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Abstract—The aim of this paper is to introduce two types of
integral transforms that naturally generalize the lower and upper
fuzzy transforms for the residuated lattice valued functions.
For the construction of such integral transforms we consider a
multiplication based fuzzy (qualitative) integral and an integral
kernel in the form of a special binary fuzzy relation. We analyze
the basic properties of the proposed integral transforms.

Index Terms—Integral transform, Fuzzy transform, Residu-
ated lattice, Kernel, Generalized Sugeno integral.

I. INTRODUCTION

Integral transforms are mathematical operators that produce
a new function g(y) by integrating the product of an exist-
ing function f(x) and an integral kernel function K(x, y)
between suitable limits. An integral kernel function forms
a link between the domains of functions f(x) and g(y).
The Fourier and Laplace transforms belong among the most
popular integral transforms and are applied for real or com-
plex valued functions. Integral transforms are very useful in
solving practical problems from different areas of science and
engineering as solving (partial) differential equations, signal
and image processing, spectral analysis of stochastic processes
(see, e.g., [1]–[3]).

In fuzzy set theory we usually deal with functions whose
function values belong to an appropriate algebra of truth values
as a residuated lattice and its special variants as the BL-
algebra, MV-algebra, IMTL-algebra (see, e.g., [4]–[6]). Also
for this type of (residuated) lattice valued functions we can
recognize a type of integral transforms which are hidden under
the name lattice valued upper and lower fuzzy transforms.
These fuzzy transforms were proposed by Perfilieva in [7]
and further developed in several papers [8]–[14]. To show
that these fuzzy transforms are particular cases of integral
transforms, let us briefly recall their definitions. We assume
that L is a complete residuated lattice, and let P(X) and
F(X) denote the power set of X and the set of all fuzzy
sets f : X → L, respectively.1 Let X,Y be non-empty sets,
and let A = {Ay : X → L | y ∈ Y } be a fuzzy partition
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1For further notation and definitions of concepts used below, we refer to
Sections II-A and II-B.

of X , i.e.,
⋃
y∈Y Ay = X and Core(Ay) ∩ Core(Ay′) = ∅

for y 6= y′, where Core(Ay) = {x ∈ X | Ay(x) = >}. The
upper fuzzy transform is a map F ↑A : F(X) → F(Y ) given
by

F ↑A(f)(y) =
∨
x∈X

f(x)⊗Ay(x)

for any f ∈ F(X) and y ∈ Y . The lower fuzzy transform is
a map F ↓A : F(X)→ F(Y ) given by

F ↓A(f)(y) =
∧
x∈X

Ay(x)→ f(x)

for any f ∈ F(X) and y ∈ Y . To interpret these fuzzy
transforms as integral transforms, we consider a Sugeno like
fuzzy integral for residuated lattice valued functions (see [15]–
[17]) which is defined as∫ ⊗

f dµ =
∨
A∈F

(
∧
x∈A

f(x))⊗ µ(A)

for any fuzzy measure space (X,F , µ). First, if we consider
F = P(X) and µ(A) = > for any A ∈ F such that A 6= ∅,
then

∫ ⊗
f dµ =

∨
x∈X f(x). Defining from a fuzzy partition

A an integral kernel function K : X × Y → L by K(x, y) =
Ay(x) for any x ∈ X and y ∈ Y , we simply find that

F ↑A(f)(y) =

∫ ⊗
f(x)⊗K(x, y) dµ,

which can be seen as a particular case of a multiplication based
(Sugeno) integral transform. Moreover, if we consider again
F = P(X), but µ(A) = ⊥ for any A ∈ F such that A 6= X ,
then

∫ ⊗
f dµ =

∧
x∈X f(x). Considering the same integral

kernel function K as before, we simply find that

F ↓A(f)(y) =

∫ ⊗
K(x, y)→ f(x) dµ,

which again can be recognized as a particular case of a
residuum based (Sugeno) integral transform, where only the
multiplication ⊗ is replaced by the residuum →. It is well
known that the lower and upper fuzzy transforms can approx-
imate the original function [7], which is one of the valuable
properties that hold for the classical integral transforms. In
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contrast to the classical integral transforms the fuzzy trans-
forms can fully reconstruct only extraordinary functions like
constant functions, but the residuated lattice valued functions
possess only very weak properties comparing them with real
or complex-valued functions; therefore, nobody can expect
that all properties of classical integral transforms can be
simply preserved by the fuzzy transforms. Now, a natural
question appears: what kinds of properties are satisfied by the
previously introduced (Sugeno) integral transforms. This paper
aims to introduce the theory of (Sugeno) integral transform and
show some preliminary results that should stimulate further
research focusing on the more advanced properties and the
need to seek appropriate applications in areas like image or
signal processing.

The paper is structured as follows. The next section is
Preliminary, where we recall the basic definitions of complete
residuated lattices, topological and fuzzy measure spaces and
present several new results on the measurability of residu-
ated lattice valued functions. The third section is devoted to
the Sugeno like fuzzy integral for residuated lattice valued
functions. The integral transforms are introduced in the fourth
section, where we provide several basic properties for them.
The last section is a conclusion.

