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Abstract— Relevance ranking is a core problem of Information 
Retrieval which plays a fundamental role in various real world 
applications, such as search engines. Given a query and a set of 
candidate text documents, relevance ranking algorithms 
determine how relevant each text document is for the given query. 
This degree of relevance allows them to rank the text documents 
and perform actions such as returning the best matching 
documents for the query. As in other machine learning and 
computational intelligence disciplines, deep learning techniques 
have recently achieved state of the art results by successfully 
capturing relevance matching signals between query-textual 
document pairs. This paper focuses on the PositionAware 
Convolutional-Recurrent Relevance Matching approach. On a 
first phase, it reimplements the original work, reproduces the 
published results and performs a number of additional 
experiments that identify potential model limitations. On a second 
phase, it explores possible model improvements based on deep 
learning techniques such as soft self-attention and deep transfer 
learning. Experiments on the well-known TREC Web Track data 
show that it is possible to obtain small improvements over the 
original model and point to a number of limitations of the general 
approach due to the information bottlenecks involved. 

Keywords—Relevance Ranking, Text Retrieval, Natural 
Language Processing, Deep learning 

I. INTRODUCTION (HEADING 1) 
Document relevance ranking is a core problem in 

Information Retrieval (IR) and plays a fundamental role in 
popular search engines such as Google, Bing, Baidu, or Yandex. 
In traditional Web search, the query consists of only few terms 
but the body text of the documents can range vastly in length. A 
ranking model aims at evaluating the relation between a query 
and different text documents, assigning higher scores to 
documents that are more relevant to the input query. In the 
absence of click information, the raw body text can be a useful 
signal to determine the relevance between a query-document 
pair. Traditional machine learning and computational 
intelligence algorithms for document relevance ranking relied 
on handcrafted features to encode interactions between queries 
and documents. This feature engineering work was usually time-
consuming, incomplete and over-specified, which largely 
hindered further development of these approaches. 

In recent years, new algorithms have been reported in the 
area of Information Retrieval [1][2], that apply deep neural 
networks for this purpose. As it happened in areas such as vision 
or speech processing, the potential of deep learning methods to 
advance state of the art retrieval quality has attracted a lot of 
attention. The newly introduced neural IR models differ from 
previous approaches in that they model the interactions between 
query and document directly based on the raw text, without the 

need for manual feature engineering. However, unlike many 
classical IR models, these new deep learning based approaches 
are data-hungry, requiring large scale training data before they 
can be employed. 

 
Fig. 1. Overview of a common Web retrieval system. This work is within the 
shaded components. 

This work is motivated by this recent success of neural IR to 
relevance ranking, as well as the large improvements in 
performance attained in other areas of NLP by employing deep 
learning techniques applied directly to raw text. With the 
objective of improving the performance of prior neural 
relevance ranking models, this work considers only data in the 
form of text and no other information about either the query or 
document. A model is therefore developed with the intention of 
reranking search results, reordering the previously extracted 
texts by their descending relevance score to the given query. 
This ranking model is trained using a supervised machine 
learning approach, using a set of querydocument pairs labeled 
by human annotators. 

II. RELATED WORK 
Deep learning applied to ad-hoc retrieval provides a new 

way of thinking about the problem as a general text matching 
task, i.e., query matches document. According to Guo et al. [3], 
these approaches can be mainly categorized into representation 
focused models and interaction focused models. The 
representation focused models, commonly referred to as 
semantic matching models, try to embed both queries and 
documents in a low-dimensional space with a neural network, 
and then conduct matching between the two vectors. Interaction 
focused models first build the local interactions between the two 
texts and use deep learning to learn the more complicated 
interaction patterns for matching. This type of algorithms can be 
also referred to as relevance matching models. 

Salakhutdinov and Hinton [4] introduced one of the first 
deep neural models for ad-hoc retrieval, the Semantic Hashing 
model. The algorithm is a deep auto-encoder, trained on 
unlabeled document corpus, that represents words in onehot 
vectors and uses binary hidden units to encode those documents 
so that they can be posteriorly quickly retrieved using a hash 
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function. The model is first pre-trained layer-bylayer and then 
trained further end-to-end for additional tuning. Given a search 
query, a corresponding hash is generated and the relevant 
candidate documents that match the same hash vector are 
retrieved. A standard IR model (e.g., BM25) can then be 
employed to rank between the selected documents. 

More recently, Huang et al. [5] applied siamese networks to 
ad-hoc retrieval. Their Deep Semantic Similarity Model 
(DSSM) trains on query and document title pairs where both the 
pieces of texts are represented as bags-of-charactertrigraphs. 
The DSSM architecture consists of two deep models - one for 
the query and the other for the document - with all fully-
connected layers and cosine distance as the choice of similarity 
function in the middle. This architecture was later improved by 
Shen et al. [6] by making use of convolutional layers. 

This use of Convolutional Neural Networks (CNNs) 
encouraged posterior interaction-focused models [7], although 
with still worse results than traditional IR approaches. Still, the 
Deep Relevance Matching Model (DRMM) [3] was able to 
significantly outperform them by modeling query-document 
interactions using matching histograms. Mitra et al. [8] 
introduced a state-of-the-art model that makes use of both local 
interactions and distributed representations, arguing that a 
combination of the two approaches is preferred. 

Subsequently, Xiong et al. [9] and Hui et al. [10] published 
results on interaction-focused models that would take as inputs 
only the similarity matrices between the query and document 
terms, tq and td, respectively. While the former method applied 
RBF kernels to that matrix, the latter used multiple convolutions 
with different kernel sizes along with pooling layers. This last 
model, the Position-Aware Convolutional-Recurrent Relevance 
Matching model (PACRR), will be analyzed in detail in the 
following section. 

III. BASELINE MODEL 
The baseline framework adopted in this work is based on the 

PACRR model [10]. Being a relevance matching model, the 
core concept of this architecture is to construct first a word 
similarity matrix between the query and the document words and 
use convolutional neural networks to account for soft pattern 
matches involving one or more adjacent words (n-grams). These 
signals are then non-linearly combined to produce a single 
query-document relevance score. The result is a non-linear 
function mapping a query document pair to a relevance scalar 
value. Following the usual neural network approach, this model 
can be trained end-to end using gradient descent techniques. An 
overview of the architecture excluding the pre-processing step 
can be seen in Figure 2. 

A. Pre-processing and Word Embeddings 

On a first step, a vector representation for each word in the 
input query and document must be obtained. For this purpose, 
the raw text is stripped of irrelevant components (e.g., HTML 
tags) and tokenized into words. Stop-word removal is also 
applied to both document and query, i.e., removing common 
English words like ’and’, ’or’ and ’the’. Finally, following the 
standard procedure in other Natural Language Processing tasks, 
each different word in the vocabulary is assigned a real-value 
vector representation termed word embedding. In principle, 

word embeddings can be trained using the available document 
query data as any other parameters of the model. In practice, this 
demands large amounts of data to prevent overfitting. For this 
reason, pre-trained embeddings are utilized for each word and 
fixed during training. Pre-trained embeddings can be seen as a 
simple form of transfer learning where word representations are 
trained from another task. Following [10], 300-dimensional 
Word2Vec CBOW embeddings [11,12] are computed from the 
whole text corpus, comprising documents and queries. CBOW 
is trained by predicting the center word of a word window giving 
its surrounding context and negative sampling is used to speed 
up training time. 

