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Abstract—Two of the main research lines in the theory of
aggregation functions is the extension to more general domains
and the relaxation of the monotonicity conditions. In this work,
we discuss the state-of-the-art of the main introduced relaxed
forms of monotonicity that can be found in the literature,
i.e., weak, directional, ordered directional and strengthened
ordered directional monotonicity. We pay special attention to the
extension of a relaxed form of monotonicity to the interval-valued
setting and we propose the concepts of ordered and strengthened
ordered directional monotonicity for this general setting. More-
over, we study the main properties of the functions that satisfy the
introduced properties and present some construction methods.

Index Terms—Aggregation function, Directional monotonicity,
Ordered directional monotonicity, Strengthened ordered direc-
tional monotonicity, Interval-valued function

I. INTRODUCTION

The idea of aggregation deals with the problem of represent-
ing the information given by n sources by a single value. In the
specific case of numerical values in [0, 1], a function that takes
n numerical inputs, outputs a number in the same interval,
satisfies two specific boundary conditions and is increasing
with respect to all its arguments is called aggregation function.
This family of functions has been greatly studied, in part,
because of their relevance in many applications [1]–[4].

Among the cutting edge research lines in the theory of
aggregation functions, we find the extension of aggregation
functions to more general scales and the relaxation of the
monotonicity conditions [5], [6].

Regarding the extension to more general scales, the case of
interval-valued functions stands out as it is one of the predomi-
nant manners of handling uncertainty and measurement errors.
Thus, interval-valued aggregation functions have caught the
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attention of many researchers [7]–[11]. Certainly, there also
exist many works dealing with the extension of aggregation
functions to other settings [12]–[14].

The relaxation of the monotonicity conditions are motivated
by the existence of many functions that are valid to fuse data
but do not satisfy the requirement of monotonicity, e.g., the
Gini and Lehmer means [15]. However, the idea of aggregation
suggest that, if not the usual, some monotonicity-type condi-
tion should be required to fuse information. Consequently, in
an attempt of creating a framework of functions that are valid
to aggregate data but do not necessarily meet all the properties
of aggregation functions, Wilkin and Beliakov proposed the
notion of weak monotonicity [16]. This concept was then
generalized to directional monotonicity [17], which studies
the increase of functions f : [0, 1]n → [0, 1] along real rays
in Rn. From the applied perspective, directional monotonicity
has enabled great achievements in the field of fuzzy rule-based
classification algorithms [18], [19].

Furthermore, there exist more proposals regarding the re-
laxation of the monotonicity condition of aggregation func-
tions. In particular, ordered directional monotonicity [20] and
strengthened ordered directional monotonicity [21] study a
monotonicity condition along rays that vary depending on the
specific input vector. Besides, ordered directional monotonicity
has been applied in the task of edge detection [22], a computer
vision problem.

More recently, works regarding both trends in the ag-
gregation theory have been published. In [23], directional
monotonicity for functions that fuse a collection of types of
fuzzy values is proposed and, in [24], the case of interval-
valued functions is further studied.

In this work, we review the state-of-the-art of the cited
weaker forms of monotonicity in the aggregation framework
and we propose the introduction of the notions of ordered
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directional monotonicity and strengthened ordered directional
monotonicity for the interval-valued setting. We also study
the particularities of each concept, provide some construction
methods and the most relevant properties.

This work is organized as follows: in Section II we introduce
the notation and expound some preliminary concepts about
interval-valued aggregation functions and admissible orders.
In Section III we review all the relaxed forms of monotonicity,
such as weak, directional, ordered directional and strengthened
ordered directional monotonicity, as well as their main proper-
ties. In Section IV we show the definition and basic features of
directional monotonicity in the interval-valued setting and in
Section V we propose the concepts of ordered directional and
strengthened ordered directional monotonicity for the interval-
valued setting. Additionally, we study their main properties
and discuss some construction methods. We end this work by
some concluding remarks and our goals for future work in
Section VI.

