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Igor Škrjanc
Faculty of Electrical Engineering

University of Ljubljana
Ljubljana, Slovenia

Igor.Skrjanc@fe.uni-lj.si

Abstract—This paper presents a new methodology for Pre-
diction Interval (PI) construction based on a modified Takagi-
Sugeno fuzzy system trained with a joint Supervision loss
function. Given a desired coverage level, this model is capable
of providing predictions of the expected value of the system
along with the interval bounds. This methodology is tested by
simulation experiments using a dataset containing real temper-
ature data from a rural community in southern Chile. The
proposed model was compared with a state-of-the-art Takagi-
Sugeno Fuzzy Numbers model. It was shown that the Joint
Supervision method manages to obtain slightly superior results
to the Fuzzy Numbers approach while greatly reducing the
complexity of the training loss function. Additionally, since the
proposed model was trained using Particle Swarm Optimization,
further performance improvements could be made by employing
gradient-based optimization algorithms, since they are compati-
ble with the Joint Supervision loss function.

Index Terms—prediction interval, fuzzy systems, joint super-
vision

I. INTRODUCTION

Predictive models have been a crucial tool used to es-
timate partly stochastic phenomena found in scientific and
engineering applications. However, the emergence of decision-
making problems such as microgrid operation, where the
main challenge is to decide whether to rely on renewable
energy sources or to utilize a diesel-based alternative based
on predictions of renewable energy availability (for example,
wind speed [1] or solar energy [2]) and electric load [3], has in-
troduced the necessity of quantifying prediction uncertainty in
addition to the desire of obtaining precise estimations, which
makes traditional point regression models insufficient. In this
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context, Confidence Intervals (CIs) and Prediction Intervals
(PIs) have been extensively researched as an alternative for
uncertainty characterization by mean of interval models rather
than only crisp prediction. Confidence intervals are used to
capture uncertainties in the unknown parameters of a model
and prediction intervals are used to capture uncertainties in
random variables yet to be observed and provide a probability
that the random variable will be within a given interval [4]–
[7]. The predicted outputs are intervals that represent the
most likely region defined by the upper and lower bounds
of the interval to which the output (targets) of the uncertain
phenomena will belong. Prediction intervals aim to maximize
the amount of data inside the bounds, as well as to be as
sharpest interval possible [8]–[10].

There have been many reported approaches to construct
prediction intervals in literature [11]–[15], but Computational
Intelligence models, such as fuzzy systems [17] and neural
networks [18], have become increasingly popular [8], [9],
[16] due to their capacity to capture nonlinear behaviour from
complex systems and the availability of sufficient input-output
training data. Other strategies for interval models include [11]–
[13], [15]. The work of [11] uses regression tree methods
for the construction of interval models. An ensemble machine
learning approach was proposed in [12] to enhance both the
reliability and width of prediction intervals. In the work of [13]
the prediction interval for wind power was developed using the
kernel extreme learning machine (KELM) method. In [15],
an improved bootstrap method was proposed for constructing
prediction intervals using extreme gradient boosting (XGB) as
the base model.

Among computational intelligence alternatives, Takagi-
Sugeno fuzzy interval models stand out due to their high
interpretability, as these estimators are built under the intuition
that nonlinear systems can be approximated as a combination
of various local linear models. Using these models, many
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techniques have been proposed for PI construction systems,
where the uncertainty is modelled in the antecedent, in the
consequent or in both parts of the fuzzy rules [19], [20]. The
main challenges reside in being able to create intervals as
slim as possible, given a desired PI coverage level. Prediction
intervals with narrower width give more accurate information
about the uncertainty phenomena. However, a width that is too
narrow might compromise the amount of measured data that
belong to the interval [8].

In the specialized literature, there are several methods
reported to construct fuzzy interval models, for instance,
the covariance method, which uses the error between the
prediction of the model and the real data to generate the
interval [10]. Several applications based on this approach have
been reported, such as: a model for the pH-titration curve [21],
a one-day-ahead prediction models for renewable generation
sources and electric demand [16], an approach to indoor lo-
calization [22], and a model for a waste-water treatment plant,
which exhibit very nonlinear behaviour [23]. Previous studies
are based on covariance method to develop the fuzzy interval
models, however, in these studies, the normally distributed
noise with zero mean is an a priori assumption.