II. PRELIMINARIES

A. Algebra of truth values

We assume that the structure of truth values is a complete
residuated lattice, i.e., an algebra L = 〈L,∧,∨,⊗,→,⊥,>〉
with four binary operations and two constants such that
〈L,∧,∨,⊥,>〉 is a complete lattice, where ⊥ is the least
element and > is the greatest element of L, 〈L,⊗,>〉 is a
commutative monoid (i.e., ⊗ is associative, commutative and
the identity a⊗> = a holds for any a ∈ L) and the adjointness
property is satisfied, i.e.,

a ≤ b→ c iff a⊗ b ≤ c (1)

holds for each a, b, c ∈ L, where ≤ denotes the corresponding
lattice ordering. A residuated lattice is divisible, if a ⊗ (a →
b) = a ∧ b holds for arbitrary a, b ∈ L. The operation of
negation is defined as ¬a = a→ ⊥. Then a residuated lattice
satisfies the law of double negation if ¬¬a = a holds for
any a ∈ L. A divisible residuated lattice satisfying the law of
double negation is called an MV-algebra. For other information
about residuated lattices, we refer to [4], [5].

Example 2.1: It is well-known (see, e.g., [18]) that the
algebra

LT = 〈[0, 1],min,max, T,→T , 0, 1〉,

where T is a left continuous t-norm [19] and a→T b =
∨
{c ∈

[0, 1] | T (a, c) ≤ b}, defines the residuum, is a complete
residuated lattice.

Example 2.2: Let a, b ∈ [0,∞] be such that a < b. One
checks easily that L[a,b] = 〈[a, b],min,max,min,→, a, b〉,
where

c→ d =

{
b, if c ≤ d,
d, otherwise, (2)

is a complete residuated lattice. Note that L[a,b] is a special
example of a more general residuated lattice called a Heyting
algebra.

Recall that a topological space is a pair (X, τ), where X is
a non-empty set and τ ⊆ P(X) satisfies the following axioms:

(i) ∅, X ∈ τ ,
(ii)

⋃
i∈I Ui ∈ τ for any {Ui}i∈I ⊆ τ ,

(iii) U ∩ V ∈ τ for any U, V ∈ τ .
The elements of τ are called open sets. The following example
shows a construction of topology on a complete residiuated
lattice.

Example 2.3: Let u : P(L)→ P(L) be defined as

u(X) = {x ∈ L | ∃a ∈ X, a ≤ x} (3)

for any X ∈ P(L). Obviously, X ⊆ u(X). A set X ∈ P(L),
for which u(X) = X holds, is called the upper set or
upset. We use U(L) to denote the set of all upsets in L,
i.e., U(L) = {u(X) | X ∈ P(L)}. Trivially, we have
∅, X ∈ U(L). Moreover, one can simply prove that the
intersection and the union of a non-empty family of upsets
is an upset. Let us show that this is true for the intersection
of a non-empty family of upsets. Let C↓ : U(L) → U(L) be
defined as

C↓(X) = {x | ¬¬x ∈ X} (4)

for any X ∈ U(L). Since X is an upset in L and x ≤ ¬¬x,
we obtain X ⊆ C↓(X). It is easy to show that

(i) C↓(C↓(X)) = C↓(X) for any X ∈ U(L),
(ii)

⋃
i∈I C

↓(Xi) = C↓(
⋃
i∈I Xi) for any family {Xi | i ∈

I} ⊆ U(L),
(iii)

⋂
i∈I C

↓(Xi) = C↓(
⋂
i∈I Xi) for any family {Xi | i ∈

I} ⊆ U(L).
Hence, we find that C↓ is a closure operator on U(L). Note
that if the negation ¬ is involutive, i.e. ¬¬x = x for any
x ∈ L, we have C↓(X) = X for any X ∈ U(L). Now, we
can introduce a topology τC↓ on L as the system of closed
upsets in L with respect to C↓. Particularly, we define

τC↓ = {C↓(X) | X ∈ U(L)}. (5)

An extension of (4) can be done for an arbitrary a ∈ L by the
formula

C↓a(X) = {x ∈ L | ∃n ∈ N : (¬¬a)n → ¬¬x ∈ X}.

In [20], it was proved that the map C↓a satisfies the properties
(i)-(iii), where (iii) holds only for a finite family of upsets,
and (5) defines a topology on L. Note that C↓> = C↓.

B. Fuzzy sets

Let L be a complete residuated lattice, and let X be a non-
empty universe of discourse. A map A : X → L is called a
fuzzy set on X . A value A(x) is called a membership degree of
x in the fuzzy set A. The set of all fuzzy sets on X is denoted
by F(X). A fuzzy set A on X is called crisp if A = >Z
for a certain Z ⊆ X , where >Z denotes the characteristic
function of Z. Particularly, ∅ denotes the empty fuzzy set on



X , i.e., ∅(x) = ⊥ for any x ∈ X . For the sake of better
readability of the text, we do not distinguish between X and
>X and similarly for Y,Z etc. The set of all crisp fuzzy sets
(i.e., subsets) on X is denoted in the same way as the power
set of X , i.e., P(X). A fuzzy set A is said to be constant if
there is a ∈ L such that A = a ⊗ >X . A constant fuzzy set
on X is denoted by aX , i.e., aX(x) = a for any x ∈ X . We
use Supp(A) = {x | x ∈ X & A(x) > ⊥} and Core(A) =
{x | x ∈ X & A(x) = >} to denote the support and the core
of a fuzzy set A, respectively.