 
Fig. 2. Overview of the baseline model. 

Thenceforth, query and document terms (tq and td) are 
represented by 300-dimensional pre-trained vectors. Since 
queries and documents may have an arbitrary number of words, 
the resulting query and document representation has variable 
size. This presents an additional difficulty for the sub-sequent 



model stages that need to dynamically adapt to these sizes. To 
solve this problem, query |q| and document |d| sizes are cropped 
to fixed maximum values lq and ld, respectively. This is achieved 
by selecting the first lq or ld terms for query and document, 
respectively, when either |q| or |d| exceed the maximum fixed 
dimension. If the actual dimension of the query or document is 
lower than the desired, then the remaining vectors are padded 
with zeros. 

B. Distance Matrix and Relevance Matching Components 

Word distance is obtained by applying the cosine similarity 
between document and query vectors. This yields the query-
document similarity matrix simlq×ld, which is then reshaped to 
have a 3D shape (lq × ld × 1), and two 2D convolutional layers 
are applied to it with different kernel sizes, 2 × 2 and 3 × 3, 
corresponding to bi-gram and trigram matching, respectively. 
The original matrix accounts for unigram matching. 

Each convolutional layer applies nf different filters to its 
input, where nf is a hyperparameter. At the end of this step we 
end up with two 3D matrices,   and , as well 
as the initial 2D similarity matrix simlq×ld. In order to capture the 
strongest similarity signals for each query term, max pooling is 
performed over the filter dimension nf  to keep only the strongest 
signal from the nf  different filters. 

The model then captures the top-k matching signals, for each 
query term and for each of the 3 matrices, by applying k-max 
pooling layers. This layer is implemented in such a way that, for 
each row, the higher k values are retained, keeping the same 
number of matching signals for each query term tq. Previous to 
inputing the matching signals to the multilayer perceptron, the 
query IDF vector, IDFlq×1, is passed through a softmax layer for 
normalization, such that a vector of probabilities is joined with 
the matrix P thereafter. 

Additionally, a vector containing the IDF score of each 
query term tq is also computed, IDFlq×1. This vector has length lq 

and will be passed directly to the last layers of the model as we 
can see in Figure 2. 

The matrix P along with IDFlq×1 are then flattened into a 
single vector of size lq×(3k+1) and passed to a feed-forward 
network with two hidden layers and a final single neuron that 
produces the final relevance score, rel(q,d). 

C. Training Phase 

To train a neural network in a supervised manner, it is 
necessary to repetitively feed it train data pairs (x,y) in order to 
minimize a certain loss function. In our case, since the final 
objective is to rerank documents, we are not interested in 
predicting a !	# 	label, as that does not allow proper ranking. The 
neural model needs to distinguish relevant documents from less 
relevant (but likely not completely non-relevant). 

The most common approach for neural ad-hoc retrieval is to 
train pairwise with a set of documents D+ and a set of documents 
D− for the same query q, where D+ are more relevant than D−. 
This allows the model to distinguish, and therefore to rank, 
relevances between documents. In this architecture only a single 
relevant document d+ is used and the number of D− documents is 
a parameter that was fixed to 6. So this means that, for each 
training sample the model described in Figure 2 is actually 

repeated seven times, with a loss function gathering all the 
outputs as in (1). 

  (1) 

IV. PROPOSED CHANGES 
The previously described framework has some strong 

assumptions and simplifications that we explore in this work. In 
this section, we will go through some of these problems and 
suggest a modification, always with the objective of enhancing 
a particular building block of the original model that may cause 
an information bottleneck, i.e., loss or disregard of relevant data. 

A. Lack of regularization 

Deep neural networks contain multiple non-linear hidden 
layers that allow them to learn very complicated relationships 
between their inputs and outputs. However, these functions are 
non-convex and therefore the gradient descent algorithm does 
not give us a formal guarantee of convergence to the optimal 
solution and overfitting can also occur. The original architecture 
pictured in Figure 2 has no kind of regularization mechanisms 
applied, making the neural network subjective to overfitting. In 
order to prevent this and make the results more consistent, many 
methods have been developed, that are now common practice in 
deep learning. These include stopping the training as soon as 
performance on a validation set starts to get worse, introducing 
weight penalties of various kinds such as L1 and L2 
regularization or the simple dropout mechanism [15]. In this 
way, we present a way of regularizing the architecture by adding 
dropout layers after different blocks with trainable weights, that 
is, following the CNNs (after the max pooling operation) and the 
hidden layers of the MLP. 

B. Parameterless pooling operations 

Reducing the dimensionality of 3D and 2D matrices is a 
fundamental part of the baseline model represented in Figure 2. 
Although using parameterless pooling operations solves this 
issue without the introduction of new trainable variables, they 
can also be detrimental to the model’s performance since the 
network is not considering a lot of information that was removed 
by an aggressive pooling function like maximum. Considering 
this a limitation, we propose changes to the two pooling layers 
used in the baseline model, as depicted in Figure 3. 

Even though max pooling has been a standard operation 
when applied to images, we argue that a non-linear 
dimensionality reduction might be more suitable when dealing 
with similarity matrices. Without increasing the learnable 
parameters of the network too much and motivated by its 
success in computer vision [13][14], a 1 × 1 convolution is 
proposed to replace the max pooling layer, which allows the 
neural model to learn a more suitable function to reduce 3D 
matrices into 2D without imposing the max operation, as it was 
done previously. 

Moreover, intuitively, the application of k-max pooling 
layers seems like a necessary step that allows us to employ a 
parameterless way of reducing the matrices size to something 
that is feasible for an MLP to handle. Notwithstanding, choosing 

document query data as any other parameters of the model. In
practice, this demands large amounts of data to prevent over-
fitting. For this reason, pre-trained embeddings are utilized for
each word and fixed during training. Pre-trained embeddings
can be seen as a simple form of transfer learning where word
representations are trained from another task. Following [10],
300-dimensional Word2Vec CBOW embeddings [11] [12] are
computed from the whole text corpus, comprising documents
and queries. CBOW is trained by predicting the center word
of a word window giving its surrounding context and negative
sampling is used to speed up training time.

Thenceforth, query and document terms (tq and td) are rep-
resented by 300-dimensional pre-trained vectors. Since queries
and documents may have an arbitrary number of words, the
resulting query and document representation has variable size.
This presents an additional difficulty for the sub-sequent model
stages that need to dynamically adapt to these sizes. To solve
this problem, query |q| and document |d| sizes are cropped to
fixed maximum values lq and ld, respectively. This is achieved
by selecting the first lq or ld terms for query and document,
respectively, when either |q| or |d| exceed the maximum fixed
dimension. If the actual dimension of the query or document is
lower than the desired, then the remaining vectors are padded
with zeros.