II. PRELIMINARIES

A. General notation

In this work, we use the letter n to refer to a positive integer,
we denote points in the unit hypercube by bold letters, x =
(x1, . . . , xn) ∈ [0, 1]n, and real vectors, connoting directions
in the space, as ~r ∈ Rn. Similary, when dealing with intervals,
we denote a vector of intervals with capital bold letters, X =(
[x1, x1], . . . , [xn, xn]

)
∈ L([0, 1])n, and vectors in (R2)n by

arrowed bold letters, ~v = ((a1, b1), . . . , (an, bn)) ∈ (R2)n.
Additionally, we need to permute the components of n-

tuples and, in that account, we denote by Sn the set of all
permutations of n elements. If σ ∈ Sn and x ∈ [0, 1]n or
~r ∈ Rn, then xσ refers to the point (xσ(1), . . . , xσ(n)) ∈
[0, 1]n and, similarly, ~rσ = (rσ(1), . . . , rσ(n)) ∈ Rn. In the
case of intervals, we use the same notation, i.e., Xσ =(
[xσ(1), xσ(1)], . . . , [xσ(n), xσ(n)]

)
∈ L([0, 1])n and ~vσ =(

(aσ(1), bσ(1)), . . . , (aσ(n), bσ(n))
)
∈ (R2)n.

B. Interval-valued aggregation functions

Let us recall the notion of aggregation function [1], [2].
Definition 1: A function A : [0, 1]n → [0, 1] is an aggrega-

tion function if it satisfies the following:
1) A(0, . . . , 0) = 0;
2) A(1, . . . , 1) = 1;
3) A is increasing1 with respect to all its arguments.
In this work, we are interested in the set of all closed

intervals contained in [0, 1], which we denote by

L([0, 1]) = {[a, b] | 0 ≤ a ≤ b ≤ 1}.

Note that given [a, b], [c, d] ∈ L([0, 1]), we can define the
following order relation: [a, b] ≤L [c, d] if and only if a ≤ c
and b ≤ d, which is known as standard partial order. The

1We use the term increasing to refer to the property of non-decreasingness,
i.e., if (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that xi ≤ yi for all i ∈
{1, . . . , n}, then A(x1, . . . , xn) ≤ A(y1, . . . , yn).

pair (L([0, 1]),≤) is a bounded lattice whose top and bottom
elements are 1L = [1, 1] and 0L = [0, 0], respectively.

Similarly, we can extend the standard partial order to
the set L([0, 1])n = L([0, 1]) × . . . × L([0, 1]) component-
wise, i.e., given X = ([x1, x1], . . . , [xn, xn]) and Y =
([y1, y1], . . . , [yn, yn]), we set

X ≤Ln Y if and only if [xi, xi] ≤L [yi, yi] for all i ∈ {1, . . . , n}.

Thus, we recall the definition of an interval-valued, IV,
aggregation function.

Definition 2: A function A : L([0, 1])n → L([0, 1]) is an IV
aggregation function if it satisfies the following:

1) A(0L, . . . , 0L) = 0L;
2) A(1L, . . . , 1L) = 1L;
3) A is increasing with respect to each argument consider-

ing the order ≤L.

C. Admissible orders

Although the principal order relation we use in L([0, 1]) is
the standard partial order ≤L, the existence of incomparable
intervals complicates the definition of some of the concepts
that we propose in this work. Thus, we make use of admissible
orders [25], a family of total orders that refine the partial order
in L([0, 1]).

Definition 3: An order � on L([0, 1]) is admissible if � is
a total order on L([0, 1]), and for all [x, x], [y, y] ∈ L([0, 1]),
if [x, x] ≤L [y, y] then [x, x] � [y, y].

Lexicographical orders and the one defined in [26] are
examples of admissible orders.

Example 1: The following are admissible orders on
L([0, 1]). (i)

1) [x, x] �Lex1 [y, y] if x < y or (x = y and x ≤ y).
2) [x, x] �Lex2 [y, y] if x < y or (x = y and x ≤ y).
3) [x, x] �XY [y, y] if x + x < y + y or (x + x = y +

y and y − y ≤ x− x).
Furthermore, admissible orders can be constructed in terms

of two generating functions defined on K([0, 1]) = {(x, y) ∈
[0, 1]2 | x ≤ y}: an admissible order � on L([0, 1]) is said to
be generated by two continuous functions f, g : K([0, 1])→ R
if it holds that, for all [x, x], [y, y] ∈ L([0, 1]),

[x, x] � [y, y] if and only if

[f(x, x), g(x, x)] �Lex1 [f(y, y), g(y, y)].

Please see [25] for details of the properties that the cited
functions ought to satisfy.