Other fuzzy models have been proposed to generate predic-
tion intervals without any assumptions on the distribution of
the data because these kinds of models can naturally provide
the interval with a type-1 fuzzy set at the consequent. For
instance, in [24] the dispersion of the output (uncertainty)
was considered in the design of the fuzzy model to obtain
the prediction interval in an active way. The parameters of
premises and consequences of the fuzzy model were found
using an improved teaching-learning-based optimization algo-
rithm (ITLBO) that minimize a multi-objective cost function.
In [25] a type-2 fuzzy system was proposed to develop interval
models. The left and right points of the type-reduced set
were defined as the lower and upper bounds of the prediction
interval. However, the parameters were obtained using a metric
as optimality criteria of the prediction interval that fails when
an extremely narrow interval width is obtained and therefore,
in these cases, the coverage probability can be very low, as
was discussed in [26], and [27].

On the other hand, in the studies of [28], [29] and [30] have
used an optimization procedure that minimizes the maximal
estimation error between the data and the proposed model
output to find the parameters of fuzzy interval model. As a
result of the optimization problem, the lower and upper bounds
of the interval are obtained, however, the constraints do not
include metrics to guarantee the desired value of coverage
probability with minimum interval width.

In this work, multi-output fuzzy Takagi-Sugeno models
are proposed to develop Prediction Interval models that are
both high-quality and interpretable while also being suited for
online applications. With this approach, the crisp prediction
and the interval are generated under a single fuzzy model.

The main contribution of this work is the development of
a methodology to generate fuzzy prediction interval models
using a Joint Supervision loss function, initially presented in

[10] as a function to be used in neural predictive models to
obtain fast and precise PIs, and later used in [14] for obtaining
predictions interval models with Long Short Term Memory
neural networks. The proposed approach tries to obtain Pre-
diction Interval models that generate the most information in
terms of the relationship between the width of the interval
and the quantity of measured data that fall within the interval
defined by the model.

In order to test this approach, experiments were run on
an experimental dynamical system using a dataset containing
real temperature data measured on the rural José Painecura
mapuche community located in Región de la Araucanı́a, Chile.
Using this data, the performance of the proposed model
was studied by comparing Prediction Interval average width
and RMS error with a Takagi-Sugeno Fuzzy Numbers PI
model [8], which has shown state-of-the-art results on PI
quality, trained on the same dataset. The results show that
the prediction intervals generated by the proposed approach
in this study are more accurate than those generated by the
method used for comparison. The above, because the proposed
method obtains a narrower interval width and this interval
contains the desired percentage of measured data inside the
bounds. This is important since an accurate prediction of
the uncertainty provides both more information about the
phenomena modelled and more useful information from a
decision-making point of view.

The paper is organized as follows: the fuzzy Takagi-
Sugeno model architecture and the original proposal for neural
Joint Supervision are explained in Section II. In Section III,
the Takagi-Sugeno Joint Supervision proposed formulation is
explained, describing both its model architecture and train-
ing procedure. Then, in Section IV the experimental test
is presented, where the main parameters and configurations
considered during model training are discussed and results
are shown and analyzed. Finally, the main conclusions and
contributions of this work are discussed in Section V.

II. BACKGROUND: FUZZY MODELLING AND NEURAL
JOINT SUPERVISION

A. Fuzzy Takagi-Sugeno Predictive Modeling

Takagi-Sugeno fuzzy models are often referred as universal
approximators of non-linear functions, since they can uni-
formly approximate any continuous function with arbitrarily
high precision by using a sufficiently large number of local
sub-models. There are three main building blocks common
to all fuzzy models. First, the crisp input introduced to the
model undergoes a fuzzification procedure that converts it
into fuzzy values. Then, with the help of a fuzzy ruleset, an
inference system calculates a degree of activation for each rule,
which tries to determine which local sub-models best fit the
input data, so that a fuzzy output can be obtained. Finally, a
defuzzification procedure is applied to convert the fuzzy output
into crisp values.