B. Distance Matrix and Relevance Matching Components

Word distance is obtained by applying the cosine similarity
between document and query vectors. This yields the query-
document similarity matrix simlq⇥ld , which is then reshaped
to have a 3D shape (lq ⇥ ld ⇥ 1), and two two-dimensional
convolutional layers are applied to it with different kernel
sizes, 2 ⇥ 2 and 3 ⇥ 3, corresponding to bi-gram and tri-
gram matching, respectively. The original matrix accounts for
unigram matching.

Each convolutional layer applies nf different filters to its
input, where nf is a hyperparameter. At the end of this step
we end up with two 3D matrices, C2

lq⇥ld⇥nf
and C3

lq⇥ld⇥nf
,

as well as the initial 2D similarity matrix simlq⇥ld . In order
to capture the strongest similarity signals for each query term,
max pooling is performed over the filter dimension nf to keep
only the strongest signal from the nf different filters.

The model then captures the top k matching signals, for
each query term and for each of the 3 matrices, by applying
k-max pooling layers. This layer is implemented in such a way
that, for each row, the higher k values are retained, keeping
the same number of matching signals for each query term tq .

Previous to inputing the matching signals to the multilayer
perceptron, the query IDF vector, IDFlq⇥1, is passed through
a softmax layer for normalization, such that a vector of
probabilities is joined with the matrix P thereafter.

Additionally, a vector containing the IDF score of each
query term tq is also computed, IDFlq⇥1. This vector has
length lq and will be passed directly to the last layers of the
model as we can see in Figure 2.

The matrix P along with IDFlq⇥1 are then flattened into a
single vector of size lq⇥(3k+1) and passed to a feed-forward

network with 2 hidden layers and a final single neuron that
produces the final relevance score, rel(q, d).

C. Training Phase

To train a neural network in a supervised manner, it is
necessary to repetitively feed it train data pairs (x, y) in order
to minimize a certain loss function. In our case, since the
final objective is to rerank documents, we are not interested in
predicting a ŷ label, as that does not allow proper ranking. The
neural model needs to distinguish relevant documents from
less relevant (but likely not completely non-relevant).

The most common approach for neural ad-hoc retrieval
is to train pairwise with a set of documents D+ and a set
of documents D� for the same query q, where D+ are
more relevant than D�. This allows the model to distinguish,
and therefore to rank, relevances between documents. In this
architecture only a single relevant document d+ is used and
the number of D� documents is a parameter that was fixed
to 6. So this means that, for each training sample the model
described in Figure 2 is actually repeated seven times, with a
loss function gathering all the outputs as in equation 1.

L(q, d+, D�) = � log
erel(q,d

+)

erel(q,d+) +
P

d�2D� erel(q,d�)
(1)

IV. PROPOSED CHANGES

The previously described framework has some strong as-
sumptions and simplifications that we explore in this thesis.
In this section, we will go through some of these problems and
suggest a modification, always with the objective of enhancing
a particular building block of the original model that may
cause an information bottleneck, i.e., loss or disregard of
relevant data.

A. Lack of regularization

Deep neural networks contain multiple non-linear hidden
layers that allow them to learn very complicated relationships
between their inputs and outputs. However, these functions are
non-convex and therefore the gradient descent algorithm does
not give us a formal guarantee of convergence to the optimal
solution and overfitting can also occur.

The original architecture pictured in Figure 2 has no kind of
regularization mechanisms applied, making the neural network
subjective to overfitting. In order to prevent this and make the
results more consistent, many methods have been developed,
that are now common practice in deep learning. These include
stopping the training as soon as performance on a validation
set starts to get worse, introducing weight penalties of various
kinds such as L1 and L2 regularization or the simple dropout
mechanism [15].

In this way, we present a way of regularizing the architecture
by adding dropout layers after different blocks with trainable
weights, that is, following the CNNs (after the max pooling
operation) and the hidden layers of the MLP.



only the top k entries of each row is a strong assumption that 
might be an impediment for the neural network to learn a better 
representation of the problem, and consequently improving its 
performance. 

 
Fig. 3. Simplified baseline model: pooling layers marked in red. 

Inspired by the soft attention mechanism and its recent 
success in other areas, we propose an architecture that allows the 
reduction of each row of the similarity matrices, with size ld, into 
a single score. This score is obtained with: 

  (2) 

This mechanism has three variables that are going to be 
learned while training: the vector v with dimension (1,σ) and 
matrices Wq and Wd, both with size (300,σ), where σ is a 
hyperparameter. The width 300 of the matrices is equal to the 
length of the Word2Vec embeddings used. 

With the final objective of reducing the row’s size from lq to 
1, the proposed attention mechanism takes as inputs a row of the 
similarity matrices x, the embeddings of the document terms Ed 

and the query term embedding Eqx associated with the given row 
x, as each row contains the interactions of a query word with all 
documents words. Note that, per matrix, this layer is applied lq 

times, one for each row. The intuition behind this attention is to 
perform a weighted average of the whole row, so that the 
information of it can be summarized into a single score. This is 
accomplished by first using the embeddings to learn a more 
suitable representation of the query term EqxWq and the 
document terms EdWd. Those representations are then joined, by 
summing elementwise the vector EqxWq with all the rows of 
EdWd, and passed through an activation function, tanh. At this 
point, the output of the non-linearity has shape (σ,ld) and the 
vector v will be responsible to learn a linear transformation to 
reduce it to the same length of x, ld. softmax is then applied to 
normalize this final vector and the final score is obtained by 
calculating the dot product with the row x in case. 

C. Static Similarity Matrix 

In this architecture we consider the input simlq×ld to be the 
biggest information bottleneck, since documents and queries are 
only represented by local interactions and other semantic 
information about them is lost in the process. We argue that a 
considerable improvement to the model’s performance might be 
achieved by altering the way query and document terms are 

represented, and by analyzing the advantages of using the query 
IDF vector. In this work two methods are experimented to 
extract more information from the text: 1D convolutions and a 
soft attention mechanism. 

 
Fig. 4. Simplified baseline model: similarity matrix construction marked in 
red. 

Not to confuse with 1 × 1 convolutions, one-dimensional 
convolutions act on 2D inputs. Commonly used in Natural 
Language Processing, it is normal to employ them after an 
embedding layer, in order to model word interaction within a 
context defined by the convolution window size. We argue that, 
even though 2D convolutions are already applied to detect bi-
grams and tri-grams matching patterns between query and 
document, the similarity matrix, which is the basis of the model, 
consists of only unigram matches between words. Imagining we 
have two expressions: ’feeling blue’ and ’being sad’. These two 
expressions have exactly the same meaning. Yet, if we 
calculated the cosine similarity of every word pair combination, 
we would probably get a high value for ’feeling’ and ’being’ but 
a low one for ’sad’ and ’blue’. In this case, the cosine similarity 
matrix would not be able to properly detect that the two 
expressions are identical. 

Therefore, we propose to implement an extra similarity 
matrix that is constructed the same way as the original one. 
However, beforehand, both the document and query 
embeddings will be passed by a 1D convolution layer that will 
theoretically learn how to represent more than one word in one 
single vector. The number of words that it represents depends on 
the kernel size used. The final extra matrix is then propagated 
through the network like the unigram matrix. 