Example 2: Taking that construction method into account,
we can define a family of admissible orders based on the
function Kα : K([0, 1]) → [0, 1] given by Kα(x, y) =
(1 − α)x + αy for some constant α ∈ [0, 1]. Indeed, given
α, β ∈ [0, 1] such that α 6= β, the relation �α,β defined by,
for [x, x], [y, y] ∈ L([0, 1]),

[x, x] �α,β [y, y] if and only if Kα(x, x) < Kα(y, y) or

(Kα(x, x) = Kα(y, y) and

Kβ(x, x) ≤ Kβ(y, y)),



is an admissible order on L([0, 1]).
The admissible orders �Lex1, �Lex2 and �XY are particu-

lar cases of �α,β orders; �0,1, �1,0 and �0.5,1, respectively.

III. RELAXED FORMS OF MONOTONICITY

In this work we handle the following relaxed forms of
monotonicity: weak monotonicity, directional monotonicity,
ordered directional monotonicity and strengthened ordered
directional monotonicity.

Definition 4 ( [16]): Let f : [0, 1]n → [0, 1] be a
function. We say that f is weakly increasing (resp. weakly
decreasing), if for all c > 0 and (x1, . . . , xn) ∈ [0, 1]n

such that 0 ≤ xi + c ≤ 1 for all i ∈ {1, . . . , n}, it
holds that f(x1, . . . , xn) ≤ f(x1 + c, . . . , xn + c) (resp.
f(x1, . . . , xn) ≥ f(x1 + c, . . . , xn + c)).

The rationale behind weak monotonicity is to define a
property that is less restrictive than standard monotonicity
but captures the fact that if all the inputs increase the same
amount then the output should also increase. Geometrically,
this property can be seen as an increase defined by the vector
~1 = (1, . . . , 1) and it can be generalized taking an arbitrary
vector ~0 6= ~r ∈ Rn.

Definition 5 ( [17]): Let ~0 6= ~r ∈ Rn and f : [0, 1]n →
[0, 1] be a function. We say that f is ~r-increasing (resp. ~r-
decreasing), if for all c > 0 and x = (x1, . . . , xn) ∈ [0, 1]n

such that x + c~r ∈ [0, 1]n, it holds that f(x) ≤ f(x + c~r)
(resp. f(x) ≥ f(x+ c~r)).

A function f that is simultaneously ~r-increasing and ~r-
decreasing is said to be ~r-constant.

These two forms of monotonicity are based on monotonicity
along a fixed ray ~r ∈ Rn, but there exist some relaxed forms
of monotonicity for which the direction of increasingness is
variable depending on the specific point of the domain. In
particular, the next definition presents the notion of ordered
directional (OD) monotonicity [20].

Definition 6 ( [20]): Let ~r ∈ Rn \ {~0} and f : [0, 1]n →
[0, 1]. We say that f is ordered directionally (OD) ~r-increasing
(resp. OD ~r-decreasing) if for all c > 0, σ ∈ Sn and x ∈
[0, 1]n with xσ(1) ≥ · · · ≥ xσ(n) such that

1 ≥ xσ(1) + cr1 ≥ · · · ≥ xσ(n) + crn ≥ 0, (1)

it holds that
f(x) ≤ f(x+ c~rσ−1)

(resp. f(x) ≥ f(x + c~rσ−1)), where σ−1 is the inverse
permutation of σ.

A function f that is simultaneously OD ~r-increasing and
OD ~r-decreasing is said to be OD ~r-constant.

Modifying the requirement (1), the concept of strengthened
ordered directional (SOD) monotonicity was presented.

Definition 7 ( [21]): Let ~r ∈ Rn \ {~0} and f : [0, 1]n →
[0, 1]. We say that f is strengthened ordered directionally
(SOD) ~r-increasing (resp. SOD ~r-decreasing) if for all c > 0,
σ ∈ Sn and x ∈ [0, 1]n with xσ(1) ≥ · · · ≥ xσ(n) such that
xσ + c~r ∈ [0, 1]n, it holds that

f(x) ≤ f(x+ c~rσ−1)

(resp. f(x) ≤ f(x+ c~rσ−1)).
A function f that is simultaneously SOD ~r-increasing and

SOD ~r-decreasing is said to be SOD ~r-constant.
The following are examples of functions that satisfy the

presented monotonicity conditions.
Example 3:
Let L : [0, 1]2 → [0, 1] be the function given by

L(x, y) =
x2 + y2

x+ y
,

with the convention 0
0 = 0. This function, known as Lehmber

mean, only increases along the direction given by the vector
(1, 1) [17]. Therefore, it is weakly increasing but not increas-
ing.

