interaction within a
context defined by the convolution window size. We argue that,
even though 2D convolutions are already applied to detect bi-
grams and tri-grams matching patterns between query and
document, the similarity matrix, which is the basis of the model,
consists of only unigram matches between words. Imagining we
have two expressions: ’feeling blue’ and ’being sad’. These two
expressions have exactly the same meaning. Yet, if we
calculated the cosine similarity of every word pair combination,
we would probably get a high value for ’feeling’ and ’being’ but
a low one for ’sad’ and ’blue’. In this case, the cosine similarity
matrix would not be able to properly detect that the two
expressions are identical.

Therefore, we propose to implement an extra similarity
matrix that is constructed the same way as the original one.
However, beforehand, both the document and query
embeddings will be passed by a 1D convolution layer that will
theoretically learn how to represent more than one word in one
single vector. The number of words that it represents depends on
the kernel size used. The final extra matrix is then propagated
through the network like the unigram matrix.

With the intention of increasing the local interaction
information between every query term tq and td, in comparison
with the previously used cosine similarity, the matrix will now
be three-dimensional, with size lq × ld × nc. To attain this
objective, another attention-like mechanism is employed. The
word embeddings of both queries Eq and documents Ed are
passed by a hidden layer, with nc perceptrons, that first reduces
their dimension by applying a linear projection, without using a
non-linear activation function. The new projected embeddings,
Eqp and Edp, are in this way obtained and combined to produce
the final 3D matrix $%&'(×'*×+, , so that, given arbitrary
positions i, j and k,

 , (3)

B. Parameterless pooling operations

Reducing the dimensionality of 3D and 2D matrices is a
fundamental part of the baseline model represented in Figure
2. Although using parameterless pooling operations solves
this issue without the introduction of new trainable variables,
they can also be detrimental to the model’s performance since
the network is not considering a lot of information that was
removed by an aggressive pooling function like maximum.

Considering this a limitation, we propose changes to the
two pooling layers used in the baseline model, as depicted in
Figure 3.

Fig. 3. Simplified baseline model: pooling layers marked in red.

Even though max pooling has been a standard operation
when applied to images, we argue that a non-linear dimen-
sionality reduction might be more suitable when dealing with
similarity matrices. Without increasing the learnable parame-
ters of the network too much and motivated by its success in
computer vision [13] [14], a 1 ⇥ 1 convolution is proposed
to replace the max pooling layer, which allows the neural
model to learn a more suitable function to reduce 3D matrices
into 2D without imposing the max operation, as it was done
previously.

Moreover, intuitively, the application of k-max pooling
layers seems like a necessary step that allows us to employ a
parameterless way of reducing the matrices size to something
that is feasible for an MLP to handle. Notwithstanding, choos-
ing only the top k entries of each row is a strong assumption
that might be an impediment for the neural network to learn
a better representation of the problem, and consequently
improving its performance.

Inspired by the soft attention mechanism and its recent
success in other areas, we propose an architecture that allows
the reduction of each row of the similarity matrices, with size
ld, into a single score. This score is obtained with the following
formula:

z(x) = softmax(v · tanh(EqxWq + EdWd)) • x (2)

This mechanism has three variables that are going to be
learned while training: the vector v with dimension (1,�) and

matrices Wq and Wd, both with size (300,�), where � is a
hyperparameter. The width 300 of the matrices is equal to the
length of the Word2Vec embeddings used.

With the final objective of reducing the row’s size from lq
to 1, the proposed attention mechanism takes as inputs a row
of the similarity matrices x, the embeddings of the document
terms Ed and the query term embedding Eqx associated with
the given row x, as each row contains the interactions of a
query word with all documents words. Note that, per matrix,
this layer is applied lq times, one for each row.

The intuition behind this attention is to perform a weighted
average of the whole row, so that the information of it can be
summarized into a single score. This is accomplished by first
using the embeddings to learn a more suitable representation
of the query term EqxWq and the document terms EdWd.
Those representations are then joined, by summing element-
wise the vector EqxWq with all the rows of EdWd, and passed
through an activation function, tanh. At this point, the output
of the non-linearity has shape (�, ld) and the vector v will be
responsible to learn a linear transformation to reduce it to the
same length of x, ld. softmax is then applied to normalize
this final vector and the final score is obtained by calculating
the dot product with the row x in case.

C. Static similarity matrix

In this architecture we consider the input simlq⇥ld to be the
biggest information bottleneck, since documents and queries
are only represented by local interactions and other semantic
information about them is lost in the process.

Fig. 4. Simplified baseline model: similarity matrix construction marked in
red.

We argue that a considerable improvement to the model’s
performance might be achieved by altering the way query
and document terms are represented, and by analyzing the
advantages of using the query IDF vector. In this thesis two
methods are experimented to extract more information from
the text: 1D convolutions and a soft attention mechanism.

Not to confuse with 1 ⇥ 1 convolutions, one-dimensional
convolutions act on 2D inputs. Commonly used in Natural
Language Processing, it is normal to employ them after an
embedding layer, in order to model word interaction within a
context defined by the convolution window size.

We argue that, even though 2D convolutions are already
applied to detect bi-grams and tri-grams matching patterns
between query and document, the similarity matrix, which
is the basis of the model, consists of only unigram matches
between words. Imagining we have two expressions: ’feeling
blue’ and ’being sad’. These two expressions have exactly the
same meaning. Yet, if we calculated the cosine similarity of
every word pair combination, we would probably get a high
value for ’feeling’ and ’being’ but a low one for ’sad’ and
’blue’. In this case, the cosine similarity matrix would not be
able to properly detect that the two expressions are identical.

Therefore, we propose to implement an extra similarity
matrix that is constructed the same way as the original one.
However, beforehand, both the document and query embed-
dings will be passed by a 1D convolution layer that will
theoretically learn how to represent more than one word in
one single vector. The number of words that it represents
depends on the kernel size used. The final extra matrix is then
propagated through the network like the unigram matrix.

With the intention of increasing the local interaction in-
formation between every query term tq and td, in comparison
with the previously used cosine similarity, the matrix will now
be three-dimensional, with size lq ⇥ ld ⇥ nc. To attain this
objective, another attention-like mechanism is employed. The
word embeddings of both queries Eq and documents Ed are
passed by a hidden layer, with nc perceptrons, that first reduces
their dimension by applying a linear projection, without using
a non-linear activation function. The new projected embed-
dings, Eqp and Edp , are in this way obtained and combined
to produce the final 3D matrix simlq⇥ld⇥nc , so that, given
arbitrary positions i, j and k,

simlq⇥ld⇥nc(i, j, k) = Eqp(i, j) + Edp(k, j) (3)

where Eqp and Edp have sizes (lq, nc) and (ld, nc), corre-
spondingly.

This new input matrix does not change the rest of the
architecture and allows the CNNs to develop three dimensional
filters and take into account more information for every tq
and td combination. Additionally, the use of cosine similarity
is eradicated and the network will theoretically learn a more
suitable query-document relationship function for the ad-hoc
retrieval task.