With the intention of increasing the local interaction 
information between every query term tq and td, in comparison 
with the previously used cosine similarity, the matrix will now 
be three-dimensional, with size lq × ld × nc. To attain this 
objective, another attention-like mechanism is employed. The 
word embeddings of both queries Eq and documents Ed are 
passed by a hidden layer, with nc perceptrons, that first reduces 
their dimension by applying a linear projection, without using a 
non-linear activation function. The new projected embeddings, 
Eqp and Edp, are in this way obtained and combined to produce 
the final 3D matrix $%&'(×'*×+, , so that, given arbitrary 
positions i, j and k, 

 , (3) 

B. Parameterless pooling operations

Reducing the dimensionality of 3D and 2D matrices is a
fundamental part of the baseline model represented in Figure
2. Although using parameterless pooling operations solves
this issue without the introduction of new trainable variables,
they can also be detrimental to the model’s performance since
the network is not considering a lot of information that was
removed by an aggressive pooling function like maximum.

Considering this a limitation, we propose changes to the
two pooling layers used in the baseline model, as depicted in
Figure 3.

Fig. 3. Simplified baseline model: pooling layers marked in red.

Even though max pooling has been a standard operation
when applied to images, we argue that a non-linear dimen-
sionality reduction might be more suitable when dealing with
similarity matrices. Without increasing the learnable parame-
ters of the network too much and motivated by its success in
computer vision [13] [14], a 1 ⇥ 1 convolution is proposed
to replace the max pooling layer, which allows the neural
model to learn a more suitable function to reduce 3D matrices
into 2D without imposing the max operation, as it was done
previously.

Moreover, intuitively, the application of k-max pooling
layers seems like a necessary step that allows us to employ a
parameterless way of reducing the matrices size to something
that is feasible for an MLP to handle. Notwithstanding, choos-
ing only the top k entries of each row is a strong assumption
that might be an impediment for the neural network to learn
a better representation of the problem, and consequently
improving its performance.

Inspired by the soft attention mechanism and its recent
success in other areas, we propose an architecture that allows
the reduction of each row of the similarity matrices, with size
ld, into a single score. This score is obtained with the following
formula:

z(x) = softmax(v · tanh(EqxWq + EdWd)) • x (2)

This mechanism has three variables that are going to be
learned while training: the vector v with dimension (1,�) and

matrices Wq and Wd, both with size (300,�), where � is a
hyperparameter. The width 300 of the matrices is equal to the
length of the Word2Vec embeddings used.

With the final objective of reducing the row’s size from lq
to 1, the proposed attention mechanism takes as inputs a row
of the similarity matrices x, the embeddings of the document
terms Ed and the query term embedding Eqx associated with
the given row x, as each row contains the interactions of a
query word with all documents words. Note that, per matrix,
this layer is applied lq times, one for each row.

The intuition behind this attention is to perform a weighted
average of the whole row, so that the information of it can be
summarized into a single score. This is accomplished by first
using the embeddings to learn a more suitable representation
of the query term EqxWq and the document terms EdWd.
Those representations are then joined, by summing element-
wise the vector EqxWq with all the rows of EdWd, and passed
through an activation function, tanh. At this point, the output
of the non-linearity has shape (�, ld) and the vector v will be
responsible to learn a linear transformation to reduce it to the
same length of x, ld. softmax is then applied to normalize
this final vector and the final score is obtained by calculating
the dot product with the row x in case.

C. Static similarity matrix

In this architecture we consider the input simlq⇥ld to be the
biggest information bottleneck, since documents and queries
are only represented by local interactions and other semantic
information about them is lost in the process.

Fig. 4. Simplified baseline model: similarity matrix construction marked in
red.

We argue that a considerable improvement to the model’s
performance might be achieved by altering the way query
and document terms are represented, and by analyzing the
advantages of using the query IDF vector. In this thesis two
methods are experimented to extract more information from
the text: 1D convolutions and a soft attention mechanism.

Not to confuse with 1 ⇥ 1 convolutions, one-dimensional
convolutions act on 2D inputs. Commonly used in Natural
Language Processing, it is normal to employ them after an
embedding layer, in order to model word interaction within a
context defined by the convolution window size.

We argue that, even though 2D convolutions are already
applied to detect bi-grams and tri-grams matching patterns
between query and document, the similarity matrix, which
is the basis of the model, consists of only unigram matches
between words. Imagining we have two expressions: ’feeling
blue’ and ’being sad’. These two expressions have exactly the
same meaning. Yet, if we calculated the cosine similarity of
every word pair combination, we would probably get a high
value for ’feeling’ and ’being’ but a low one for ’sad’ and
’blue’. In this case, the cosine similarity matrix would not be
able to properly detect that the two expressions are identical.

Therefore, we propose to implement an extra similarity
matrix that is constructed the same way as the original one.
However, beforehand, both the document and query embed-
dings will be passed by a 1D convolution layer that will
theoretically learn how to represent more than one word in
one single vector. The number of words that it represents
depends on the kernel size used. The final extra matrix is then
propagated through the network like the unigram matrix.

With the intention of increasing the local interaction in-
formation between every query term tq and td, in comparison
with the previously used cosine similarity, the matrix will now
be three-dimensional, with size lq ⇥ ld ⇥ nc. To attain this
objective, another attention-like mechanism is employed. The
word embeddings of both queries Eq and documents Ed are
passed by a hidden layer, with nc perceptrons, that first reduces
their dimension by applying a linear projection, without using
a non-linear activation function. The new projected embed-
dings, Eqp and Edp , are in this way obtained and combined
to produce the final 3D matrix simlq⇥ld⇥nc , so that, given
arbitrary positions i, j and k,

simlq⇥ld⇥nc(i, j, k) = Eqp(i, j) + Edp(k, j) (3)

where Eqp and Edp have sizes (lq, nc) and (ld, nc), corre-
spondingly.

This new input matrix does not change the rest of the
architecture and allows the CNNs to develop three dimensional
filters and take into account more information for every tq
and td combination. Additionally, the use of cosine similarity
is eradicated and the network will theoretically learn a more
suitable query-document relationship function for the ad-hoc
retrieval task.

D. Loss function

We have previously explained the way a binary cross
entropy is used in the baseline model as a cost function. In
order to minimize this loss, the neural network updates its pa-
rameters according to the gradient of this function. Therefore,
the way the loss function is constructed is ultimately a decisive
factor for a good performance of the model.

In this thesis, a different loss function will be explored, a
cross entropy with custom gains, that was designed to have a
similar behavior as the evaluation metrics used. Backed up by
its previous success, reported by Zamani et al. [16], the new
cost function is designed as
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where Y � are the labels of the negative documents D�,
y+ is the label of the positive document d+, q represents the
query, g is a gain function that is also applied in the nDCG
[17] metric and h is the function used to normalize all the
query-document relevance scores.

In addition to making the new loss function be more
proportional to the evaluation metric, this new formulation
also allows the use of a custom cross entropy with all the
true labels involved, which were not directly employed in the
preceding version (equation 1).