The next example is an instance of a restricted equivalence
function [27], a family of functions that have been applied
[28], [29]. Moreover, it illustrates the differences between OD
and SOD monotonicity.

Example 4: Let f : [0, 1]2 → [0, 1] be the function given by

f(x, y) = 1− |x− y|.

In [30] it is shown that f is SOD ~r-increasing if and only
if ~r = (r, r) ∈ R2 \ {(0, 0)} and f is OD ~r-increasing if and
only if ~r = (r1, r2) ∈ R2 \ {(0, 0)} such that r1 ≤ r2.

A relevant fact about the mentioned forms of monotonicity
is that the set of directions along which a function increases is
closed under convex combination, in the sense of the following
three theorems.

Theorem 1 ( [17]): Let ~r,~s ∈ Rn \ {~0}, a, b > 0 and
x ∈ [0, 1]n and c > 0 such that whenever x and x + c(a~r +
b~s) ∈ [0, 1]n, it holds that x+ca~r ∈ [0, 1]n or x+cb~s ∈ [0, 1]n.
Thus, if a function f : [0, 1]n → [0, 1] is both ~r-increasing and
~s-increasing, then f is also (a~r + b~s)-increasing.

Theorem 2 ( [20]): Let ~r,~s ∈ Rn\{~0}, a, b > 0, x ∈ [0, 1]n,
c > 0 and σ ∈ Sn such that whenever 1 ≥ xσ(1) ≥ . . . ≥
xσ(n) ≥ 0 and

1 ≥ xσ(1) + c(ar1 + bs1) ≥ . . . ≥ xσ(n) + c(arn + bsn) ≥ 0,

it holds that

1 ≥ xσ(1) + car1 ≥ . . . ≥ xσ(n) + carn ≥ 0,

or
1 ≥ xσ(1) + cbs1 ≥ . . . ≥ xσ(n) + cbsn ≥ 0.

Thus, if a function f : [0, 1]n → [0, 1] is both OD ~r-increasing
and OD ~s-increasing, then f is also OD (a~r+ b~s)-increasing.

Theorem 3 ( [21]): Let ~r,~s ∈ Rn, a, b > 0, x ∈ [0, 1]n, c >
0 and σ ∈ Sn such that whenever 1 ≥ xσ(1) ≥ . . . ≥ xσ(n) ≥
0 and xσ+ c(a~r+ b~s) ∈ [0, 1]n, it holds that x+ ca~r ∈ [0, 1]n

or x+ cb~s ∈ [0, 1]n. Thus, if a function f : [0, 1]n → [0, 1] is
both SOD ~r-increasing and SOD ~s-increasing, then f is also
SOD (a~r + b~s)-increasing.

Consequently, standard monotonicity of a function f :
[0, 1]n → [0, 1] can be characterized in terms of each of the
defined forms of monotonicity.



Theorem 4 ( [21]): Let f : [0, 1]n → [0, 1] and {~e1, . . . , ~en}
be such that ~ei = (0, . . . , 0, 1

î
, 0, . . . , 0) ∈ Rn for each i ∈

{1, . . . , n}. Then, the following are equivalent:

1) f is increasing;
2) f is ~ei-increasing for all i ∈ {1, . . . , n};
3) f is OD ~ei-increasing for all i ∈ {1, . . . , n};
4) f is SOD ~ei-increasing for all i ∈ {1, . . . , n}.

It is also equivalent for a function f : [0, 1]n → [0, 1] to be
weakly increasing, OD and SOD ~1-increasing.

IV. WEAK AND DIRECTIONAL MONOTONICITY OF IV
FUNCTIONS

In this section we show the developments made in [23],
for the general framework of Riesz spaces, and in [24], for
interval-valued functions F : L([0, 1])n → L([0, 1]), regarding
weak and directional monotonicity. Thus, this section sets the
bases over which we define the concepts of OD and SOD
monotonicity for IV functions.

We recall the definition of standard and directional mono-
tonicity for IV functions.

Definition 8: We say that a function F : L([0, 1])n →
L([0, 1]) is increasing (resp. decreasing) if for all X,Y ∈
L([0, 1])n such that X ≤Ln Y, it holds that F (X) ≤L F (Y)
(resp. F (X) ≥L F (Y)).