D. Loss function

We have previously explained the way a binary cross
entropy is used in the baseline model as a cost function. In
order to minimize this loss, the neural network updates its pa-
rameters according to the gradient of this function. Therefore,
the way the loss function is constructed is ultimately a decisive
factor for a good performance of the model.

In this thesis, a different loss function will be explored, a
cross entropy with custom gains, that was designed to have a
similar behavior as the evaluation metrics used. Backed up by
its previous success, reported by Zamani et al. [16], the new
cost function is designed as

L =� g(y+, [y+, Y �])h(d+)

�
X

d�2D�

g(Y �
d� , [y

+, Y �])h(d�) (4a)

g(a,B) =
2a � 1P
b2B 2b � 1

(4b)

h(d) = log
erel(q,d)

erel(q,d+) +
P

d�2D� erel(q,d�)
(4c)

where Y � are the labels of the negative documents D�,
y+ is the label of the positive document d+, q represents the
query, g is a gain function that is also applied in the nDCG
[17] metric and h is the function used to normalize all the
query-document relevance scores.

In addition to making the new loss function be more
proportional to the evaluation metric, this new formulation
also allows the use of a custom cross entropy with all the
true labels involved, which were not directly employed in the
preceding version (equation 1).

V. RESULTS

The experiments reported in this thesis were made on two
years of an IR competition, the TREC Web Track from 2013
and 2014. ClueWeb09-B and ClueWeb12 are the datasets used
for our experiments, both of them used in this competition
from 2009 to 2012 and 2013 to 2014, respectively. The former
will only be used for training and validation, since access to the
full ClueWeb09 dataset was not obtained, only to its category
B, that contains less data than the original. The whole dataset
is needed during test time because comparisons are made with
other methods that reported results on it as well. Both datasets
consist of millions of HTML Webpages, although only a part
of them will be used, the one that was labeled and used in the
TREC Web Track.

As it was previously done in the area [10], experiments
of this work are mainly evaluated based on the nDCG@20
[17] and ERR@20 [18] score of reranks done over the TREC
query likelihood baseline. The baseline consists of no more
than a file containing, per query, up to ten thousand documents
ordered by their relevance, according to the query likelihood
model. This type of evaluation fits the way the whole retrieval
system is constructed (Figure 1), considering that the model
can be used to rerank documents provided by a search en-
gine. Moreover, by using metrics @20, only the top twenty
documents for each query are evaluated, which means that
the assessment hardly penalizes systems who are not able to
distinguish relevance grades.

Stochastic gradient descent is enforced with Adam [19] as
an optimizer, using a mini batch of 32 samples. To construct
each sample of the batch, for each query q, a document d+
is randomly sampled with rank x, as long as it has any D�

documents with rank x � 1. This sampling procedure allows
the model to better differentiate documents with levels of
relevance that are close to each other. The relevance group

where Eqp and Edp have sizes (lq,nc) and (ld,nc), correspondingly.
This new input matrix does not change the rest of the

architecture and allows the CNNs to develop three dimensional
filters and take into account more information for every tq and td

combination. Additionally, the use of cosine similarity is
eradicated and the network will theoretically learn a more
suitable query-document relationship function for the ad-hoc
retrieval task.

D. Loss Function

We have previously explained the way a binary cross
entropy is used in the baseline model as a cost function. In order
to minimize this loss, the neural network updates its parameters
according to the gradient of this function. Therefore, the way the
loss function is constructed is ultimately a decisive factor for a
good performance of the model.

In this work, a different loss function will be explored, a
cross entropy with custom gains, that was designed to have a
similar behavior as the evaluation metrics used. Backed up by
its previous success, reported by Zamani et al. [16], the new cost
function is designed as

 , (4a)

 , (4b)

 , (4c)

where Y − are the labels of the negative documents D−, y+ is the
label of the positive document d+, q represents the query, g is a
gain function that is also applied in the nDCG [17] metric and h

is the function used to normalize all the query-document
relevance scores.

In addition to making the new loss function be more
proportional to the evaluation metric, this new formulation also
allows the use of a custom cross entropy with all the true labels
involved, which were not directly employed in the preceding
version (1).

V. RESULTS
The experiments were made on two years of an IR

competition, the TREC Web Track from 2013 and 2014.
ClueWeb09-B and ClueWeb12 are the datasets used for our
experiments, both of them used in this competition from 2009 to
2012 and 2013 to 2014, respectively. The former will only be
used for training and validation, since access to the full
ClueWeb09 dataset was not obtained, only to its category B, that
contains less data than the original. The whole dataset is needed
during test time because comparisons are made with other
methods that reported results on it as well. Both datasets consist
of millions of HTML Webpages, although only the small labeled
part present in the TREC Web Track is used.

As it was previously done in the area [10], experiments of
this work are mainly evaluated based on the nDCG@20 [17] and
ERR@20 [18] score of reranks done over the TREC query
likelihood baseline. The baseline consists of no more than a file
containing, per query, up to ten thousand documents ordered by
their relevance, according to the query likelihood model. This
type of evaluation fits the way the whole retrieval system is
constructed (Figure 1), considering that the model can be used
to rerank documents provided by a search engine. Moreover, by
using metrics @20, only the top twenty documents for each
query are evaluated, which means that the assessment hardly
penalizes systems who are not able to distinguish relevance
grades.

TABLE I. ERR@20 AND NDCG@20 VALUES COMPARISON BETWEEN
PACRR [10], QUERY LIKELIHOOD AND RPACRR

Stochastic gradient descent is enforced with Adam [19] as

an optimizer, using a mini batch of 32 samples. To construct
each sample of the batch, for each query q, a document d+ is
randomly sampled with rank x, as long as it has any D−

documents with rank x − 1. This sampling procedure allows the
model to better differentiate documents with levels of relevance
that are close to each other. The relevance group x is chosen with
probability proportional to the number of documents in the
group within the training set, so that the final training corpus
keeps a distribution of labels similar to the initial.

Most of the hyperparameters are set according to the original
used values by Hui et al. [10]. The most relevant ones are:

• ld and lq lengths in the similarity matrix are set to 800 and
16, respectively, and the first words of them are kept
when their dimension exceeds these values;

• The size of the two hidden layers used in the multilayer
perceptron at the end of the architecture is 32 and 16;

• Both the 2 × 2 and 3 × 3 convolution layers are applied
with 32 filters;

• k-max pooling is used with k = 3.
The Diffbot API was used to convert the HTML Webpages

to text strings. To deal with OOV words, the 300-dimensional
Word2Vec CBOW vectors [12] are re-trained using Noise
Contrastive Estimation with 5 negative samples and a context
window size of 10.

Throughout our experiments, we resort to the use of dropout
and do not add the normalized query IDF vector to the input of
the MLP, as depicted in Figure 2, since we did not discovered
gains in performance by using it.