Let A,B be fuzzy sets on X . An extension of the operations
∧, ∨, ⊗ and → on L to the operations on F(X) is given by

(A ∧B)(x) = A(x) ∧B(x), (6)
(A ∨B)(x) = A(x) ∨B(x), (7)
(A⊗B)(x) = A(x)⊗B(x), (8)
(A→ B)(x) = A(x)→ B(x) (9)

for any x ∈ X . Obviously, A∧B and A∨B are the classical
definitions of the intersection and union of fuzzy sets A and
B, respectively. Further, we say that a fuzzy set A is a fuzzy
subset of a fuzzy set B and denote it by A ⊆ B whenever
A(x) ≤ B(x) holds for any x ∈ X . Moreover, a fuzzy set A
is equal to a fuzzy set B and denote it by A = B whenever
A ⊆ B and B ⊆ A.

Let X1, . . . , Xn be non-empty universes for n > 0. A fuzzy
set K : X1× · · · ×Xn → L is called an n-ary fuzzy relation.
For the sake od simplicity, K is called simply a fuzzy relation
if n = 2. An n-ary fuzzy relation K is said to be normal,
whenever Core(K) 6= ∅, and normal in the i-th coordinate,
whenever Core(Kxi

) 6= ∅ for any xi ∈ Xi where Kxi
: X1×

· · ·Xi−1 ×Xi+1 × · · · ×Xn → L is defined as

Kxi(x1, . . . ,xi−1, xi+1, . . . , xn) =

K(x1, . . . , xi−1, xi, xi+1, . . . , xn),
(10)

for any (x1, . . . , xi−1, xi+1, . . . , xn) ∈ X1 × · · ·Xi−1 ×
Xi+1 × · · · × Xn. An n-ary fuzzy relation K is said to be
complete normal whenever K is normal in the i-th coordinate
for any i = 1, . . . , n. A relaxation of the normality of n-
fuzzy relation is a semi-normal n-ary fuzzy relation defined
as K 6= ∅, i.e., there exists (x1, . . . , xn) ∈ X1 × · · · × Xn

such that K(x1, . . . , xn) > ⊥. Similarly one can define semi-
normal in the i-th coordinate and complete semi-normal fuzzy
relation.

C. Fuzzy measure spaces

a) Measurable spaces and functions: Let us consider
algebras of sets as follows.

Definition 2.1: Let X be a non-empty set. A subset F of
P(X) is an algebra of sets on X provided that
(A1) ∅, X ∈ F ,
(A2) if A ∈ F , then X \A ∈ F ,
(A3) if A,B ∈ F , then A ∪B ∈ F .

Definition 2.2: An algebra F of sets on X is a σ-algebra
of sets if

(A4) if Ai ∈ F , i = 1, 2, . . . , then
⋃∞
i=1Ai ∈ F .

A pair (X,F) is called a measurable space (on X) if F is an
algebra (σ-algebra) of sets on X . Let (X,F) be a measurable
space and A ∈ F(X). We say that A is F-measurable if
A ∈ F .

We now present some examples of algebras and σ-algebras
of sets on a non-empty fuzzy set on X .

Example 2.4: The sets {∅, X} and P(X) are σ-algebras of
fuzzy sets on X .

A very useful tool how to define an algebra (σ-algebra) of
sets on X is to generate it from a family of sets.

Definition 2.3: Let G ⊆ P(X) be a non-empty family of
sets. The smallest algebra (σ-algebra) on X containing G is
denoted by alg(G) (σ(G)) and is called the generated algebra
(σ-algebra) by family G.

The following well-known theorem shows how an algebra
is determined from a family of sets.

Theorem 2.1: Let G ⊆ P(X) be a non-empty family which
contains X (or ∅). Then alg(G) is the set consisting of all
complements and finite unions over G.

Note that the elements of σ(G) cannot be simply determined
and a transfinite construction has to be considered for this pur-
pose. Using the previous theorem, we can determine various
examples of algebras of sets.

Example 2.5: Let τX be a topology on X . Let B = τX . The
set consisting of all complements and finite unions over B is
an algebra of sets on X . Obviously, this generated algebra is
the smallest algebra of sets containing all sets of B.

Example 2.6: Let L be a residuated lattice and U(L) denote
the set of all upsets in L introduced in Example 2.3. The set
of all complements and finite unions over U(L) is an algebra
of sets on the residuated lattice L.

Example 2.7: Let L be a residuated lattice endowed by the
topological space τC↓a for a ∈ L introduced in Example 2.3.
Similarly to Example 2.5, the set of all complements and finite
unions over τC↓a is an algebra of sets on the residuated lattice
L.

Example 2.8: Let L be a residuated lattice and U1(L) denote
the set of all upsets determined by one element of L, i.e., {x ∈
L | x ≥ a} for any a ∈ L. Similarly to Example 2.5, the set
of all complements and finite unions over U1(L) is an algebra
of sets on the residuated lattice L. Obviously, U1(L) ⊆ U(L).

Remark 2.9: It is easy to see that if F is an algebra (σ-
algebra) of sets, then the intersection of finite (countable)
number of sets belongs to F .

Let (X,F) and (Y,G) be measurable spaces, and let f :
X → Y be a function. We say that f is F-G-measurable if
f−1(Z) ∈ F for any Z ∈ G.

Lemma 2.2: Let G ⊆ P(Y ) be a subset such that Y ∈ G,
and let (X,F) be a measurable space. A function f : X → Y
is F-alg(G)-measurable if and only if f−1(Z) ∈ F for any
Z ∈ G.
Sketch of the proof: The implication (⇒) is a simple conse-
quence of G ⊆ alg(G). The opposite implication (⇐) can be
proved expressing the elements of alg(G) with the help of the



following equalities:

f−1(Y \ Z) = X \ f−1(Z),

f−1(

n⋃
i=1

Zi) =

n⋃
i=1

f−1(Zi),

f−1(

n⋂
i=1

Zi) =

n⋂
i=1

f−1(Zi),

which hold for any Z ∈ P(Y ), {Zi | i = 1, . . . , n} ⊆ P(Y )
and a natural number n. 2

Remark 2.10: Note that an analogous statement can be
formulated for σ-algebras.