Definition 9: Let ~v = ((a1, b1), . . . , (an, bn)) ∈ (R2)n such
that (ai, bi) 6= ~0 for some i ∈ {1, . . . , n}. We say that a
function F : L([0, 1])n → L([0, 1]) is ~v-increasing (resp. ~v-
decreasing) if for all X ∈ L([0, 1])n and c > 0 such that
X+c~v ∈ L([0, 1])n, it holds that F (X) ≤L F (X+c~v) (resp.
F (X) ≥L F (X+ c~v)).

If the function F is both ~v-increasing and ~v-decreasing,
then we say that F is ~v-constant.

Note that, as in the case of functions f : [0, 1]n → [0, 1],
whose directions of increasingness lie in Rn rather than in
[0, 1]n, the directions of increasingness of IV functions F lie in
the vector-lattice (R2)n. The rationale of this fact is explained
in [23].

Furthermore, from Definition 9, we can define the concept
of weak monotonicity of IV functions.

Definition 10: Let ~0 6= (a, b) ∈ R2. We say that a function
F : L([0, 1])n → L([0, 1]) is (a, b)-weakly increasing (resp.
(a, b)-weakly decreasing) if for all X ∈ L([0, 1])n and c >
0 such that X + c ((a, b), . . . , (a, b)) ∈ L([0, 1])n, it holds
that F (X) ≤L F (X+ c ((a, b), . . . , (a, b))) (resp. F (X) ≥L
F (X+ c ((a, b), . . . , (a, b)))).

Standard weak increasingness coincides with c-weak in-
creasingness for any c > 0. The following is an example of a
weakly monotone IV function.

Example 5: Let F : L([0, 1])2 → L([0, 1]) be given by

F ([x1, x1], [x2, x2]) =
1

2

[
x1 + x2,max

(
x1 + x2, x1 + x2

)]
.

Note that, for a, b ∈ [0, 1] and c > 0, it holds that

F (([x1, x1], [x2, x2]) + c((a, b), (a, b)))

= F ([x1, x1], [x2, x2]) + c

[
a,
a+ b

2

]
.

Therefore, F is (a, b)-weakly increasing if and only if a > 0
and a+ b ≥ 0, or a = 0 and b > 0.

A. Relevant properties

In this subsection, we show that the relevant properties
that standard directionally monotone functions satisfy are
also valid properties for directionally monotone IV functions.
Specifically, they are the adaptations of Theorems 1 and 4.

Theorem 5 ( [24]): Let a, b > 0 and ~v, ~u ∈ (R2)n \ {~0}
such that for all X ∈ L([0, 1])n and c > 0 that satisfy
X+ c(a~v + b~u) ∈ L([0, 1])n, it holds that either X+ ca~v ∈
L([0, 1])n or X + cb~u ∈ L([0, 1])n. Then, if a function
F : L([0, 1])n → L([0, 1]) is both ~v-increasing (resp. ~v-
decreasing) and ~u-increasing (resp. ~u-decreasing), then F is
(a~v + b~u)-increasing (resp. (a~v + b~u)-decreasing).

To translate Theorem 4 to the interval-valued setting, we
need the family of vectors ~ei that are filled with 0s except
for the ith position, that is occupied with a 1, for all i ∈
{1, . . . , 2n}. We call this set of vectors the canonical basis
of (R2)n. In the two dimensional case, the family of vectors
{~ei}4i=1 is given by the following:

~e1 = ((1, 0), (0, 0)) ; ~e2 = ((0, 1), (0, 0)) ;

~e3 = ((0, 0), (1, 0)) ; ~e4 = ((0, 0), (0, 1)) .

Theorem 6 ( [24]): Let F : L([0, 1])n → L([0, 1]) and let
{~ei}2ni=1 be the canonical basis of (R2)n. Then, F is increasing
(resp. decreasing) if and only if F is ~ei-increasing (resp. ~ei-
decreasing) for all i ∈ {1, . . . , 2n}.

B. Special class of IV functions

There exists a special class of IV functions regarding
their directional monotonicity, in the sense that it can be
expressed as standard directional monotonicity of certain func-
tions defined on [0, 1]n. This family of IV functions are called
representable [31].