A. Reimplementation

Reimplementing our baseline model, PACRR [10], is the
first step to confirm our experiments’ validity. It is important to
remember that all the results were obtained by reranking the
query-document pairs existent in the Query Likelihood

We argue that, even though 2D convolutions are already
applied to detect bi-grams and tri-grams matching patterns
between query and document, the similarity matrix, which
is the basis of the model, consists of only unigram matches
between words. Imagining we have two expressions: ’feeling
blue’ and ’being sad’. These two expressions have exactly the
same meaning. Yet, if we calculated the cosine similarity of
every word pair combination, we would probably get a high
value for ’feeling’ and ’being’ but a low one for ’sad’ and
’blue’. In this case, the cosine similarity matrix would not be
able to properly detect that the two expressions are identical.

Therefore, we propose to implement an extra similarity
matrix that is constructed the same way as the original one.
However, beforehand, both the document and query embed-
dings will be passed by a 1D convolution layer that will
theoretically learn how to represent more than one word in
one single vector. The number of words that it represents
depends on the kernel size used. The final extra matrix is then
propagated through the network like the unigram matrix.

With the intention of increasing the local interaction in-
formation between every query term tq and td, in comparison
with the previously used cosine similarity, the matrix will now
be three-dimensional, with size lq ⇥ ld ⇥ nc. To attain this
objective, another attention-like mechanism is employed. The
word embeddings of both queries Eq and documents Ed are
passed by a hidden layer, with nc perceptrons, that first reduces
their dimension by applying a linear projection, without using
a non-linear activation function. The new projected embed-
dings, Eqp and Edp , are in this way obtained and combined
to produce the final 3D matrix simlq⇥ld⇥nc , so that, given
arbitrary positions i, j and k,

simlq⇥ld⇥nc(i, j, k) = Eqp(i, j) + Edp(k, j) (3)

where Eqp and Edp have sizes (lq, nc) and (ld, nc), corre-
spondingly.

This new input matrix does not change the rest of the
architecture and allows the CNNs to develop three dimensional
filters and take into account more information for every tq
and td combination. Additionally, the use of cosine similarity
is eradicated and the network will theoretically learn a more
suitable query-document relationship function for the ad-hoc
retrieval task.

D. Loss function

We have previously explained the way a binary cross
entropy is used in the baseline model as a cost function. In
order to minimize this loss, the neural network updates its pa-
rameters according to the gradient of this function. Therefore,
the way the loss function is constructed is ultimately a decisive
factor for a good performance of the model.

In this thesis, a different loss function will be explored, a
cross entropy with custom gains, that was designed to have a
similar behavior as the evaluation metrics used. Backed up by
its previous success, reported by Zamani et al. [16], the new
cost function is designed as

L =� g(y+, [y+, Y �])h(d+)

�
X

d�2D�

g(Y �
d� , [y

+, Y �])h(d�) (4a)

g(a,B) =
2a � 1P
b2B 2b � 1

(4b)

h(d) = log
erel(q,d)

erel(q,d+) +
P

d�2D� erel(q,d�)
(4c)

where Y � are the labels of the negative documents D�,
y+ is the label of the positive document d+, q represents the
query, g is a gain function that is also applied in the nDCG
[17] metric and h is the function used to normalize all the
query-document relevance scores.

In addition to making the new loss function be more
proportional to the evaluation metric, this new formulation
also allows the use of a custom cross entropy with all the
true labels involved, which were not directly employed in the
preceding version (equation 1).

V. RESULTS

The experiments reported in this thesis were made on two
years of an IR competition, the TREC Web Track from 2013
and 2014. ClueWeb09-B and ClueWeb12 are the datasets used
for our experiments, both of them used in this competition
from 2009 to 2012 and 2013 to 2014, respectively. The former
will only be used for training and validation, since access to the
full ClueWeb09 dataset was not obtained, only to its category
B, that contains less data than the original. The whole dataset
is needed during test time because comparisons are made with
other methods that reported results on it as well. Both datasets
consist of millions of HTML Webpages, although only a part
of them will be used, the one that was labeled and used in the
TREC Web Track.

As it was previously done in the area [10], experiments
of this work are mainly evaluated based on the nDCG@20
[17] and ERR@20 [18] score of reranks done over the TREC
query likelihood baseline. The baseline consists of no more
than a file containing, per query, up to ten thousand documents
ordered by their relevance, according to the query likelihood
model. This type of evaluation fits the way the whole retrieval
system is constructed (Figure 1), considering that the model
can be used to rerank documents provided by a search en-
gine. Moreover, by using metrics @20, only the top twenty
documents for each query are evaluated, which means that
the assessment hardly penalizes systems who are not able to
distinguish relevance grades.

Stochastic gradient descent is enforced with Adam [19] as
an optimizer, using a mini batch of 32 samples. To construct
each sample of the batch, for each query q, a document d+
is randomly sampled with rank x, as long as it has any D�

documents with rank x � 1. This sampling procedure allows
the model to better differentiate documents with levels of
relevance that are close to each other. The relevance group

We argue that, even though 2D convolutions are already
applied to detect bi-grams and tri-grams matching patterns
between query and document, the similarity matrix, which
is the basis of the model, consists of only unigram matches
between words. Imagining we have two expressions: ’feeling
blue’ and ’being sad’. These two expressions have exactly the
same meaning. Yet, if we calculated the cosine similarity of
every word pair combination, we would probably get a high
value for ’feeling’ and ’being’ but a low one for ’sad’ and
’blue’. In this case, the cosine similarity matrix would not be
able to properly detect that the two expressions are identical.

Therefore, we propose to implement an extra similarity
matrix that is constructed the same way as the original one.
However, beforehand, both the document and query embed-
dings will be passed by a 1D convolution layer that will
theoretically learn how to represent more than one word in
one single vector. The number of words that it represents
depends on the kernel size used. The final extra matrix is then
propagated through the network like the unigram matrix.

With the intention of increasing the local interaction in-
formation between every query term tq and td, in comparison
with the previously used cosine similarity, the matrix will now
be three-dimensional, with size lq ⇥ ld ⇥ nc. To attain this
objective, another attention-like mechanism is employed. The
word embeddings of both queries Eq and documents Ed are
passed by a hidden layer, with nc perceptrons, that first reduces
their dimension by applying a linear projection, without using
a non-linear activation function. The new projected embed-
dings, Eqp and Edp , are in this way obtained and combined
to produce the final 3D matrix simlq⇥ld⇥nc , so that, given
arbitrary positions i, j and k,

simlq⇥ld⇥nc(i, j, k) = Eqp(i, j) + Edp(k, j) (3)

where Eqp and Edp have sizes (lq, nc) and (ld, nc), corre-
spondingly.

This new input matrix does not change the rest of the
architecture and allows the CNNs to develop three dimensional
filters and take into account more information for every tq
and td combination. Additionally, the use of cosine similarity
is eradicated and the network will theoretically learn a more
suitable query-document relationship function for the ad-hoc
retrieval task.