For Takagi-Sugeno models, it is assumed that all local sub-
models are linear models, so fuzzy rules are expressed as:

Rj : If z1(k) is Aj1 and ... and zn(k) is Ajn then (1)

ŷj(k) = θj0 + θj1z1(k) + ...+ θjnzn(k),

for j = 1, ...,M , where Aji are the fuzzy sets, ŷj(k) is
the local output and θj = [θj0, θ

j
1, ..., θ

j
n] is the consequence

parameter, all associated with rule j, M is the total number of
rules and z(k) = [z1(k), z2(k), ..., zn(k)] is the input vector
(normally, for predictive models these values correspond to
past observations). Using this structure, Takagi-Sugeno models
can calculate a degree of activation hj(k) for each rule j, along
with its normalized variant βj(k), according to

hj(k) =

n∏
i=1

µAj
i
(zi(k)), (2)

βj(k) =
hj(k)∑M
j=1 hj(k)

, (3)

where µAj
i

is the fuzzy activation function for fuzzy set Aji .
Finally, using this ruleset and inference mechanism, a crisp
output can be calculated as

ŷ(k) =

M∑
j=1

βj(k)ŷ
j(k), (4)

where ŷ(k) is the total predicted output at sample k.
For this work, this will be the base model structure used to

develop the proposed methodology.

B. Neural Joint Supervision

Originally presented in [10], the Joint Supervision method
provides a methodology that can be applied to standard
neural predictive models to extend them into interval models.
To accomplish this, first the neural architecture is modified
to incorporate two additional outputs: one for a prediction
interval upper bound, and one for a lower interval bound, so
that model outputs can be expressed as ŷupper(k), ŷcrisp(k),
and ŷlower(k). Note that this procedure differs from training
three separate networks in that intermediate layers (and in
consequence, their corresponding parameters) will be shared
among all outputs.

The model is trained using novel cost functions, associated
with each output, based on the idea that if a training sample
falls outside the predicted interval, then it should be penalized
proportionally to its MSE. This is achieved by splitting the
training loss function in two components: a Classical Loss
Function (Ls), which is the traditional MSE loss given by

Lls =
1

N

N∑
k=1

e2l (k), (5)

el(k) = y(k)− ŷl(k), (6)

and is the same for all outputs (l = {upper, crisp, lower}),
and an Interval Loss Function (LI ), which is given by

LupperI =
1

N

N∑
k=1

sgn(eupper(k)) + 1

2
eupper(k)

2, (7)

LcrispI = 0, (8)

LlowerI =
1

N

N∑
k=1

sgn(−elower(k)) + 1

2
elower(k)

2, (9)

where

sgn(x) :=

{
−1 if x < 0,

1 if x ≥ 0,
(10)

and only affects the interval outputs (i.e. l = {upper, lower}).
The main idea behind these functions is that LupperI will
penalize all data that fall above the upper interval bound with
an amount proportional to the squared distance between both
values, while LlowerI will apply the corresponding penalization
for data that fall below the predicted lower interval bound.
Finally, the total loss function for each model output is built by
adding the two corresponding components, with the inclusion
of an additional hyperparameter λ common to all three outputs,
which is used to control the importance of the interval loss
function during the training procedure, allowing for the user
to be able to control the final interval size:

Lltotal = Lls + λLlI . (11)

By adding these two components, the Joint Supervision func-
tion manages to mathematically represent the two contradict-
ing objectives found in PI construction, where the interval loss
function attempts to have most point within the PI (increasing
PI width), while the classical loss function seeks to converge
all outputs to the expected data value (reducing PI width). This
way, it is the tuning of the λ hyperparameter that will provide a
suitable compromise that will determine average interval width
and coverage level.

In fact, the λ hyperparameter tuning is performed through an
iterative process, where an initial value (usually λ0 = 0.001)
and a fixed step δ are set. Then, a model is trained for
λ0 and the PI coverage level is measured. If coverage is
less than desired (based on user preference, although usual
coverage level values range from 90% to 95%), then a new
hyperparameter value is set as λi = λi−1 + δ, where λi−1 is
the hyperparameter value used on the previous iteration, and
the model is retrained, repeating this process until the desired
coverage level is reached. If, on the other hand, coverage
level is greater or equal than the desired value, the model
will be retrained several times using the same configuration,
measuring the average interval width on each iteration and
sticking with the model that showcases the lowest width.
This final step is done in order to reduce uncertainty due to
parameter initialization.

One of the main advantages of the Joint Supervision method
when compared to other neural PI models is that, while manag-
ing to build accurate PIs, the Joint Supervision cost function’s
simplicity makes it compatible with traditional neural network



training algorithms based on backpropagation and stochastic
gradient descent, which eases implementation and significantly
boosts training speed.