V. RESULTS

The experiments reported in this thesis were made on two
years of an IR competition, the TREC Web Track from 2013
and 2014. ClueWeb09-B and ClueWeb12 are the datasets used
for our experiments, both of them used in this competition
from 2009 to 2012 and 2013 to 2014, respectively. The former
will only be used for training and validation, since access to the
full ClueWeb09 dataset was not obtained, only to its category
B, that contains less data than the original. The whole dataset
is needed during test time because comparisons are made with
other methods that reported results on it as well. Both datasets
consist of millions of HTML Webpages, although only a part
of them will be used, the one that was labeled and used in the
TREC Web Track.

As it was previously done in the area [10], experiments
of this work are mainly evaluated based on the nDCG@20
[17] and ERR@20 [18] score of reranks done over the TREC
query likelihood baseline. The baseline consists of no more
than a file containing, per query, up to ten thousand documents
ordered by their relevance, according to the query likelihood
model. This type of evaluation fits the way the whole retrieval
system is constructed (Figure 1), considering that the model
can be used to rerank documents provided by a search en-
gine. Moreover, by using metrics @20, only the top twenty
documents for each query are evaluated, which means that
the assessment hardly penalizes systems who are not able to
distinguish relevance grades.

Stochastic gradient descent is enforced with Adam [19] as
an optimizer, using a mini batch of 32 samples. To construct
each sample of the batch, for each query q, a document d+
is randomly sampled with rank x, as long as it has any D�

documents with rank x � 1. This sampling procedure allows
the model to better differentiate documents with levels of
relevance that are close to each other. The relevance group
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We argue that, even though 2D convolutions are already
applied to detect bi-grams and tri-grams matching patterns
between query and document, the similarity matrix, which
is the basis of the model, consists of only unigram matches
between words. Imagining we have two expressions: ’feeling
blue’ and ’being sad’. These two expressions have exactly the
same meaning. Yet, if we calculated the cosine similarity of
every word pair combination, we would probably get a high
value for ’feeling’ and ’being’ but a low one for ’sad’ and
’blue’. In this case, the cosine similarity matrix would not be
able to properly detect that the two expressions are identical.

Therefore, we propose to implement an extra similarity
matrix that is constructed the same way as the original one.
However, beforehand, both the document and query embed-
dings will be passed by a 1D convolution layer that will
theoretically learn how to represent more than one word in
one single vector. The number of words that it represents
depends on the kernel size used. The final extra matrix is then
propagated through the network like the unigram matrix.

With the intention of increasing the local interaction in-
formation between every query term tq and td, in comparison
with the previously used cosine similarity, the matrix will now
be three-dimensional, with size lq ⇥ ld ⇥ nc. To attain this
objective, another attention-like mechanism is employed. The
word embeddings of both queries Eq and documents Ed are
passed by a hidden layer, with nc perceptrons, that first reduces
their dimension by applying a linear projection, without using
a non-linear activation function. The new projected embed-
dings, Eqp and Edp , are in this way obtained and combined
to produce the final 3D matrix simlq⇥ld⇥nc , so that, given
arbitrary positions i, j and k,
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This new input matrix does not change the rest of the
architecture and allows the CNNs to develop three dimensional
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[17] metric and h is the function used to normalize all the
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In addition to making the new loss function be more
proportional to the evaluation metric, this new formulation
also allows the use of a custom cross entropy with all the
true labels involved, which were not directly employed in the
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years of an IR competition, the TREC Web Track from 2013
and 2014. ClueWeb09-B and ClueWeb12 are the datasets used
for our experiments, both of them used in this competition
from 2009 to 2012 and 2013 to 2014, respectively. The former
will only be used for training and validation, since access to the
full ClueWeb09 dataset was not obtained, only to its category
B, that contains less data than the original. The whole dataset
is needed during test time because comparisons are made with
other methods that reported results on it as well. Both datasets
consist of millions of HTML Webpages, although only a part
of them will be used, the one that was labeled and used in the
TREC Web Track.

As it was previously done in the area [10], experiments
of this work are mainly evaluated based on the nDCG@20
[17] and ERR@20 [18] score of reranks done over the TREC
query likelihood baseline. The baseline consists of no more
than a file containing, per query, up to ten thousand documents
ordered by their relevance, according to the query likelihood
model. This type of evaluation fits the way the whole retrieval
system is constructed (Figure 1), considering that the model
can be used to rerank documents provided by a search en-
gine. Moreover, by using metrics @20, only the top twenty
documents for each query are evaluated, which means that
the assessment hardly penalizes systems who are not able to
distinguish relevance grades.

Stochastic gradient descent is enforced with Adam [19] as
an optimizer, using a mini batch of 32 samples. To construct
each sample of the batch, for each query q, a document d+
is randomly sampled with rank x, as long as it has any D�

documents with rank x � 1. This sampling procedure allows
the model to better differentiate documents with levels of
relevance that are close to each other. The relevance group

ERR@20 nDCG@20
Model TrW TrD 2013 2014 mean 2013 2014 mean
Query Likelihood - - 0.101 0.131 0.116 0.190 0.231 0.211
PACRR [10] 6061 OM 0.166 0.221 0.194 0.295 0.339 0.317

RPACRR 5552 OM 0.163 0.214 0.189 0.451 0.436 0.444
SM 0.161 0.199 0.180 0.437 0.415 0.426

TABLE I
ERR@20 AND NDCG@20 VALUES COMPARISON BETWEEN PACRR [10], QUERY LIKELIHOOD AND RPACRR

x is chosen with probability proportional to the number of
documents in the group within the training set, so that the
final training corpus keeps a distribution of labels similar to
the initial.

Most of the hyperparameters are set according to the origi-
nal used values by Hui et al. [10]. Some of the most important
ones are here defined:

• ld and lq lengths in the similarity matrix are set to 800
and 16, respectively, and the first words of them are kept
when their dimension exceeds these values.

• The size of the two hidden layers used in the multilayer
perceptron at the end of the architecture is 32 and 16.

• Both the 2⇥ 2 and 3⇥ 3 convolution layers are applied
with 32 filters.

• k-max pooling is used with k = 3.
The Diffbot API was used to convert the HTML Webpages

to text strings. To deal with OOV words, the 300-dimensional
Word2Vec CBOW vectors [12] are re-trained using Noise
Contrastive Estimation with 5 negative samples and a context
window size of 10.

Throughout our experiments, we resort to the use of dropout
and do not add the normalized query IDF vector to the input of
the MLP, as depicted in Figure 2, since we did not discovered
gains in performance by using it.

A. Reimplementation

Reimplementing our baseline model, PACRR [10], is the
first step to confirm our experiments’ validity. It is important
to remember that all the results were obtained by reranking
the query-document pairs existent in the Query Likelihood
submission. Therefore, Table I presents the results of both
this model, the PACRR baseline model [10] and its reimple-
mentation, RPACRR. TrW represents the number of trainable
weights and TrD the type of data used to train the model.
Since, the authors of PACRR [10] kindly open-sourced their
own similarity matrices [20], whenever it is possible, experi-
ments will be made using both this data (OM) and the self-
made matrices (SM) produced in this work. A key factor to
retain is that the total amount of original matrices is around
120000 while the self-constructed ones are more or less 75000,
which is notably lower. Moreover, the matrices are just the
result of cosine similarity between query and document terms,
which means that we do not have access to the raw text that
Hui et. al [10] used.