If f and g are F-G-measurable, the question arises when
f ? g, where ? ∈ {∧,∨,⊗,→}, is F-G-measurable. In
the following part, we show results partially answering the
previous question. For the purpose of this paper, we restrict
ourselves to G = U(L) and G = τC↓ .

Theorem 2.3: Let L be linearly ordered, let (X,F) be an
algebra, and let B ⊆ F(X) be a set of all F-alg(U(L))-
measurable fuzzy sets. Then

f ∧ g, f ∨ g ∈ B, f, g ∈ B.

Proof: Since the proofs for both operations are analogous,
we verify here only the case of ∧. By Remark 2.10 and
Lemma 2.2, we have to prove that for any f, g ∈ B and
Y ∈ U(L), we obtain (f ∧ g)−1(Y ) ∈ F . Put h = f ∧ g.
We show that h−1(Y ) = f−1(Y )∩g−1(Y ). Let x ∈ h−1(Y ).
Then h(x) ∈ Y . Since f(x) ≥ h(x) and g(x) ≥ h(x)
and h(x) ∈ Y , we find that f(x), g(x) ∈ Y . Hence,
we obtain x ∈ f−1(Y ) and simultaneously x ∈ g−1(Y );
therefore, x ∈ f−1(Y ) ∩ g−1(Y ), and thus h−1(Y ) ⊆
f−1(Y ) ∩ g−1(Y ). Now, let x ∈ f−1(Y ) ∩ g−1(Y ). Then
f(x) ∈ Y and g(x) ∈ Y . Since L is linearly ordered, we
find that h(x) = f(x) or h(x) = g(x); therefore, h(x) ∈ Y .
Hence, we obtain f−1(Y ) ∩ g−1(Y ) ⊆ h−1(Y ), and the
equality is proved. Since f−1(Y ), g−1(Y ) ∈ F , we find that
h−1(Y ) = f−1(Y ) ∩ g−1(Y ) ∈ F . 2

To extend the previous result for the non-linear residuated
lattices, we need an additional assumption. The proof is
omitted because of the lack of space.

Theorem 2.4: Let (X,F) be an algebra, and let B ⊆ F(X)
be a set of all F-alg(U(L))-measurable fuzzy sets. If F is
closed over arbitrary unions, then

f ⊗ g, f ∧ g, f ∨ g, f, g ∈ B.

The next statement shows a different condition under which
the measurability of the multiplication of measurable functions
is ensured. Similarly to the previous theorem, we omit the
proof.

Theorem 2.5: Let (X,F) be a σ-algebra, and let B ⊆ F(X)
be a set of all F-alg(τC↓)-measurable fuzzy sets, where τC↓
is the topology on L determined by closed upsets in L with

respect to C↓. If L is a second-countable space (complete
separable), then

f ⊗ g ∈ B, f, g ∈ B.

The last theorem of this series of statements is devoted to the
measurability of the residuum operation which is principally
different from the previous operations, because its monoton-
ically decreasing in the first argument and the monotonically
increasing in the second argument. Again the proof has to be
omitted because of the space limitation.

Theorem 2.6: Let L be linearly ordered and dense. Let
(X,F) be an algebra, and let B ⊆ F(X) be a set of all F-
alg(U(L))-measurable fuzzy sets. If F is closed over arbitrary
unions, then

f → g ∈ B, f, g ∈ B.

b) Fuzzy measures: Let us introduce the concept of fuzzy
measure as follows. The definition is a modification of the
definition of the normed measure with respect to truth values
(e.g., [21], [22]).

Definition 2.4: Let (X,F) be a measurable space. A map
µ : F → L is called a fuzzy measure on (X,F) if

(i) µ(∅) = ⊥ and µ(X) = >,
(ii) if A,B ∈ F such that A ⊆ B, then µ(A) ≤ µ(B).
A triplet (X,F , µ) is called a fuzzy measure space whenever

(X,F) is a measurable space and µ is a fuzzy measure on
(X,F).

Definition 2.5: Let (X,F , µ) be a fuzzy measure space. We
say that the fuzzy measure µ is

1) lower-continuous if {An}∞n=1 ⊆ F such that A1 ⊂ A2 ⊂
· · · and A =

⋃∞
n=1An ∈ F , then∨
n→∞

µ(An) = µ(A).

2) upper-continuous if {An}∞n=1 ⊆ F such that A1 ⊃ A2 ⊃
· · · and A =

⋂∞
n=1An ∈ F , then∧
n→∞

µ(An) = µ(A).

Example 2.11: Let LT be an algebra from Example 2.1,
where T is a continuous t-norm. Let X be a finite non-empty
set, and let F be an arbitrary algebra. Then, we can define
fuzzy measure space (X,F , µr), where

µr(A) =
|A|
|X|

for all A ∈ F , where |A| and |X| denote the cardinality of A
and |X|, respectively.

III. GENERALIZED INTEGRALS FOR FUNCTIONS VALUED
IN COMPLETE RESIDUATED LATTICES

This section is devoted to the multiplication based fuzzy
integrals introduced in [15] (see also [16]) which, in some
sense, generalizes the well known Sugeno integral [23].