D. Loss function

We have previously explained the way a binary cross
entropy is used in the baseline model as a cost function. In
order to minimize this loss, the neural network updates its pa-
rameters according to the gradient of this function. Therefore,
the way the loss function is constructed is ultimately a decisive
factor for a good performance of the model.

In this thesis, a different loss function will be explored, a
cross entropy with custom gains, that was designed to have a
similar behavior as the evaluation metrics used. Backed up by
its previous success, reported by Zamani et al. [16], the new
cost function is designed as

L =� g(y+, [y+, Y �])h(d+)

�
X

d�2D�

g(Y �
d� , [y

+, Y �])h(d�) (4a)

g(a,B) =
2a � 1P
b2B 2b � 1

(4b)

h(d) = log
erel(q,d)

erel(q,d+) +
P

d�2D� erel(q,d�)
(4c)

where Y � are the labels of the negative documents D�,
y+ is the label of the positive document d+, q represents the
query, g is a gain function that is also applied in the nDCG
[17] metric and h is the function used to normalize all the
query-document relevance scores.

In addition to making the new loss function be more
proportional to the evaluation metric, this new formulation
also allows the use of a custom cross entropy with all the
true labels involved, which were not directly employed in the
preceding version (equation 1).

V. RESULTS

The experiments reported in this thesis were made on two
years of an IR competition, the TREC Web Track from 2013
and 2014. ClueWeb09-B and ClueWeb12 are the datasets used
for our experiments, both of them used in this competition
from 2009 to 2012 and 2013 to 2014, respectively. The former
will only be used for training and validation, since access to the
full ClueWeb09 dataset was not obtained, only to its category
B, that contains less data than the original. The whole dataset
is needed during test time because comparisons are made with
other methods that reported results on it as well. Both datasets
consist of millions of HTML Webpages, although only a part
of them will be used, the one that was labeled and used in the
TREC Web Track.

As it was previously done in the area [10], experiments
of this work are mainly evaluated based on the nDCG@20
[17] and ERR@20 [18] score of reranks done over the TREC
query likelihood baseline. The baseline consists of no more
than a file containing, per query, up to ten thousand documents
ordered by their relevance, according to the query likelihood
model. This type of evaluation fits the way the whole retrieval
system is constructed (Figure 1), considering that the model
can be used to rerank documents provided by a search en-
gine. Moreover, by using metrics @20, only the top twenty
documents for each query are evaluated, which means that
the assessment hardly penalizes systems who are not able to
distinguish relevance grades.

Stochastic gradient descent is enforced with Adam [19] as
an optimizer, using a mini batch of 32 samples. To construct
each sample of the batch, for each query q, a document d+
is randomly sampled with rank x, as long as it has any D�

documents with rank x � 1. This sampling procedure allows
the model to better differentiate documents with levels of
relevance that are close to each other. The relevance group

We argue that, even though 2D convolutions are already
applied to detect bi-grams and tri-grams matching patterns
between query and document, the similarity matrix, which
is the basis of the model, consists of only unigram matches
between words. Imagining we have two expressions: ’feeling
blue’ and ’being sad’. These two expressions have exactly the
same meaning. Yet, if we calculated the cosine similarity of
every word pair combination, we would probably get a high
value for ’feeling’ and ’being’ but a low one for ’sad’ and
’blue’. In this case, the cosine similarity matrix would not be
able to properly detect that the two expressions are identical.

Therefore, we propose to implement an extra similarity
matrix that is constructed the same way as the original one.
However, beforehand, both the document and query embed-
dings will be passed by a 1D convolution layer that will
theoretically learn how to represent more than one word in
one single vector. The number of words that it represents
depends on the kernel size used. The final extra matrix is then
propagated through the network like the unigram matrix.

With the intention of increasing the local interaction in-
formation between every query term tq and td, in comparison
with the previously used cosine similarity, the matrix will now
be three-dimensional, with size lq ⇥ ld ⇥ nc. To attain this
objective, another attention-like mechanism is employed. The
word embeddings of both queries Eq and documents Ed are
passed by a hidden layer, with nc perceptrons, that first reduces
their dimension by applying a linear projection, without using
a non-linear activation function. The new projected embed-
dings, Eqp and Edp , are in this way obtained and combined
to produce the final 3D matrix simlq⇥ld⇥nc , so that, given
arbitrary positions i, j and k,

simlq⇥ld⇥nc(i, j, k) = Eqp(i, j) + Edp(k, j) (3)

where Eqp and Edp have sizes (lq, nc) and (ld, nc), corre-
spondingly.

This new input matrix does not change the rest of the
architecture and allows the CNNs to develop three dimensional
filters and take into account more information for every tq
and td combination. Additionally, the use of cosine similarity
is eradicated and the network will theoretically learn a more
suitable query-document relationship function for the ad-hoc
retrieval task.

D. Loss function

We have previously explained the way a binary cross
entropy is used in the baseline model as a cost function. In
order to minimize this loss, the neural network updates its pa-
rameters according to the gradient of this function. Therefore,
the way the loss function is constructed is ultimately a decisive
factor for a good performance of the model.

In this thesis, a different loss function will be explored, a
cross entropy with custom gains, that was designed to have a
similar behavior as the evaluation metrics used. Backed up by
its previous success, reported by Zamani et al. [16], the new
cost function is designed as

L =� g(y+, [y+, Y �])h(d+)

�
X

d�2D�

g(Y �
d� , [y

+, Y �])h(d�) (4a)

g(a,B) =
2a � 1P
b2B 2b � 1

(4b)

h(d) = log
erel(q,d)

erel(q,d+) +
P

d�2D� erel(q,d�)
(4c)

where Y � are the labels of the negative documents D�,
y+ is the label of the positive document d+, q represents the
query, g is a gain function that is also applied in the nDCG
[17] metric and h is the function used to normalize all the
query-document relevance scores.

In addition to making the new loss function be more
proportional to the evaluation metric, this new formulation
also allows the use of a custom cross entropy with all the
true labels involved, which were not directly employed in the
preceding version (equation 1).

V. RESULTS

The experiments reported in this thesis were made on two
years of an IR competition, the TREC Web Track from 2013
and 2014. ClueWeb09-B and ClueWeb12 are the datasets used
for our experiments, both of them used in this competition
from 2009 to 2012 and 2013 to 2014, respectively. The former
will only be used for training and validation, since access to the
full ClueWeb09 dataset was not obtained, only to its category
B, that contains less data than the original. The whole dataset
is needed during test time because comparisons are made with
other methods that reported results on it as well. Both datasets
consist of millions of HTML Webpages, although only a part
of them will be used, the one that was labeled and used in the
TREC Web Track.