III. FUZZY TAKAGI-SUGENO JOINT SUPERVISION
INTERVAL MODELS

This work proposes a methodology to adapt the structure
of Takagi-Sugeno fuzzy models in order to be compatible
with the Joint Supervision method for PI construction, which
requires a multi-output architecture that can take advantage of
some degree of parameter sharing.

First, a new multi-output formulation for Takagi-Sugeno
models was developed with the intention to preserve the
weight sharing principle found in multi-output neural net-
works. Specifically, a three output fuzzy model is considered
where local and total outputs can be represented as

ŷjl (k) = [1 z(k)T ]θjl , (12)

ŷl(k) =
M∑
j=1

βj(k)ŷ
j
l (k), (13)

l = upper, crisp, lower identifies the three different outputs,
j = 1, . . . ,M identifies the j-th rule and θjl is the consequence
parameter vector for the j-th rule of model l. As with multi
output neural architectures, this approach differs from training
three separate model instances in that, in this formulation, all
model outputs share the same fuzzy ruleset and, as such, will
also share the same degrees of activation βj . This formulation
not only makes mathematical sense, since Takagi-Sugeno
models can be seen as a network model where the final and
only separated layer corresponds to the product between the
input vector and the corresponding consequence parameters,
but it also makes sense from a practical perspective, since
the fuzzy sets defined on each rule define an operation zone
on the input data where the defined local outputs are valid
and sharing this parameters follows the intuition that all local
outputs associated to a rule should be related to a common
operation zone on the input data. In order to better illustrate
this intuition, figure 1 provides a comparative diagram of a
neural Joint Supervision model structure and the proposed
Takagi-Sugeno Joint Supervision architecture.

The training procedure is described next, and is illustrated
in Figure 2. First, a sensitivity analysis is run on the training
data in order to determine the optimal set of regressors (which
compose the model input vector). Then, a fuzzy clustering
algorithm is run on the same data to determine the optimal
number of fuzzy rules along with the membership functions of
the fuzzy sets. After this, the consequence parameter vectors
θjl for each output l = upper, crisp, lower are obtained by
optimizing the Joint Supervision cost functions as presented
in (11):

Jupper = Luppers + λLupperI (14)

Jcrisp = Lcrisps (15)

Jlower = Llowers + λLlowerI (16)

Fig. 1. Model architecture of a neural Joint Supervision interval model (top).
Model architecture of proposed Takagi-Sugeno Joint Supervision interval
model (bottom).

where y(k) corresponds to the k-th sample of the training
set. This defines θjcrisp, and consequently the crisp model.
However, the upper and lower models will be defined along
with the tuning of λ, for which the optimization above is a
starting point performed with λ = λ0.

Finally, hyperparameter tuning is executed as in neural Joint
Supervision, going through an iterative process trying different
values of λ, with additional retraining step to combat param-
eter initialization uncertainty, until the the desired coverage
level is reached. It is important to note that in this work the
value of λ was adjusted through a logarithmic search. In this
implementation, on each iteration the algorithm first trains a
model, with its corresponding λi value, using Particle Swarm
Optimization. Once the model is obtained, the algorithm will
check the if the measured PI coverage level is in the vicinity
of the desired coverage value. If the condition is satisfied, then
the current configuration is saved and the algorithm proceeds
to the second retraining phase (the one that reduces uncertainty
due to parameter initialization), which is executed identically
to traditional Joint Supervision. If the condition is not satisfied,
then the model is retrained using a new λi value given by the
expression

λi =


2λi−1 if λup = 0 ∧ CLmeasured < CLdesired
λi−1+λlow

2 if CLmeasured > CLdesired
λi−1+λup

2 if CLmeasured < CLdesired,
(17)

where CL stands for coverage level, and λup and λlow rep-
resent pivot values that are initialized as zero and correspond



Fig. 2. Proposed Takagi-Sugeno Joint Supervision training routine.

to the lowest/highest λ value that overshoots/undershoots the
desired coverage, respectively. Coverage level is quantified by
the Prediction Interval Coverage Probability (PICP) [31] [32]
index, given by

PICP =
1

N

N∑
k=1

δk, (18)

where δk = 1 if ŷlower(k) ≤ y(k) ≤ ŷupper(k) and y(k)
represents the k-th training sample.

IV. EXPERIMENTAL TESTS

The proposed model was studied with simulation experi-
ments using a dataset consisting of real temperature values
measured in the José Painecura mapuche community located
in Región de la Araucanı́a, Chile. For comparative purposes, PI
quality measurements were compared with a Fuzzy Numbers
Takagi-Sugeno interval model [8], which has reported state-
of-the-art results on PI construction.