The integrated functions are fuzzy sets on X . To keep the
notation of integrals the same as in the classical measure



theory, we prefer, in this section, to use denotations f , g for
the integrated functions instead of A, B. Nevertheless, we deal
with them as with fuzzy sets. For example, f ∩ g denotes
the intersection of fuzzy sets. The multiplication based fuzzy
integral is defined over the multiplication ⊗ of a complete
residuated lattice as follows.

Definition 3.1: Let (X,F , µ) be a fuzzy measure space, and
let f : X → L. The ⊗-fuzzy integral of f on X is given by∫ ⊗

f dµ =
∨

A∈F−

∧
x∈A

(f(x)⊗ µ(A)) (11)

Note that F has to be restrict to F− in (11), otherwise,
the value of the ⊗-fuzzy integral is trivially equal to > which
is a consequence of

∧
∅ = >. If the residuate lattice is an

MV-algebra, we obtain an equivalent defintion of the ⊗-fuzzy
integral.

Theorem 3.1 ( [16]): Let L be a complete MV-algebra. Then∫ ⊗
f dµ =

∨
A∈F

(
∧
x∈A

f(x))⊗ µ(A). (12)

Note that Dubois, Prade and Rico in [17] defines their multi-
plitacion based fuzzy (qualitative) integral by formula (12). Let
us emphasis that both definitions are not identical in general.
In what follows, we restrict our consideration to the ⊗-fuzzy
integral defined by formula (12).

One can see and might be surprised that we do not assume
an F-G-measurability (e.g., G = alg(U(L))) of the function f
in the previous definitions of ⊗-fuzzy integral. If we consider
F-alg(U(L))-measurability of the function f we obtain a very
useful formula for the computation of the ⊗-fuzzy integral.

Theorem 3.2: Let (X,F , µ) be a fuzzy measure space, and
let f : X → L be F-alg(U(L))-measurable. Then∫ ⊗

f dµ =
∨
a∈L

(a⊗ µ({x ∈ X | f(x) ≥ a})) . (13)

Proof: Let a ∈ L and denote La = {x ∈ L | x ≥ a}.
Note that u({a}) = La, where u is defined in Example 2.3.
By the assumption on the F-alg(U(L))-measurability of f ,
we have f−1(La) ∈ F , where f−1(La) = {x ∈ X |
f(x) ≥ a}. Put I =

∨
A∈F

(
µ(A)⊗

∧
x∈A f(x)

)
and J =∨

a∈L
(
a⊗ µ(f−1(La))

)
. First, we show that I ≤ J . Let λf :

F → L be a map given by λf (A) =
∧
x∈A f(x). Obviously,

A ⊆ f−1(Lλf (A)), and thus µ(A) ≤ µ(f−1(Lλf (A))), where
we used the fact that f is F-measurable. Since λf (F) ⊆ L,
we obtain

I ≤
∨
A∈F

λf (A)⊗ µ(f−1(Lλf (A))) ≤ J.

Further, let %f : L → F be given by %f (a) = f−1(La).
From the F-alg(U(L))-measurability of f , the map %f is well
defined. Obviously,

∧
x∈%f (a) f(x) ≥ a for any a ∈ L and

%f (L) ⊆ F . Then, we obtain

J ≤
∨
a∈L

µ(%f (a))⊗ ∧
x∈%f (a)

f(x)

 ≤ I.

Hence, we obtain I = J which concludes the proof. 2

We say that f, g ∈ F(X) are comonotonic if and only if
there is no pair x1, x2 ∈ X such that f(x1) > f(x2) and
simultaneously g(x1) < g(x2).

Lemma 3.3: Let L be linearly ordered, and let f, g ∈ F(X).
Denote Cf = {Cf (a) | a ∈ L}, where Cf (a) = {x ∈ X |
f(x) ≥ a}. Then Cf is a chain with respect to ⊆, and if f
and g are comonotonic, then Cf?g(a) = Cf (a) or Cf?g(a) =
Cg(a) for any a ∈ L, where ? ∈ {∧,∨}.
Proof: The first statement is trivial. To proof the second
statement, we restrict ourselves to the case ⊗ = ∧. The second
case can be verified analogously.

First, let us show that Cf (a) ∩Cg(a) = Cf∧g(a) holds for
any a ∈ L. Let x ∈ Cf (a)∩Cg(a). Then f(x) ≥ a and g(x) ≥
a. Hence, f(x)∧g(x) ≥ a, which implies x ∈ Cf∧g(a). Now,
let x ∈ Cf∧g(a). Since f(x) ∧ g(x) ≥ a, we immediately
get x ∈ Cf (a) and x ∈ Cg(a). Hence, x ∈ Cf (a) ∩ Cg(a).
Further, we show that Cf∧g(a) = Cf (a) or Cf∧g(a) = Cg(a)
for any a ∈ L, whenever f and g are comonotonic. Assume
that Cf (a) 6⊂ Cg(a) and simultaneously Cg(a) 6⊂ Cf (a) for
some a ∈ L. From Cf (a) 6⊂ Cg(a) there exists x ∈ Cf (a) and
x 6∈ Cg(a), which implies g(x) < a ≤ f(x), and similarly,
from Cg(a) 6⊂ Cf (a) there exists y ∈ X such that y ∈ Cg(a)
and y 6∈ Cf (a), which implies f(y) < a ≤ g(y), where we
used the linearity of L. But this is a contradiction with the
comonotonicity of f and g, since there exist x, y ∈ X with
f(x) < f(y) and simultaneously g(y) < g(x). 2

The following theorem shows that ∧-fuzzy integral is
comonotonically minitive and comonotonically maxitive (cf.
[24, Theorem 4.44]).