As it was previously done in the area [10], experiments
of this work are mainly evaluated based on the nDCG@20
[17] and ERR@20 [18] score of reranks done over the TREC
query likelihood baseline. The baseline consists of no more
than a file containing, per query, up to ten thousand documents
ordered by their relevance, according to the query likelihood
model. This type of evaluation fits the way the whole retrieval
system is constructed (Figure 1), considering that the model
can be used to rerank documents provided by a search en-
gine. Moreover, by using metrics @20, only the top twenty
documents for each query are evaluated, which means that
the assessment hardly penalizes systems who are not able to
distinguish relevance grades.

Stochastic gradient descent is enforced with Adam [19] as
an optimizer, using a mini batch of 32 samples. To construct
each sample of the batch, for each query q, a document d+
is randomly sampled with rank x, as long as it has any D�

documents with rank x � 1. This sampling procedure allows
the model to better differentiate documents with levels of
relevance that are close to each other. The relevance group

ERR@20 nDCG@20
Model TrW TrD 2013 2014 mean 2013 2014 mean
Query Likelihood - - 0.101 0.131 0.116 0.190 0.231 0.211
PACRR [10] 6061 OM 0.166 0.221 0.194 0.295 0.339 0.317

RPACRR 5552 OM 0.163 0.214 0.189 0.451 0.436 0.444
SM 0.161 0.199 0.180 0.437 0.415 0.426

TABLE I
ERR@20 AND NDCG@20 VALUES COMPARISON BETWEEN PACRR [10], QUERY LIKELIHOOD AND RPACRR

x is chosen with probability proportional to the number of
documents in the group within the training set, so that the
final training corpus keeps a distribution of labels similar to
the initial.

Most of the hyperparameters are set according to the origi-
nal used values by Hui et al. [10]. Some of the most important
ones are here defined:

• ld and lq lengths in the similarity matrix are set to 800
and 16, respectively, and the first words of them are kept
when their dimension exceeds these values.

• The size of the two hidden layers used in the multilayer
perceptron at the end of the architecture is 32 and 16.

• Both the 2⇥ 2 and 3⇥ 3 convolution layers are applied
with 32 filters.

• k-max pooling is used with k = 3.
The Diffbot API was used to convert the HTML Webpages

to text strings. To deal with OOV words, the 300-dimensional
Word2Vec CBOW vectors [12] are re-trained using Noise
Contrastive Estimation with 5 negative samples and a context
window size of 10.

Throughout our experiments, we resort to the use of dropout
and do not add the normalized query IDF vector to the input of
the MLP, as depicted in Figure 2, since we did not discovered
gains in performance by using it.

A. Reimplementation

Reimplementing our baseline model, PACRR [10], is the
first step to confirm our experiments’ validity. It is important
to remember that all the results were obtained by reranking
the query-document pairs existent in the Query Likelihood
submission. Therefore, Table I presents the results of both
this model, the PACRR baseline model [10] and its reimple-
mentation, RPACRR. TrW represents the number of trainable
weights and TrD the type of data used to train the model.
Since, the authors of PACRR [10] kindly open-sourced their
own similarity matrices [20], whenever it is possible, experi-
ments will be made using both this data (OM) and the self-
made matrices (SM) produced in this work. A key factor to
retain is that the total amount of original matrices is around
120000 while the self-constructed ones are more or less 75000,
which is notably lower. Moreover, the matrices are just the
result of cosine similarity between query and document terms,
which means that we do not have access to the raw text that
Hui et. al [10] used.

By comparing these results from Table I, it is visible that
PACRR was successfully reimplemented, if looking solely

at the ERR@20 values, that are really similar. However,
nDCG@20 scores were higher in our reimplementation, which
leads us to conclude that RPACRR is actually better at getting
the top 20 relevant documents but that the order of which
it organizes them is mostly the same. nDCG only discounts
based on the rank of the document, but does not consider
any of the documents previously seen at higher ranks. On the
other hand, ERR implicitly discounts documents based on the
relevance of previously seen documents. In fact, as Chapelle
at al. [18] claim, ERR differs from other metrics because it
heavily discounts the contributions of documents that appear
after highly relevant documents, i.e., the ones that appear at
lower ranks.T hat explains the fact that nDCG@20 is higher,
because there are more relevant documents, and ERR@20 is
similar, since the first documents are the ones that contribute
the most to this metric.

We believe this increase in the nDCG@20 score is due to
some careful implementation details, and mostly to the added
regularization.

Additionally, a slight decrease in performance when using
the self-made matrices can also be noted. This phenomenon
can be easily explained because of different data preprocessing
and specially due to the fact that the original similarity
matrices consist of way more training data than the self-made
ones.

Table II presents the results from trying different proposed
changes to the baseline model. During the remaining of this
section, we will analyze these experiments, always comparing
with the scores obtained in Table I.

B. Custom loss function

A characteristic that we wanted to investigate, using the
original architecture of PACRR [10], was how the loss function
was constructed. From Table II, it is possible to observe the
results of using the custom loss function, CLF.

As expected theoretically, making the loss function closer
to the metric that is being employed (nDCG in this case)
increases the model’s performance. The ERR@20 score also
increases, manifesting that applying a custom cross entropy
loss with a gain function similar to nDCG is definitely an
improvement over the baseline.

C. Matrices dimensionality reduction

In this section we analyze two different ways of reducing
dimensionality, giving some freedom to the model to learn
what features to keep. Those methods are the previously

submission. Therefore, Table I presents the results of both this
model, the PACRR baseline model [10] and its
reimplementation, RPACRR. TrW represents the number of
trainable weights and TrD the type of data used to train the
model. Since, the authors of PACRR [10] kindly open-sourced
their own similarity matrices [20], whenever it is possible,
experiments will be made using both this data (OM) and the
selfmade matrices (SM) produced in this work. A key factor to
retain is that the total amount of original matrices is around
120000 while the self-constructed ones are more or less 75000,
which is notably lower. Moreover, the matrices are just the result
of cosine similarity between query and document terms, which
means that we do not have access to the raw text that Hui et. al
[10] used.

By comparing these results from Table I, it is visible that
PACRR was successfully reimplemented, if looking solely at
the ERR@20 values, that are really similar. However,
nDCG@20 scores were higher in our reimplementation, which
leads us to conclude that RPACRR is actually better at getting
the top 20 relevant documents but that the order of which it
organizes them is mostly the same. nDCG only discounts based
on the rank of the document, but does not consider any of the
documents previously seen at higher ranks. On the other hand,
ERR implicitly discounts documents based on the relevance of
previously seen documents. In fact, as Chapelle at al. [18] claim,
ERR differs from other metrics because it heavily discounts the
contributions of documents that appear after highly relevant
documents, i.e., the ones that appear at lower ranks.T hat
explains the fact that nDCG@20 is higher, because there are
more relevant documents, and ERR@20 is similar, since the first
documents are the ones that contribute the most to this metric.

We believe this increase in the nDCG@20 score is due to
some careful implementation details, and mostly to the added
regularization.

Additionally, a slight decrease in performance when using
the self-made matrices can also be noted. This phenomenon can
be easily explained because of different data preprocessing and
specially due to the fact that the original similarity matrices
consist of way more training data than the self-made ones.