Definition 11: We say that a function F : L([0, 1])n →
L([0, 1]) is representable if there exist two functions f, g :
[0, 1]n → [0, 1] satisfying

f(x1, . . . , xn) ≤ g(y1, . . . , yn),

whenever xi ≤ yi for all i ∈ {1, . . . , n} and such that

F ([x1, x1], . . . , [xn, xn]) = [f(x1, . . . , xn), g(x1, . . . , xn)].

We say that f and g are the component functions of F and
we write F ≡ (f, g).

The particularity of representable functions is that the
directions along which they increase are fixed by the directions
along which the component functions increase.

Theorem 7 ( [24]): Let F ≡ (f, g) be representable and
let ~a = (a1, . . . , an) and ~b = (b1, . . . , bn) ∈ Rn be such



that ~a,~b 6= ~0. Thus, F is ((a1, b1), . . . , (an, bn))-increasing
(resp. ((a1, b1), . . . , (an, bn))-decreasing) if and only if f is
~a-increasing (resp. ~a-decreasing) and g is ~b-increasing (resp.
~b-decreasing).

Theorem 7 assists in the construction of examples of di-
rectionally monotone IV functions, as it is possible to use all
the examples in the literature regarding standard directionally
monotone functions [16], [17], [32]–[34].

Example 6: In [17], it is proven that the arithmetic mean
is ~r-increasing if and only if ~r ∈ Rn \ {~0} is such that∑n
i=1 ri ≥ 0. Similarly, it is easy to check that the maximum

is ~s increasing only if ~s ∈ Rn \ {~0} satisfies that si ≥ 0 for
all i ∈ {1, . . . , n}.

Thus, the function F : L([0, 1])n → L([0, 1]), given by

F ([x1, x1], . . . , [xn, xn]) =

[
1

n

n∑
i=1

xi,max(x1, . . . , xn)

]
,

is only ~v-increasing for directions

~v = ((a1, b1), . . . , (an, bn)) ∈ (R2)n \ {~0}

such that

•

n∑
i=1

ai ≥ 0; and

• bi ≥ 0 for all i ∈ {1, . . . , n}.

V. OD AND SOD MONOTONICITY OF IV FUNCTIONS

In this section we introduce the concepts of OD and
SOD monotonicity for IV functions, as well as present their
principal properties.

The main problem of extending OD (and SOD) monotonic-
ity to the IV framework is the fact of ordering the inputs of the
function, which, in this scenario, are intervals and, therefore,
there exist incomparable elements. The solution we propose
to address this problem is to make use of admissible orders,
which are total orders that refine the standard partial order for
intervals, i.e., when ordering the input intervals in a decreasing
manner, the relative position of the comparable intervals is
preserved.

Definition 12: Let ~v = ((a1, b1), . . . , (an, bn)) ∈ (R2)n

such that (ai, bi) 6= ~0 for some i ∈ {1, . . . , n} and let � be an
admissible order. We say that a function F : L([0, 1])n →
L([0, 1]) is OD ~v-increasing (resp. OD ~v-decreasing) with
respect to � if for all c > 0, σ ∈ Sn and X ∈ L([0, 1])n

with [xσ(1), xσ(1)] � · · · � [xσ(n), xσ(n)] such that

[1, 1] � [xσ(1), xσ(1)] + c(a1, b1)

� · · · � [xσ(n), xσ(n)] + c(an, bn)

� [0, 0],

it holds that
F (X) ≤ F (X+ c~rσ−1)

(resp. F (X) ≥ F (X + c~rσ−1)), where σ−1 is the inverse
permutation of σ.

A function F that is simultaneously OD ~r-increasing and
OD ~r-decreasing is said to be OD ~r-constant.

Definition 13: Let ~v = ((a1, b1), . . . , (an, bn)) ∈ (R2)n

such that (ai, bi) 6= ~0 for some i ∈ {1, . . . , n} and let � be
an admissible order. We say that a function F : L([0, 1])n →
L([0, 1]) is SOD ~v-increasing (resp. SOD ~v-decreasing) with
respect to � if for all c > 0, σ ∈ Sn and X ∈ L([0, 1])n with
[xσ(1), xσ(1)] � · · · � [xσ(n), xσ(n)] such that Xσ + c~v ∈
L([0, 1])n, it holds that

F (X) ≤ F (X+ c~rσ−1)

(resp. F (X) ≥ F (X+ c~rσ−1)).
As before, a function F that is simultaneously SOD ~r-

increasing and SOD ~r-decreasing is said to be SOD ~r-constant.