Theorem 3.4: Let L be linearly ordered complete Heyting
algebra, and let f, g ∈ F(X) be comonotonic maps that are
F-alg(U(L)-measurable. Then∫ ∧

(f ? g) dµ =

∫ ∧
f dµ ?

∫ ∧
g dµ

for ? ∈ {∧,∨}.
Proof: We restrict ourselves to the proof of the case ⊗ =
∧, the second case can be proved analogously. According to
Theorem 2.4, the map f∧g is F-alg(U(L)-measurable. Hence,
we can use formula (13) to compute the ∧-fuzzy integral, i.e.,∫ ∧

(f ∧ g) dµ =
∨
a∈L

a ∧ µ({x ∈ X | f(x) ∧ g(x) ≥ a})

=
∨
a∈L

a ∧ µ(Cf∧g(a)),

where we used the notation from Lemma 3.3. Since
Cf∧g(a) = Cf (a) ⊆ Cg(a) or Cf∧g(a) = Cg(a) ⊆ Cf (a)
for any a ∈ L, we obtain

µ(Cf∧g(a)) = µ(Cf (a)) ∧ µ(Cg(a)),



where we used the monotonicity of µ. Hence, we obtain∫ ∧
(f ∧ g) dµ =

∨
a∈L

a ∧ µ(Cf∧g(a))

=
∨
a∈L

a ∧ (µ(Cf (a)) ∧ µ(Cg(a)))

≤
∨
a∈L

a ∧ µ(Cf (a)) ∧
∨
b∈L

b ∧ µ(Cg(b))

=

∫ ∧
f dµ ∧

∫ ∧
g dµ.

On the opposite side, we have∫ ∧
f dµ ∧

∫ ∧
g dµ =

=
∨
a∈L

a ∧ µ(Cf (a)) ∧
∨
b∈L

b ∧ µ(Cg(b))

=
∨
a∈L

∨
b∈L

(a ∧ µ(Cf (a))) ∧ (b ∧ µ(Cg(b))

≤
∨
a∈L

∨
b∈L

(a ∧ b) ∧ (µ(Cf (a ∧ b)) ∧ µ(Cg(a ∧ b)))

=
∨
a∈L

∨
b∈L

(a ∧ b) ∧ µ(Cf∧g(a ∧ b)) =

=
∨
a∈L

a ∧ µ(Cf∧g(a) =
∫ ∧

(f ∧ g) dµ,

where we used the distributivity of ∧ over
∨

, which holds in
each Heyting algebra, and the fact that Cf (a) ≤ Cf (b) for
any a, b ∈ L with b ≤ a. 2

Remark 3.1: One can see that we used very strong assump-
tion on the complete residuated lattice. The generalization of
the previous theorem to non-linear lattices or more general
multiplication requires likely a generalization of the definition
of the concept of comonotonicity. This issue is a subject of
our future research.

IV. INTEGRAL TRANSFORMS FOR LATTICE VALUED
FUNCTIONS

In this section we propose two types of integral transforms
for functions whose function values are evaluated in a com-
plete residuated lattice. For its definition, we use multiplication
based fuzzy integral introduced in Subsection III. The integral
transforms transforms fuzzy sets from F(X) to fuzzy sets
from F(Y ).

a) (K,µ,⊗)-integral transform: We start with the defi-
nition of the integral transform which is motivate by the F ↑-
transform.

Definition 4.1: Let (X,F , µ) be a fuzzy measure space, and
let K : X×Y → L be a semi-normal in the second component
fuzzy relation. A map F⊗(K,µ) : F(X)→ F(Y ) defined by

F⊗(K,µ)(f)(y) =

∫ ⊗
K(x, y)⊗ f(x) dµ. (14)

is called a (K,µ,⊗)-integral transform.

One can see that the definition of (K,µ,⊗)-integral trans-
form is dependent on a measure µ and a semi-normal in the
second component fuzzy relation K. The fuzzy relation K will
be called the integral kernel which corresponds to the standard
notation in the theory of integral transforms. We should note
that we assume the semi-normality in the second component
for the integral kernels from a natural reason where it seems
to be strange that an element y ∈ Y has no relationship to any
element from X , i.e., K(x, y) = ⊥ for any x ∈ X . In this
case, the (K,µ,⊗)-integral transform of any function f from
F(X) at the point y ∈ Y is trivially equal to ⊥.

In what follows, let us assume that (X,F , µ) is a fuzzy
measure space and F⊗(K,µ) : F(X) → F(Y ) is a (K,µ,⊗)-
integral transform. The next theorem shows basic properties
of (K,µ,⊗)-integral transform.

Theorem 4.1: For any f, g ∈ F(X) and a ∈ L, we have
(i) F⊗(K,µ)(f) ≤ F

⊗
(K,µ)(g) if f ≤ g;

(ii) F⊗(K,µ)(f ∩ g) ≤ F
⊗
(K,µ)(f) ∧ F

⊗
(K,µ)(g);

(iii) F⊗(K,µ)(f) ∨ F
⊗
(K,µ)(g) ≤ F

⊗
(K,µ)(f ∪ g);

(iv) a⊗ F⊗(K,µ)(f) ≤ F
⊗
(K,µ)(a⊗ f);

(v) F⊗(K,µ)(a→ f) ≤ a→ F⊗(K,µ)(f);
Proof: (i)-(iii) They are consequences of the monotonicity of
the ⊗-integral.