Table II presents the results from trying different proposed
changes to the baseline model. During the remaining of this
section, we will analyze these experiments, always comparing
with the scores obtained in Table I.

TABLE II. ERR@20 AND NDCG@20 VALUES COMPARISON BETWEEN
DIFFERENT RPACRR IMPLEMENTATIONS

B. Custom Loss Function

A characteristic that we wanted to investigate, using the
original architecture of PACRR [10], was how the loss function
was constructed. From Table II, it is possible to observe the
results of using the custom loss function, CLF.

As expected theoretically, making the loss function closer to
the metric that is being employed (nDCG in this case) increases
the model’s performance. The ERR@20 score also increases,
manifesting that applying a custom cross entropy loss with a
gain function similar to nDCG is definitely an improvement over
the baseline.

C. Matrices Dimensionality Reduction

In this section we analyze two different ways of reducing
dimensionality, giving some freedom to the model to learn what
features to keep. Those methods are the previously described 1
× 1 convolution, replacing the need for max pooling, and the
row-wise soft attention mechanism, that takes the place of the k-
max pooling layers. Results of model runs with these methods
are presented in Table II as 1x1conv and rSAtt, respectively. The
latter was only run with the selfmade matrices as it requires
access to the query and document embedding vectors.

Without using a lot of extra trainable parameters, it is
possible to observe that 1 × 1 convolutions enhance the model’s
performance, as expected, since the model learns how to reduce
third dimensions (channels) without applying an aggressive
maximum operation.

In order to get similar results to the Query Likelihood
baseline (Table I), a lot of hyperparameter tuning was needed
for the row-wise attention mechanism. Replacing the k-max
pooling layer was probably the most challenging task of this
work, since k-max uses no trainable parameters, with the
assumption that only the top k values of each row of the matrices
are required for the subsequent layers.

From our experiments, the row-wise attention mechanism
was the non-parameterless method that best worked for
replacing k-max pooling. Nevertheless, it is possible to see that
its results are similar to the Query Likelihood model. It can also
be seen that the number of trainable parameters increases
immensely when the k-max pooling layer is replaced, which
might be indicative that a lot more train data is required to learn
a proper dimensionality reduction with this row-wise attention
mechanism.

D. Changing the Input

As previously discussed, having a single static cosine
similarity matrix is a clear information bottleneck of the whole
architecture. Table II shows results of methods that try to
provide more additional information to the model, 1D
convolutions (1Dconv), or improve the way that similarity
matrix is constructed, soft attention mechanism (3DSAtt). Both
architectures were only trained using the self-made matrices
(SM) since we did not have access to the original embeddings
used in baseline model [10].

As seen previously, the curse of the amount of learnable
weights (TrW) is also present in here. In both methods, it is
possible to note a decrease of the model’s performance as this
number of trainable parameters increases. Even though
convolutions are known for not having a lot of learnable units,
this 1D convolution has filters that act over embedding vectors
with a dimension of 300, that increases the number of
parameters drastically, even when using a kernel size of 2, when
a reasonable number of these filters are applied.

ERR@20 nDCG@20
Model TrW TrD 2013 2014 mean 2013 2014 mean

RPACRR + CLF 5552 OM 0.173 0.226 0.200 0.452 0.437 0.445
SM 0.170 0.210 0.190 0.444 0.425 0.435

RPACRR + 1x1conv 5616 OM 0.167 0.223 0.195 0.450 0.433 0.442
SM 0.165 0.207 0.186 0.441 0.420 0.431

RPACRR + rSAtt 21680 SM 0.110 0.139 0.125 0.205 0.240 0.223
RPACRR + 1Dconv 16688 SM 0.142 0.175 0.159 0.252 0.293 0.273
RPACRR + 3DSAtt 19456 SM 0.127 0.159 0.143 0.220 0.256 0.238

TABLE II
ERR@20 AND NDCG@20 VALUES COMPARISON BETWEEN DIFFERENT RPACRR IMPLEMENTATIONS

described 1 ⇥ 1 convolution, replacing the need for max
pooling, and the row-wise soft attention mechanism, that takes
the place of the k-max pooling layers. Results of model runs
with these methods are presented in Table II as 1x1conv and
rSAtt, respectively. The latter was only run with the self-
made matrices as it requires access to the query and document
embedding vectors.

Without using a lot of extra trainable parameters, it is
possible to observe that 1 ⇥ 1 convolutions enhance the
model’s performance, as expected, since the model learns how
to reduce third dimensions (channels) without applying an
aggressive maximum operation.

In order to get similar results to the Query Likelihood
baseline (Table I), a lot of hyperparameter tuning was needed
for the row-wise attention mechanism. Replacing the k-max
pooling layer was probably the most challenging task of this
thesis, since k-max uses no trainable parameters, with the
assumption that only the top k values of each row of the
matrices are required for the subsequent layers.

From our experiments, the row-wise attention mechanism
was the non-parameterless method that best worked for re-
placing k-max pooling. Nevertheless, it is possible to see that
its results are similar to the Query Likelihood model. It can
also be seen that the number of trainable parameters increases
immensely when the k-max pooling layer is replaced, which
might be indicative that a lot more train data is required to
learn a proper dimensionality reduction with this row-wise
attention mechanism.

D. Changing the input

As previously discussed, having a single static cosine
similarity matrix is a clear information bottleneck of the
whole architecture. Table II shows results of methods that
try to provide more additional information to the model, 1D
convolutions (1Dconv), or improve the way that similarity
matrix is constructed, soft attention mechanism (3DSAtt).
Both architectures were only trained using the self-made
matrices (SM) since we did not have access to the original
embeddings used in baseline model [10].

As seen previously, the curse of the amount of learnable
weights (TrW) is also present in here. In both methods, it
is possible to note a decrease of the model’s performance as
this number of trainable parameters increases. Even though
convolutions are known for not having a lot of learnable

units, this 1D convolution has filters that act over embedding
vectors with a dimension of 300, that increases the number
of parameters drastically, even when using a kernel size of 2,
when a reasonable number of these filters are applied.

E. Discussion

During the initial stage of these experiments we have
successfully reproduced the baseline model and proposed
modifications that proved to be advantageous and improved
the model’s performance in terms of ERR@20 and nDCG@20
scores. Nevertheless, it is important to point out that despite
these deep learning systems showing good efficiency in rerank-
ing search results, they are limited by the retrieval system that
selected the top documents for each query in the first place,
which was the Query Likelihood model in our experiments
and on the baseline model (Table I).

We have introduced regularization as a way to achieve better
and more stable results and showed the importance of adapting
the training scheme, approximating it more to the way these
systems are evaluated.

Letting the model learn how to perform pooling operations
can also be a beneficial factor, to some extent. I.e., we have
shown how a slight change of the max pooling layer, without
adding too many additional trainable parameters, results in a
performance increase. On the other hand, alternative methods
for replacing the k-max pooling did not work so well due to
the amount of newly introduced variables.