A. Properties

In this section, we present some properties that the IV
functions that meet the proposed types of monotonicity satisfy.

Proposition 1: Let ~v ∈ (R2)n such that (ai, bi) 6= ~0 for
some i ∈ {1, . . . , n}. If a function F : L([0, 1])n → L([0, 1])
is SOD ~v-increasing with respect to �, then it is OD ~v-
increasing with respect to �.

Proof: Since F is SOD ~v-increasing with respect to
�, then, given c > 0, σ ∈ Sn and X ∈ L([0, 1])n with
[xσ(1), xσ(1)] � · · · � [xσ(n), xσ(n)] such that Xσ + c~v ∈
L([0, 1])n, it holds that

F (X) ≤ F (X+ c~rσ−1).

In particular, if, additionally, it holds that

[1, 1] � [xσ(1), xσ(1)] + c(a1, b1)

� · · · � [xσ(n), xσ(n)] + c(an, bn)

� [0, 0],

then we also obtain that

F (X) ≤ F (X+ c~rσ−1).

Hence, F is OD ~v-increasing with respect to �.
In some settings, the concepts of OD monotonicity and SOD

monotonicity are equivalent. For the following result, note
that the admissible orders �α,β work on L([0, 1]) and also
on [0, 1]× [0, 1].

Proposition 2: Let α, β ∈ [0, 1] such that α 6= β and let
~v ∈ (R2)n such that (ai, bi) 6= ~0 for some i ∈ {1, . . . , n} and
such that

(a1, b1) �α,β . . . �α,β (an, bn).

Then, a function F : L([0, 1])n → L([0, 1]) is OD ~v-
increasing with respect to �α,β if and only if F is SOD ~v-
increasing with respect to �α,β .

Proof: The results follow the fact that the order �α,β
is compatible with the + operation of L([0, 1]) and, hence,
if [x1, x1] �α,β [x2, x2] and [x3, x3] �α,β [x4, x4] for any
[x1, x1], [x2, x2], [x3, x3], [x4, x4] ∈ L([0, 1]), it holds that

[x1, x1] + [x3, x3] �α,β [x2, x2] + [x4, x4].

In this setting, it is clear that both monotonicity conditions are
equivalent.



There are also similar results to those of directionally
monotone IV functions regarding construction methods, i.e.,
we can construct a new OD (or SOD) monotone IV function
starting from one.

Proposition 3: Let ~v ∈ (R2)n such that (ai, bi) 6= ~0 for
some i ∈ {1, . . . , n} and let F : L([0, 1])n → L([0, 1]) be
an OD (resp. SOD) ~v-increasing function. If ϕ : L([0, 1]) →
L([0, 1]) is an increasing function, then the function (ϕ ◦ F )
is OD (resp. SOD) ~v-increasing.

Proof: Let F be OD ~v-increasing and ϕ increasing. Let
c > 0, σ ∈ Sn and X ∈ L([0, 1])n with [xσ(1), xσ(1)] � · · · �
[xσ(n), xσ(n)] such that

[1, 1] � [xσ(1), xσ(1)] + c(a1, b1)

� · · · � [xσ(n), xσ(n)] + c(an, bn)

� [0, 0].

Then

(ϕ ◦ F )(X+ c~v) = ϕ(F (X+ c~v))

≥L ϕ(F (X))

= (ϕ ◦ F )(X).

Therefore, (ϕ ◦ F ) is OD ~v-increasing. The case of SOD
monotonicity is analogous.

Another method to obtain new IV functions satisfying these
properties is by aggregating a set of such IV functions.

Proposition 4: Let ~v ∈ (R2)n such that (ai, bi) 6= ~0 for
some i ∈ {1, . . . , n} and let F1, . . . , Fk : L([0, 1])n →
L([0, 1]) be OD (resp. SOD) ~v-increasing functions. If A :
L([0, 1])k → L([0, 1]) is an increasing function, then the
function A(F1, . . . , Fk) is OD (resp. SOD) ~v-increasing.