(iv) We have

F⊗(K,µ)(a⊗ f)(y) =
∫ ⊗

K(x, y)⊗ (a⊗ f(x)) dµ

=
∨
A∈F

(µ(A)⊗
∧
x∈A

(K(x, y)⊗ (a⊗ f(x)))

≥
∨
A∈F

(µ(A)⊗ a⊗
∧
x∈A

(K(x, y)⊗ f(x))

= a⊗
∨
A∈F

(µ(A)⊗
∧
x∈A

(K(x, y)⊗ f(x)))

= a⊗
∫ ⊗

K(x, y)⊗ f(x) dµ = a⊗ F⊗(K,µ)(f)(y),

where we used a⊗
∧
i∈I bi ≤

∧
i∈I(a⊗bi) and a⊗

∨
i∈I bi ≤∨

i∈I(a⊗ bi).
(v) We have

F⊗(K,µ)(a→ f)(y) =

∫ ⊗
K(x, y)⊗ (a→ f(x)) dµ

=
∨
A∈F

(µ(A)⊗
∧
x∈A

(K(x, y)⊗ (a→ f(x)))

≤
∨
A∈F

(µ(A)⊗
∧
x∈A

(a→ (K(x, y)⊗ f(x)))

=
∨
A∈F

(µ(A)⊗ (a→
∧
x∈A

(K(x, y)⊗ f(x)))

≤
∨
A∈F

(a→ (µ(A)⊗
∧
x∈A

(K(x, y)⊗ f(x)))

≤ (a→
∨
A∈F

(µ(A)⊗
∧
x∈A

(K(x, y)⊗ f(x)))

= a→
∫ ⊗

K(x, y)⊗ f(x) dµ = a→ F⊗(K,µ)(f)(y),



where we used a ⊗ (b → c) = b → (a ⊗ c), a →
∧
i∈I bi =∧

i∈I(a→ bi) and a→
∨
i∈I bi ≥

∨
i∈I(a→ bi). 2

Theorem 4.2: If L is an MV-algebra, then a⊗F⊗(K,µ)(f) =
F⊗(K,µ)(a⊗ f) for any f ∈ F(X) and a ∈ L.

Proof: Since L is an MV-algebra, it holds that
∧
i∈I(a ⊗

bi) = a⊗
∧
i∈I bi. Form the proof of (iv) of Theorem 4.1, one

can simply derive the desired equality. 2

Theorem 4.3: Let (X,F , µ) be a fuzzy measure, and let K
be an integral kernel. If µ({x ∈ X | K(x, y) = >}) = > for
any y ∈ Y , then F⊗(K,µ)(aX) = aY .
Proof: Assume that µ({x ∈ X | K(x, y) = >}) = > for any
y ∈ Y , and let a ∈ L. Put Xy = {x ∈ X | K(x, y) = >}.
Then

F⊗(K,µ)(aX)(y) =
∨
A∈F

(µ(A)⊗
∧
x∈A

(K(x, y)⊗ (a⊗>X(x))

=
∨
A∈F

(µ(A)⊗
∧
x∈A

(K(x, y)⊗ a)

≥ µ(Xy)⊗
∧
x∈Xy

(K(x, y)⊗ a = a = aY (y).

On the other side, we trivially have µ(A)⊗
∧
x∈A(K(x, y)⊗

a) ≤ a for any A ∈ F . Hence, we find F⊗(K,µ)(aX)(y) ≤ a =

aY (y), which proves the desired equality. 2

As a special case of the previous theorem, we obtain the
preservation of the unit function by the (K,µ,⊗)-integral
transform, i.e. F⊗(K,µ)(>X) = >Y , if µ({x ∈ X | K(x, y) =

>}) = > for any y ∈ Y . Unfortunately, the opposite
implication of this statement is not true in general, i.e.,
µ({x ∈ X | K(x, y) = >}) = > for any y ∈ Y is also a
necessary condition. The following theorem shows a sufficient
condition for the fuzzy measures and integral kernels to get
the equivalence in the previous theorem. Since the proof is too
long to be presented here, we have to omit it because of the
space limitation.

Theorem 4.4: Let L be linearly ordered, let µ be a upper-
continuous fuzzy measure on (X,F), and let K(·, y) be
an F-alg(U(L)-measurable fuzzy set for any y ∈ Y . Then
F⊗(K,µ)(>X) = >Y if and only if

µ({x ∈ X | K(x, y) = >}) = >

for any y ∈ Y .
Let K be an integral kernel. We say that functions f, g ∈
F(X) are (K,⊗)-comonotonic (or comonotonically compat-
ible with K and ⊗) if f ⊗ K(·, y) and g ⊗ K(·, y) are
comonotonic for any y ∈ Y .

Theorem 4.5: Let L be a linearly ordered complete Heyting
algebra. Let f, g,K(·, y) be F-alg(U(L)-measurable for any
y ∈ Y . If f and g are (K,∧)-comonotonic, then

F∧(K,µ)(f ∧ g) = F∧(K,µ)(f) ∧ F
∧
(K,µ)(g) (15)

F∧(K,µ)(f ∨ g) = F∧(K,µ)(f) ∨ F
∧
(K,µ)(g) (16)

Proof: It is a simple consequence of Theorems 2.3 and 3.4
and the fact that f ∧K(·, y) and g ∧K(·, y) are comonotonic
for any y ∈ L. 2

From the previous theorem, one can see that a “linear-
ity” condition for the (K,µ,⊗)-integral transform holds only
under the satisfaction of a very special condition, namely,
the infimum or supremum is preserved only for the (K,⊗)-
comonotonic functions.

b) (K,µ,→)-integral transform.: The next definition of
the integral transform is motivated by the F ↓-transform.