Influenced by their recent success in Natural Language Pro-
cessing [21], soft attention mechanisms have been employed
extensively in this thesis. However, these mechanisms require
a lot of data to train properly, which was not the case in
here. Lack of training data was definitely a hard obstacle
to overcome in this project, which conditioned how PACRR
[10] was designed in the first place. Having only available
200 queries associated with the training set was definitely
not enough to learn more complicated associations between
query and documents that could then be generalized in the
test set. Nonetheless, this was not clear at the beginning of
this project, and it was only during our experiments that it
became more evident that this was a transfer learning approach
that constructs a soft matching function over fixed pre-trained
word representations, which means that the pre-trained model
plays a fundamental role.

E. Discussion

During the initial stage of these experiments we have
successfully reproduced the baseline model and proposed
modifications that proved to be advantageous and improved the
model’s performance in terms of ERR@20 and nDCG@20
scores. Nevertheless, it is important to point out that despite
these deep learning systems showing good efficiency in
reranking search results, they are limited by the retrieval system
that selected the top documents for each query in the first place,
which was the Query Likelihood model in our experiments and
on the baseline model (Table I).

We have introduced regularization as a way to achieve better
and more stable results and showed the importance of adapting
the training scheme, approximating it more to the way these
systems are evaluated.

Letting the model learn how to perform pooling operations
can also be a beneficial factor, to some extent. I.e., we have
shown how a slight change of the max pooling layer, without
adding too many additional trainable parameters, results in a
performance increase. On the other hand, alternative methods
for replacing the k-max pooling did not work so well due to the
amount of newly introduced variables.

Influenced by their recent success in Natural Language
Processing [21], soft attention mechanisms have been employed
extensively in this work. However, these mechanisms require a
lot of data to train properly, which was not the case in here. Lack
of training data was definitely a hard obstacle to overcome in
this project, which conditioned how PACRR [10] was designed
in the first place. Having only available 200 queries associated
with the training set was definitely not enough to learn more
complicated associations between query and documents that
could then be generalized in the test set. Nonetheless, this was
not clear at the beginning of this project, and it was only during
our experiments that it became more evident that this was a
transfer learning approach that constructs a soft matching
function over fixed pre-trained word representations, which
means that the pre-trained model plays a fundamental role.

In addition, there is no report of use of these type of
mechanisms in the area of ad-hoc retrieval, which increased the
motivation for our investigation. Although not performing as
good as other architectures used in the first experiments, these
models are still able to get a score increase over the Query
Likelihood submission that they are reranking. This leads us to
think that more work about the use of these methods still has to
be explored and that they can eventually produce notable
performance gains.

F. Best Performing Model

Having the previous experiments concluded, we also want to
test a final model, that basically consists of an aggregation of the
changes that yielded better results than the baseline model, i.e.,
superior ERR@20 and nDCG@20 scores than the ones reported
for PACRR [10] in Table I. Therefore, this final model (Figure
5) is constructed with small modifications over the one depicted
in Figure 2, those mostly being the replacement of the max
pooling layers by convolutions with 1×1 kernels, the
introduction of dropout layers after non-linear activations, the
removal of the query IDF vector as an input to the network and

the replacement of the binary cross entropy loss by a custom
function (equation 4a).

TABLE III. ERR@20 AND NDCG@20 VALUES COMPARISON BETWEEN
RPACRRF AND PACRR

Table III shows the results for the final model, RPACRRF,

comparing it with the original reported results by Hui et. al [10].
As expected, RPACRRF achieved better results than any
antecedent model, according to the improvements previously
obtained. It is also worth noting that this best performing model,
depicted in Figure 5, does not have a notable computational
overhead at test time when compared to the baseline model,
since it ends up switching a maximum operation by a
convolution but balances by having less input weights to the
Multilayer Perceptron.

Fig. 5. Simplified final model.

The final model can be described as an extraction/
distillation-combination sequence, with CNN kernels extracting
relevance matches, pooling layers and 1 × 1 convolutions
distilling the matches into a series of small vectors for each
query term, and a final block combining the query term signals
into an ultimate relevance score for each query-document pair.
Following this framework, we attempt to better understand the
functionality of the convolution layers by visualizing their
outputs.

As an example, we use the query “What are the symptoms
of heart attack in both men and women”, from the 2014 TREC
Web Track. Figure 7 displays markups for different kernels sizes
on the same document snippet, showing the strongest signal
among all query terms, i.e., choosing the highest value for each
column from the 2D matrix input to the different k-max pooling
layers. The higher the opacity is (i.e., darkness of the text), the
higher the output value is, in comparison with the other values
from the same output matrix. The use of real valued cosine
similarity in the input matrices allows the model to match related
terms beyond exact matches, thereby expanding the query. For
example, in Figure 7(a), terms such as ”coronary”, ”cardiac” and
”health” have relatively high weights though they do not appear
in the query. Looking at the inputs that were passed through
CNNs, Figure 7(b) and 7(c), we can see that most unigram

ERR@20 nDCG@20
Model TrW TrD 2013 2014 mean 2013 2014 mean
PACRR [10] 6061 OM 0.166 0.221 0.194 0.295 0.339 0.317

RPACRRF 5616 OM 0.178 0.228 0.203 0.489 0.466 0.478
SM 0.173 0.215 0.194 0.460 0.435 0.448

TABLE III
ERR@20 AND NDCG@20 VALUES COMPARISON BETWEEN RPACRRF AND PACRR

In addition, there is no report of use of these type of
mechanisms in the area of ad-hoc retrieval, which increased
the motivation for our investigation. Although not performing
as good as other architectures used in the first experiments,
these models are still able to get a score increase over the
Query Likelihood submission that they are reranking. This
leads us to think that more work about the use of these methods
still has to be explored and that they can eventually produce
notable performance gains.

F. Best performing model

Having the previous experiments concluded, we also want to
test a final model, that basically consists of an aggregation of
the changes that yielded better results than the baseline model,
i.e., superior ERR@20 and nDCG@20 scores than the ones
reported for PACRR [10] in Table I. Therefore, this final model
(Figure 5) is constructed with small modifications over the one
depicted in Figure 2, those mostly being the replacement of
the max pooling layers by convolutions with 1⇥1 kernels, the
introduction of dropout layers after non-linear activations, the
removal of the query IDF vector as an input to the network and
the replacement of the binary cross entropy loss by a custom
function (equation 4a).

Fig. 5. Simplified final model.

Table III shows the results for the final model, RPACRRF,
comparing it with the original reported results by Hui et. al
[10]. As expected, RPACRRF achieved better results than any
antecedent model, according to the improvements previously
obtained. It is also worth noting that this best performing
model, depicted in Figure 5, does not have a notable compu-
tational overhead at test time when compared to the baseline

model, since it ends up switching a maximum operation by a
convolution but balances by having less input weights to the
Multilayer Perceptron.