Proof: Let F1, . . . , Fk be OD ~v-increasing functions and
A increasing. Let c > 0, σ ∈ Sn and X ∈ L([0, 1])n with
[xσ(1), xσ(1)] � · · · � [xσ(n), xσ(n)] such that

[1, 1] � [xσ(1), xσ(1)] + c(a1, b1)

� · · · � [xσ(n), xσ(n)] + c(an, bn)

� [0, 0].

Then,

A(F1, . . . , Fk)(X+ c~v) = A(F1(X+ c~v), . . . , Fk(X+ c~v))

≥L A(F1(X), . . . , Fk(X))

= A(F1, . . . , Fk)(X).

The case of SOD monotonicity is analogous.
Finally, as Theorem 5 is the extension of Theorem 1 to

the interval-valued setting, let us present the extensions of
Theorems 2 and 3.

Theorem 8: Let ~v = ((a1, b1), . . . , (an, bn)) , ~w =
((c1, d1), . . . , (cn, dn)) ∈ (R2)n such that (ai, bi) 6= ~0 and
(cj , dj) 6= ~0 for some i, j ∈ {1, . . . , n}, let a, b > 0,

X ∈ L([0, 1])n, c > 0 and σ ∈ Sn such that whenever
[xσ(1), xσ(1)] � · · · � [xσ(n), xσ(n)] and

[1, 1] � [xσ(1), xσ(1)] + c(a(a1, b1) + b(c1, d1))

� · · · � [xσ(n), xσ(n)] + c(a(an, bn) + b(cn, dn))

� [0, 0],

it holds that

[1, 1] � [xσ(1), xσ(1)] + ca(a1, b1)

� · · · � [xσ(n), xσ(n)] + ca(an, bn)

� [0, 0],

or

[1, 1] � [xσ(1), xσ(1)] + cb(c1, d1)

� · · · � [xσ(n), xσ(n)] + cb(cn, dn) (2)

� [0, 0].

Thus, if a function F : L([0, 1])n → L([0, 1]) is both OD
~v-increasing w.r.t. � and OD ~w-increasing w.r.t. �, then F is
also OD (a~v + b~w)-increasing w.r.t. �.

Proof: Let a, b > 0 , ~v, ~w ∈ (R2)n, c > 0 and
X ∈ L([0, 1])n satisfying all the requirements. Without loss
of generality, we assume that (2) holds. Thus, we get that

F (X+ c(a~v + b~w)) ≥L F (X+ cb~w) ≥L F (X).

Theorem 9 ( [21]): Let ~v = ((a1, b1), . . . , (an, bn)) , ~w =
((c1, d1), . . . , (cn, dn)) ∈ (R2)n such that (ai, bi) 6= ~0 and
(cj , dj) 6= ~0 for some i, j ∈ {1, . . . , n}, let a, b > 0,
X ∈ L([0, 1])n, c > 0 and σ ∈ Sn such that whenever
[xσ(1), xσ(1)] � · · · � [xσ(n), xσ(n)] and

X+ c(a~v + b~w) ∈ L([0, 1])n,

it holds that either

X+ ca~v ∈ L([0, 1])n,

or
X+ cb~w ∈ L([0, 1])n.

Thus, if a function F : L([0, 1])n → L([0, 1]) is both SOD
~v-increasing w.r.t. � and SOD ~w-increasing w.r.t. �, then F
is also SOD (a~v + b~w)-increasing w.r.t. �.

Proof: Similar to the proof of Theorem 8.

VI. CONCLUSION

We have reviewed the state-of-the-art of the trend in the
aggregation theory that is the relaxation of the monotonicity
constraint, including the concept of directional monotonicity
for interval-valued functions. Moreover, we have proposed the
concepts of ordered directional monotonicity and strengthened
ordered directional monotonicity for the interval-valued setting
by means of an admissible order. We have studied some differ-
ences of the introduced concepts, as well as some construction



methods. We have shown that the proposed forms of mono-
tonicity for interval-valued functions maintain the relevant
properties of the functions defined on the unit hypercube that
satisfy standard ordered directional and strengthened ordered
directional monotonicity.

Our intention for future work includes a deep theoretical
study of the notions of OD and SOD monotonicity for the
interval-valued case, exploring the possibility of making use of
the concept of admissible permutation, introduced by Paternain
et al. [35], to consider all the ways of ordering a vector
formed of intervals while preserving the standard partial
order. Additionally, we intend to find meaningful examples
of interval-valued OD and SOD monotone functions with the
intention of applying them in the task of edge detection as in
[20].
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