Definition 4.2: Let (X,F , µ) be a fuzzy measure space, and
let K : X×Y → L be a semi-normal in the second component
fuzzy relation. A map F→(K,µ) : F(X)→ F(Y ) defined by

F→(K,µ)(f)(y) =

∫ ⊗
K(x, y)→ f(x) dµ

is called a (K,µ,→)-integral transform.
Similarly to the (K,µ,⊗)-integral transform, we assume the

semi-normality in the second argument for the integral trans-
form, since the (K,µ,→)-integral transform of any function
from F(X) is trivially equal to > for any point y ∈ Y such
that K(x, y) = ⊥ for any x ∈ X .

In what follows, let us assume that (X,F , µ) is a fuzzy
measure space and F→(K,µ) : F(X) → F(Y ) is a (K,µ,→)-
integral transform. The following theorem shows basic prop-
erties of (K,µ,→)-integral transform.

Theorem 4.6: For any f, g ∈ F(X) and a ∈ L, we have
(i) F→(K,µ)(f) ≤ F

→
(K,µ)(g) if f ≤ g;

(ii) F→(K,µ)(f ∧ g) ≤ F
→
(K,µ)(f) ∧ F

→
(K,µ)(g);

(iii) F→(K,µ)(f) ∨ F
→
(K,µ)(g) ≤ F

→
(K,µ)(f ∨ g);

(iv) a⊗ F→(K,µ)(f) ≤ F
→
(K,µ)(a⊗ f);

(v) F→(K,µ)(a→ f) ≤ a→ F→(K,µ)(f),
Proof: It can be done by similar arguments as the proof of
Theorem 4.1. 2

Theorem 4.7: Let (X,F , µ) be a fuzzy measure, and let K
be an integral kernel. Then F→(K,µ)(>X) = >Y . Moreover, if
µ({x ∈ X | K(x, y) = >}) = > and µ(Z) ≤ a for any
Z ∈ F such Z 6⊆ {x ∈ X | K(x, y) = >} holds for any
y ∈ Y and a certain a ∈ L, then F→(K,µ)(aX) = aY .
Proof: We have

F→(K,µ)(>X)(y) =

∫ ⊗
K(x, y)→ >X(x) dµ = > = >Y (y),

where we used K(x, y) → >X(x) = >, which holds in any
residuated lattice.

Let the condition of the theorem is satisfied. Put X>y =
{x ∈ X | K(x, y) = >}. Then

F→(K,µ)(aX)(y =

∫ ⊗
K(x, y)→ aX(x) dµ

=
∨
A∈F

(µ(A)⊗
∧
x∈A

(K(x, y)→ aX(x))),

=
∨
A∈F
A⊆X>y

(µ(A)⊗
∧
x∈A

(K(x, y)→ aX(x)))∨

∨
A∈F
A6⊆X>y

(µ(A)⊗
∧
x∈A

(K(x, y)→ aX(x))) = aY (y),



where the inequality

µ(A)⊗
∧
x∈A

(K(x, y)→ aX(x)) ≤ µ(A) ≤ a

is used. 2

One can see that the different types of integral transforms
requires different assumptions to preserve a constant function.

Let K be an integral kernel. We say that functions f, g ∈
F(X) a (K,→)-comonotonic (or comonotonicaly compatible
with K and →) if f → K(·, y) and g → K(·, y) are
comonotonic for any y ∈ Y . We finish the paper with the
statement showing conditions under which the infimum or
supremum of functions is preserved by the (K,µ,→)-fuzzy
transform.

Theorem 4.8: Let L be a linearly ordered complete Heyting
algebra which is dense. Let f, g,K(·, y) be F-alg(U(L)-
measurable for any y ∈ Y . If f and g are (K,→)-
comonotonic, then

F→(K,µ)(f ∧ g) = F→(K,µ)(f) ∧ F
→
(K,µ)(g) (17)

F→(K,µ)(f ∨ g) = F→(K,µ)(f) ∨ F
→
(K,µ)(g) (18)

Proof: It is a simple consequence of Theorems 2.6 and 3.4,
the fact that f → K(·, y) and g → K(·, y) are comonotonic
for any y ∈ L and a → (b ∧ c) ≤ (a → b) ∧ (a → c), which
holds in any linearly ordered residuated lattice. 2

V. CONCLUSION

In this paper, we introduced two types of integral transforms
of residuated lattice valued functions, which are based on
the multiplication based fuzzy integral (⊗-fuzzy integral) and
an integral kernel function. We investigated the measura-
bility of various constructions of residuated lattice valued
functions. Note that the measurability of functions leads to
the beneficial formulation of the ⊗-fuzzy integral, as was
shown in Theorem 3.2. Further, we investigated the property
of the preservation of the infimum and supremum for so-
called comonotonic functions. We showed a partial result
for comonotonic functions, whose function values belong to
a linearly ordered complete Heyting algebra. Note that a
generalization of this result is a non-trivial task for a further
research. Finally, we provided a basic analysis of the proposed
integral transforms focusing on the monotonicity property,
preservation of a constant function, or preservation of the
infimum and supremum. A deeper analysis of the integral
transforms properties, as well as the introduction of other types
of integral transforms based on so-called residuum based fuzzy
integrals (desintegrals) [15], [17], [25], is a subject of our
future research.
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