The final model can be described as an extraction-
distillation-combination sequence, with CNN kernels extract-
ing relevance matches, pooling layers and 1⇥ 1 convolutions
distilling the matches into a series of small vectors for each
query term, and a final block combining the query term signals
into an ultimate relevance score for each query-document pair.
Following this framework, we attempt to better understand
the functionality of the convolution layers by visualizing their
outputs. Figure 7 displays markups for different kernels sizes
on the same document snippet, showing the strongest signal
among all query terms, i.e., choosing the highest value for
each column from the 2D matrix input to the different k-max
pooling layers. The higher the opacity is (i.e., darkness of the
text), the higher the output value is, in comparison with the
other values from the same output matrix. The query that is
being analyzed can be viewed in Figure 6.

The use of real valued cosine similarity in the input ma-
trices allows the model to match related terms beyond exact
matches, thereby expanding the query. For example, in Figure
7(a), terms such as ”coronary”, ”cardiac” and ”health” have
relatively high weights though they do not appear in the
query. Looking at the inputs that were passed through CNNs,
Figure 7(b) and 7(c), we can see that most unigram signals
still keep their relatively high weights and that other bigram
and trigram matches increase the weights of other terms,
with word combinations such as ’muscle strain’ or ’coronary
artery blockage’. For the higher dimension kernel signals, it
is possible to notice that almost all terms have at least some
weight, reducing the difference between the salient text and
the remaining text. This is due to the way CNN kernels work
when combined with real valued similarity. Taking the dot
product of all terms in a window generally produces non-zero
values and acts as a smoothing effect.

VI. CONCLUSIONS

The objective of this thesis was to contribute to the de-
velopment of a reranking system for ad-hoc retrieval with
deep learning techniques that eliminate the requirement for
handcrafted query and document features.

We started by exploring previous work, selecting the state of
the art model in the dataset available, and implemented it. New
building blocks were then designed and optimized to mitigate
different information bottlenecks of the neural network.

signals still keep their relatively high weights and that other
bigram and trigram matches increase the weights of other terms,
with word combinations such as ’muscle strain’ or ’coronary
artery blockage’. For the higher dimension kernel signals, it is
possible to notice that almost all terms have at least some weight,
reducing the difference between the salient text and the
remaining text. This is due to the way CNN kernels work when
combined with real valued similarity. Taking the dot product of
all terms in a window generally produces non-zero values and
acts as a smoothing effect.

VI. CONCLUSIONS
The objective of this work is to contribute to the

development of a reranking system for ad-hoc retrieval with
deep learning techniques that eliminate the requirement for
handcrafted query and document features.

We started by exploring previous work, selecting the state of
the art model in the dataset available, and implemented it. New
building blocks were then designed and optimized to mitigate
different information bottlenecks of the neural network.

Despite the lack of a large volume of training data, this work
managed to achieve good results in the reimplementation of a
contemporary relevance matching model, on a known dataset, in
the area of Information Retrieval. Moreover, it also shows some
improvements by applying some techniques as regularization,
1×1 convolutions or tweaks in the loss function, as well as some
proposed methods on how the model could potentially be
adapted to retain or learn more information to ultimately
produce a querydocument relevance score.

We expect that the work presented in this document will help
future researchers in the areas of both Information Retrieval and
Natural Language Processing. To aid scientific reproducibility,
the full code base associated to this work is available at [22] for
future use. This source code is the sole authorship of author 1.

ACKNOWLEDGMENT
This work was supported by national funds through FCT,

Fundação para a Ciência e a Tecnologia, under project
UIDB/50021/2020 and project LISBOA-01-0145-FEDER-
031474

REFERENCES

[1] K. Onal, Y. Zhang, I. Altingovde, M. Rahman, P. Karagoz, A. Braylan,
B. Dang, H. Chang, H. Kim, Q. McNamara, A. Angert, E. Banner, V.
Khetan, T. McDonnell, A. Nguyen, D. Xu, B. Wallace, M. de Rijke and
M. Lease, Neural information retrieval: at the end of the early years,
2017.

[2] B. Mitra and N. Craswell, Neural Models for Information Retrieval, 2017.
[3] J. Guo, Y. Fan, Q. Ai and W. Croft, A Deep Relevance Matching Model

for Ad-hoc Retrieval, 2016.
[4] R. Salakhutdinov and G. Hinton, Semantic hashing, 2009.
[5] P. Huang, N. Urbana, X. He, J. Gao, L. Deng, A. Acero and L. Heck,

Learning Deep Structured Semantic Models for Web Search using

Clickthrough Data, 2013.
[6] Y. Shen, X. He, J. Gao, L. Deng and G. Mesnil, Learning Semantic

Representations Using Convolutional Neural Networks for Web Search,
2014.

[7] L. Pang, Y. Lan, J. Guo, J. Xu and X. Cheng, A Study of MatchPyramid

Models on Ad-hoc Retrieval, 2016.
[8] B. Mitra, F. Diaz and N. Craswell, Learning to Match Using Local and

Distributed Representations of Text for Web Search, 2016.
[9] C. Xiong, Z. Dai, J. Callan, Z. Liu and R. Power, End-to-End Neural Ad-

hoc Ranking with Kernel Pooling, 2017.
[10] K. Hui, A. Yates, Berberich and G. de Melo, PACRR: A Position-Aware

Neural IR Model for Relevance Matching, 2017.
[11] T. Mikolov, K. Chen, G. Corrado and J. Dean, Efficient estimation of word

representations in vector space, 2013.
[12] Google, Tool for computing continuous distributed representations of

words, https://code.google.com/archive/p/word2vec/ 2013.
[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke and A. Rabinovich, GoogleNet, 2014.
[14] M. Lin, Q. Chen and S. Yan, Network In Network, 2013.
[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R.

Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks from

Overfitting, 2014.
[16] H. Zamani, B. Mitra, X. Song, N. Craswell and S. Tiwary, Neural Ranking

Models with Multiple Document Fields, 2017.
[17] K. Jarvelin and J. Kekalainen, Cumulated gain-based evaluation of IR

techniques, 2002.
[18] O. Chapelle, D. Metlzer, Y. Zhang and P. Grinspan, Expected reciprocal

rank for graded relevance, 2009.
[19] D. Kingma and J. Lei Ba, Adam: a Method for Stochastic Optimization,

2015.
[20] K. Hui and A. Yates, Cosine similarity matrices used in the original

baseline model, https://drive.google.com/file/d/
0B3FrsWe6Y5YqdEtfSjI4N0h1LXM/view, 2017.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez and
Kaiser, Attention Is All You Need, 2017.

[22] João Lages, Thesis source code repository, https://github.com/
JoaoLages/TREC WebTrack 2018.

(a) Text markup illustrating unigram term signals.

(b) Text markup illustrating 2×2 kernel signals.

(c) Text markup illustrating 3×3 kernel signals.

Fig. 6. Text markup illustrating the input to different k-max pooling layer