By comparing these results from Table I, it is visible that
PACRR was successfully reimplemented, if looking solely

at the ERR@20 values, that are really similar. However,
nDCG@20 scores were higher in our reimplementation, which
leads us to conclude that RPACRR is actually better at getting
the top 20 relevant documents but that the order of which
it organizes them is mostly the same. nDCG only discounts
based on the rank of the document, but does not consider
any of the documents previously seen at higher ranks. On the
other hand, ERR implicitly discounts documents based on the
relevance of previously seen documents. In fact, as Chapelle
at al. [18] claim, ERR differs from other metrics because it
heavily discounts the contributions of documents that appear
after highly relevant documents, i.e., the ones that appear at
lower ranks.T hat explains the fact that nDCG@20 is higher,
because there are more relevant documents, and ERR@20 is
similar, since the first documents are the ones that contribute
the most to this metric.

We believe this increase in the nDCG@20 score is due to
some careful implementation details, and mostly to the added
regularization.

Additionally, a slight decrease in performance when using
the self-made matrices can also be noted. This phenomenon
can be easily explained because of different data preprocessing
and specially due to the fact that the original similarity
matrices consist of way more training data than the self-made
ones.

Table II presents the results from trying different proposed
changes to the baseline model. During the remaining of this
section, we will analyze these experiments, always comparing
with the scores obtained in Table I.

B. Custom loss function

A characteristic that we wanted to investigate, using the
original architecture of PACRR [10], was how the loss function
was constructed. From Table II, it is possible to observe the
results of using the custom loss function, CLF.

As expected theoretically, making the loss function closer
to the metric that is being employed (nDCG in this case)
increases the model’s performance. The ERR@20 score also
increases, manifesting that applying a custom cross entropy
loss with a gain function similar to nDCG is definitely an
improvement over the baseline.

C. Matrices dimensionality reduction

In this section we analyze two different ways of reducing
dimensionality, giving some freedom to the model to learn
what features to keep. Those methods are the previously
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retain is that the total amount of original matrices is around 
120000 while the self-constructed ones are more or less 75000, 
which is notably lower. Moreover, the matrices are just the result 
of cosine similarity between query and document terms, which 
means that we do not have access to the raw text that Hui et. al 
[10] used. 

By comparing these results from Table I, it is visible that 
PACRR was successfully reimplemented, if looking solely at 
the ERR@20 values, that are really similar. However, 
nDCG@20 scores were higher in our reimplementation, which 
leads us to conclude that RPACRR is actually better at getting 
the top 20 relevant documents but that the order of which it 
organizes them is mostly the same. nDCG only discounts based 
on the rank of the document, but does not consider any of the 
documents previously seen at higher ranks. On the other hand, 
ERR implicitly discounts documents based on the relevance of 
previously seen documents. In fact, as Chapelle at al. [18] claim, 
ERR differs from other metrics because it heavily discounts the 
contributions of documents that appear after highly relevant 
documents, i.e., the ones that appear at lower ranks.T hat 
explains the fact that nDCG@20 is higher, because there are 
more relevant documents, and ERR@20 is similar, since the first 
documents are the ones that contribute the most to this metric. 

We believe this increase in the nDCG@20 score is due to 
some careful implementation details, and mostly to the added 
regularization. 

Additionally, a slight decrease in performance when using 
the self-made matrices can also be noted. This phenomenon can 
be easily explained because of different data preprocessing and 
specially due to the fact that the original similarity matrices 
consist of way more training data than the self-made ones. 

Table II presents the results from trying different proposed 
changes to the baseline model. During the remaining of this 
section, we will analyze these experiments, always comparing 
with the scores obtained in Table I. 

TABLE II.  ERR@20 AND NDCG@20 VALUES COMPARISON BETWEEN 
DIFFERENT RPACRR IMPLEMENTATIONS 

 
B. Custom Loss Function 

A characteristic that we wanted to investigate, using the 
original architecture of PACRR [10], was how the loss function 
was constructed. From Table II, it is possible to observe the 
results of using the custom loss function, CLF. 

As expected theoretically, making the loss function closer to 
the metric that is being employed (nDCG in this case) increases 
the model’s performance. The ERR@20 score also increases, 
manifesting that applying a custom cross entropy loss with a 
gain function similar to nDCG is definitely an improvement over 
the baseline. 

C. Matrices Dimensionality Reduction 

In this section we analyze two different ways of reducing 
dimensionality, giving some freedom to the model to learn what 
features to keep. Those methods are the previously described 1 
× 1 convolution, replacing the need for max pooling, and the 
row-wise soft attention mechanism, that takes the place of the k-
max pooling layers. Results of model runs with these methods 
are presented in Table II as 1x1conv and rSAtt, respectively. The 
latter was only run with the selfmade matrices as it requires 
access to the query and document embedding vectors. 

Without using a lot of extra trainable parameters, it is 
possible to observe that 1 × 1 convolutions enhance the model’s 
performance, as expected, since the model learns how to reduce 
third dimensions (channels) without applying an aggressive 
maximum operation. 

In order to get similar results to the Query Likelihood 
baseline (Table I), a lot of hyperparameter tuning was needed 
for the row-wise attention mechanism. Replacing the k-max 
pooling layer was probably the most challenging task of this 
work, since k-max uses no trainable parameters, with the 
assumption that only the top k values of each row of the matrices 
are required for the subsequent layers. 

From our experiments, the row-wise attention mechanism 
was the non-parameterless method that best worked for 
replacing k-max pooling. Nevertheless, it is possible to see that 
its results are similar to the Query Likelihood model. It can also 
be seen that the number of trainable parameters increases 
immensely when the k-max pooling layer is replaced, which 
might be indicative that a lot more train data is required to learn 
a proper dimensionality reduction with this row-wise attention 
mechanism. 

D. Changing the Input 

As previously discussed, having a single static cosine 
similarity matrix is a clear information bottleneck of the whole 
architecture. Table II shows results of methods that try to 
provide more additional information to the model, 1D 
convolutions (1Dconv), or improve the way that similarity 
matrix is constructed, soft attention mechanism (3DSAtt). Both 
architectures were only trained using the self-made matrices 
(SM) since we did not have access to the original embeddings 
used in baseline model [10]. 

As seen previously, the curse of the amount of learnable 
weights (TrW) is also present in here. In both methods, it is 
possible to note a decrease of the model’s performance as this 
number of trainable parameters increases. Even though 
convolutions are known for not having a lot of learnable units, 
this 1D convolution has filters that act over embedding vectors 
with a dimension of 300, that increases the number of 
parameters drastically, even when using a kernel size of 2, when 
a reasonable number of these filters are applied. 

ERR@20 nDCG@20
Model TrW TrD 2013 2014 mean 2013 2014 mean

RPACRR + CLF 5552 OM 0.173 0.226 0.200 0.452 0.437 0.445
SM 0.170 0.210 0.190 0.444 0.425 0.435

RPACRR + 1x1conv 5616 OM 0.167 0.223 0.195 0.450 0.433 0.442
SM 0.165 0.207 0.186 0.441 0.420 0.431

RPACRR + rSAtt 21680 SM 0.110 0.139 0.125 0.205 0.240 0.223
RPACRR + 1Dconv 16688 SM 0.142 0.175 0.159 0.252 0.293 0.273
RPACRR + 3DSAtt 19456 SM 0.127 0.159 0.143 0.220 0.256 0.238

TABLE II
ERR@20 AND NDCG@20 VALUES COMPARISON BETWEEN DIFFERENT RPACRR IMPLEMENTATIONS

described 1 ⇥ 1 convolution, replacing the need for max
pooling, and the row-wise soft attention mechanism, that takes
the place of the k-max pooling layers. Results of model runs
with these methods are presented in Table II as 1x1conv and
rSAtt, respectively. The latter was only run with the self-
made matrices as it requires access to the query and document
embedding vectors.

Without using a lot of extra trainable parameters, it is
possible to observe that 1 ⇥ 1 convolutions enhance the
model’s performance, as expected, since the model learns how
to reduce third dimensions (channels) without applying an
aggressive maximum operation.

In order to get similar results to the Query Likelihood
baseline (Table I), a lot of hyperparameter tuning was needed
for the row-wise attention mechanism. Replacing the k-max
pooling layer was probably the most challenging task of this
thesis, since k-max uses no trainable parameters, with the
assumption that only the top k values of each row of the
matrices are required for the subsequent layers.

From our experiments, the row-wise attention mechanism
was the non-parameterless method that best worked for re-
placing k-max pooling. Nevertheless, it is possible to see that
its results are similar to the Query Likelihood model. It can
also be seen that the number of trainable parameters increases
immensely when the k-max pooling layer is replaced, which
might be indicative that a lot more train data is required to
learn a proper dimensionality reduction with this row-wise
attention mechanism.

D. Changing the input

As previously discussed, having a single static cosine
similarity matrix is a clear information bottleneck of the
whole architecture. Table II shows results of methods that
try to provide more additional information to the model, 1D
convolutions (1Dconv), or improve the way that similarity
matrix is constructed, soft attention mechanism (3DSAtt).
Both architectures were only trained using the self-made
matrices (SM) since we did not have access to the original
embeddings used in baseline model [10].

As seen previously, the curse of the amount of learnable
weights (TrW) is also present in here. In both methods, it
is possible to note a decrease of the model’s performance as
this number of trainable parameters increases. Even though
convolutions are known for not having a lot of learnable

units, this 1D convolution has filters that act over embedding
vectors with a dimension of 300, that increases the number
of parameters drastically, even when using a kernel size of 2,
when a reasonable number of these filters are applied.

E. Discussion

During the initial stage of these experiments we have
successfully reproduced the baseline model and proposed
modifications that proved to be advantageous and improved
the model’s performance in terms of ERR@20 and nDCG@20
scores. Nevertheless, it is important to point out that despite
these deep learning systems showing good efficiency in rerank-
ing search results, they are limited by the retrieval system that
selected the top documents for each query in the first place,
which was the Query Likelihood model in our experiments
and on the baseline model (Table I).

We have introduced regularization as a way to achieve better
and more stable results and showed the importance of adapting
the training scheme, approximating it more to the way these
systems are evaluated.

Letting the model learn how to perform pooling operations
can also be a beneficial factor, to some extent. I.e., we have
shown how a slight change of the max pooling layer, without
adding too many additional trainable parameters, results in a
performance increase. On the other hand, alternative methods
for replacing the k-max pooling did not work so well due to
the amount of newly introduced variables.

Influenced by their recent success in Natural Language Pro-
cessing [21], soft attention mechanisms have been employed
extensively in this thesis. However, these mechanisms require
a lot of data to train properly, which was not the case in
here. Lack of training data was definitely a hard obstacle
to overcome in this project, which conditioned how PACRR
[10] was designed in the first place. Having only available
200 queries associated with the training set was definitely
not enough to learn more complicated associations between
query and documents that could then be generalized in the
test set. Nonetheless, this was not clear at the beginning of
this project, and it was only during our experiments that it
became more evident that this was a transfer learning approach
that constructs a soft matching function over fixed pre-trained
word representations, which means that the pre-trained model
plays a fundamental role.
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We have introduced regularization as a way to achieve better 
and more stable results and showed the importance of adapting 
the training scheme, approximating it more to the way these 
systems are evaluated. 

Letting the model learn how to perform pooling operations 
can also be a beneficial factor, to some extent. I.e., we have 
shown how a slight change of the max pooling layer, without 
adding too many additional trainable parameters, results in a 
performance increase. On the other hand, alternative methods 
for replacing the k-max pooling did not work so well due to the 
amount of newly introduced variables. 

Influenced by their recent success in Natural Language 
Processing [21], soft attention mechanisms have been employed 
extensively in this work. However, these mechanisms require a 
lot of data to train properly, which was not the case in here. Lack 
of training data was definitely a hard obstacle to overcome in 
this project, which conditioned how PACRR [10] was designed 
in the first place. Having only available 200 queries associated 
with the training set was definitely not enough to learn more 
complicated associations between query and documents that 
could then be generalized in the test set. Nonetheless, this was 
not clear at the beginning of this project, and it was only during 
our experiments that it became more evident that this was a 
transfer learning approach that constructs a soft matching 
function over fixed pre-trained word representations, which 
means that the pre-trained model plays a fundamental role. 

In addition, there is no report of use of these type of 
mechanisms in the area of ad-hoc retrieval, which increased the 
motivation for our investigation. Although not performing as 
good as other architectures used in the first experiments, these 
models are still able to get a score increase over the Query 
Likelihood submission that they are reranking. This leads us to 
think that more work about the use of these methods still has to 
be explored and that they can eventually produce notable 
performance gains. 

F. Best Performing Model 

Having the previous experiments concluded, we also want to 
test a final model, that basically consists of an aggregation of the 
changes that yielded better results than the baseline model, i.e., 
superior ERR@20 and nDCG@20 scores than the ones reported 
for PACRR [10] in Table I. Therefore, this final model (Figure 
5) is constructed with small modifications over the one depicted 
in Figure 2, those mostly being the replacement of the max 
pooling layers by convolutions with 1×1 kernels, the 
introduction of dropout layers after non-linear activations, the 
removal of the query IDF vector as an input to the network and 

the replacement of the binary cross entropy loss by a custom 
function (equation 4a). 

TABLE III.  ERR@20 AND NDCG@20 VALUES COMPARISON BETWEEN 
RPACRRF AND PACRR 

 
Table III shows the results for the final model, RPACRRF, 

comparing it with the original reported results by Hui et. al [10]. 
As expected, RPACRRF achieved better results than any 
antecedent model, according to the improvements previously 
obtained. It is also worth noting that this best performing model, 
depicted in Figure 5, does not have a notable computational 
overhead at test time when compared to the baseline model, 
since it ends up switching a maximum operation by a 
convolution but balances by having less input weights to the 
Multilayer Perceptron. 

 
Fig. 5. Simplified final model. 

The final model can be described as an extraction/ 
distillation-combination sequence, with CNN kernels extracting 
relevance matches, pooling layers and 1 × 1 convolutions 
distilling the matches into a series of small vectors for each 
query term, and a final block combining the query term signals 
into an ultimate relevance score for each query-document pair. 
Following this framework, we attempt to better understand the 
functionality of the convolution layers by visualizing their 
outputs. 

As an example, we use the query “What are the symptoms 
of heart attack in both men and women”, from the 2014 TREC 
Web Track. Figure 7 displays markups for different kernels sizes 
on the same document snippet, showing the strongest signal 
among all query terms, i.e., choosing the highest value for each 
column from the 2D matrix input to the different k-max pooling 
layers. The higher the opacity is (i.e., darkness of the text), the 
higher the output value is, in comparison with the other values 
from the same output matrix. The use of real valued cosine 
similarity in the input matrices allows the model to match related 
terms beyond exact matches, thereby expanding the query. For 
example, in Figure 7(a), terms such as ”coronary”, ”cardiac” and 
”health” have relatively high weights though they do not appear 
in the query. Looking at the inputs that were passed through 
CNNs, Figure 7(b) and 7(c), we can see that most unigram 

ERR@20 nDCG@20
Model TrW TrD 2013 2014 mean 2013 2014 mean
PACRR [10] 6061 OM 0.166 0.221 0.194 0.295 0.339 0.317

RPACRRF 5616 OM 0.178 0.228 0.203 0.489 0.466 0.478
SM 0.173 0.215 0.194 0.460 0.435 0.448

TABLE III
ERR@20 AND NDCG@20 VALUES COMPARISON BETWEEN RPACRRF AND PACRR

In addition, there is no report of use of these type of
mechanisms in the area of ad-hoc retrieval, which increased
the motivation for our investigation. Although not performing
as good as other architectures used in the first experiments,
these models are still able to get a score increase over the
Query Likelihood submission that they are reranking. This
leads us to think that more work about the use of these methods
still has to be explored and that they can eventually produce
notable performance gains.

F. Best performing model

Having the previous experiments concluded, we also want to
test a final model, that basically consists of an aggregation of
the changes that yielded better results than the baseline model,
i.e., superior ERR@20 and nDCG@20 scores than the ones
reported for PACRR [10] in Table I. Therefore, this final model
(Figure 5) is constructed with small modifications over the one
depicted in Figure 2, those mostly being the replacement of
the max pooling layers by convolutions with 1⇥1 kernels, the
introduction of dropout layers after non-linear activations, the
removal of the query IDF vector as an input to the network and
the replacement of the binary cross entropy loss by a custom
function (equation 4a).

Fig. 5. Simplified final model.

Table III shows the results for the final model, RPACRRF,
comparing it with the original reported results by Hui et. al
[10]. As expected, RPACRRF achieved better results than any
antecedent model, according to the improvements previously
obtained. It is also worth noting that this best performing
model, depicted in Figure 5, does not have a notable compu-
tational overhead at test time when compared to the baseline

model, since it ends up switching a maximum operation by a
convolution but balances by having less input weights to the
Multilayer Perceptron.

The final model can be described as an extraction-
distillation-combination sequence, with CNN kernels extract-
ing relevance matches, pooling layers and 1⇥ 1 convolutions
distilling the matches into a series of small vectors for each
query term, and a final block combining the query term signals
into an ultimate relevance score for each query-document pair.
Following this framework, we attempt to better understand
the functionality of the convolution layers by visualizing their
outputs. Figure 7 displays markups for different kernels sizes
on the same document snippet, showing the strongest signal
among all query terms, i.e., choosing the highest value for
each column from the 2D matrix input to the different k-max
pooling layers. The higher the opacity is (i.e., darkness of the
text), the higher the output value is, in comparison with the
other values from the same output matrix. The query that is
being analyzed can be viewed in Figure 6.

The use of real valued cosine similarity in the input ma-
trices allows the model to match related terms beyond exact
matches, thereby expanding the query. For example, in Figure
7(a), terms such as ”coronary”, ”cardiac” and ”health” have
relatively high weights though they do not appear in the
query. Looking at the inputs that were passed through CNNs,
Figure 7(b) and 7(c), we can see that most unigram signals
still keep their relatively high weights and that other bigram
and trigram matches increase the weights of other terms,
with word combinations such as ’muscle strain’ or ’coronary
artery blockage’. For the higher dimension kernel signals, it
is possible to notice that almost all terms have at least some
weight, reducing the difference between the salient text and
the remaining text. This is due to the way CNN kernels work
when combined with real valued similarity. Taking the dot
product of all terms in a window generally produces non-zero
values and acts as a smoothing effect.

VI. CONCLUSIONS

The objective of this thesis was to contribute to the de-
velopment of a reranking system for ad-hoc retrieval with
deep learning techniques that eliminate the requirement for
handcrafted query and document features.

We started by exploring previous work, selecting the state of
the art model in the dataset available, and implemented it. New
building blocks were then designed and optimized to mitigate
different information bottlenecks of the neural network.
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with word combinations such as ’muscle strain’ or ’coronary 
artery blockage’. For the higher dimension kernel signals, it is 
possible to notice that almost all terms have at least some weight, 
reducing the difference between the salient text and the 
remaining text. This is due to the way CNN kernels work when 
combined with real valued similarity. Taking the dot product of 
all terms in a window generally produces non-zero values and 
acts as a smoothing effect. 

VI. CONCLUSIONS 
The objective of this work is to contribute to the 

development of a reranking system for ad-hoc retrieval with 
deep learning techniques that eliminate the requirement for 
handcrafted query and document features. 

We started by exploring previous work, selecting the state of 
the art model in the dataset available, and implemented it. New 
building blocks were then designed and optimized to mitigate 
different information bottlenecks of the neural network. 

Despite the lack of a large volume of training data, this work 
managed to achieve good results in the reimplementation of a 
contemporary relevance matching model, on a known dataset, in 
the area of Information Retrieval. Moreover, it also shows some 
improvements by applying some techniques as regularization, 
1×1 convolutions or tweaks in the loss function, as well as some 
proposed methods on how the model could potentially be 
adapted to retain or learn more information to ultimately 
produce a querydocument relevance score. 

We expect that the work presented in this document will help 
future researchers in the areas of both Information Retrieval and 
Natural Language Processing. To aid scientific reproducibility, 
the full code base associated to this work is available at [22] for 
future use. This source code is the sole authorship of author 1. 
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(a) Text markup illustrating unigram term signals. 

 
(b) Text markup illustrating 2×2 kernel signals. 

 
(c) Text markup illustrating 3×3 kernel signals. 

Fig. 6. Text markup illustrating the input to different k-max pooling layer