In order to properly train the models, data was split into
three sets:

1) Traning set, composed of 60% of the data, used to
train the fuzzy clustering algorithm along with the PSO
algorithm for parameter optimization

2) Testing set, composed of 20% of the data, used to
execute the sensitivity analysis for model structure op-
timization

3) Validation set, composed of 20% of the data, used to
measure and compare model performance

Once data was partitioned, models proceeded to be trained
with the caution of keeping the same set of regressors for
both models, so that differences in model performance could
only be attributed to model structure. The baseline Takagi-
Sugeno architecture consisted of 3 fuzzy rules with gaussian
membership functions as antecedents and first order linear
models as consequents. The number of fuzzy rules was deter-
mined using the Gustafson-Kessel fuzzy clustering algorithm
on the training data. Once training finished, 90% confidence
prediction intervals were calculated for 1-step to 6-steps ahead
predictions, where the Fuzzy Numbers model was tuned to
obtain a maximum error margin of ±0.006% coverage level
on the training set, while the Joint Supervision model used
a margin of ±0.01% for hyperparameter tuning. For this
experiment, the optimal model structure was found to consist
of 5 regressors and 3 fuzzy rules.

Models were evaluated based on their average point predic-
tion precision (RMSE) along with average PI quality, which
was measured by computing Prediction Interval Coverage
Probability (PICP) as shown in (18), and Prediction Interval
Mean Average Width (PINAW) [31] [32], given by

PINAW =
1

NR

N∑
k=1

ŷupper(k)− ŷlower(k) (19)

where R = max(yupper(k))−min(ylower(k)), which quantify
the average coverage level and width of the intervals, respec-
tively.

Tables I and II show the measured performance values for
the 1-step to 6-step ahead predictions on the Joint Supervision
and Fuzzy Numbers models, respectively. Using these criteria,
a good PI can be recognized if it manages to achieve PICP val-
ues that are as close as possible (usually ±1%) to the desired
coverage level (in this case, 90%), while also displaying as low

TABLE I
JOINT SUPERVISION METHOD PERFORMANCE FOR 1-STEP TO 6-STEPS

AHEAD PREDICTIONS

1-Step 2-Steps 3-Steps 4-Steps 5-Steps 6-Steps
PICP 89.59% 89.03% 89.11% 87.61% 89.61% 88.93%

PINAW 5.19% 8.00% 10.08% 11.36% 14.34% 15.38%

RMSE 0.29 0.48 0.6 0.69 0.78 0.87

TABLE II
FUZZY NUMBERS METHOD PERFORMANCE FOR 1-STEP TO 6-STEPS

AHEAD PREDICTIONS

1-Step 2-Steps 3-Steps 4-Steps 5-Steps 6-Steps
PICP 92.69% 93.54% 93.58% 93.41% 92.08% 92.16%

PINAW 5.85% 10.56% 13.58% 15.91% 17.18% 20.41%

RMSE 0.29 0.48 0.6 0.69 0.78 0.87



Fig. 3. Joint Supervision Prediction Interval for 1-step predictions on the
validation set.

as possible PINAW values. It is important to note that, since
the coverage and width objectives are conflicting, exceeding
the PICP condition means that a lower PINAW value would be
theoretically achievable if the PI model were to be adequately
tuned, while the opposite is true on cases where the obtained
coverage falls below the desired value.

By observing Tables I and II, it can be seen that, in the first
place, the Joint Supervision model manages to stay within
the ±1% PICP range for a majority of the predicted models,
while the Fuzzy Numbers approach shows a tendency to
exceed the desired value by a significant margin, which can
have a negative impact on PINAW performance. In fact, by
observing the registered PINAW values along with Figures 3-
8, it can be seen that the Joint Supervision model matches or
outperforms the Fuzzy Numbers approach on this aspect. It is
important to note that in both methodologies, the exact same
structure and training procedure is used for the crisp model.
Therefore the crisp models are the same, which results the
RMSE performance being exactly the same on both models.
This analysis shows that the proposed Joint Supervision model
preliminarily achieves similar, possibly superior, performance
to known state-of-the-art interval models.

Additionally, Figures 3, 5 and 7 show 1-step, 3-step and 6-
step predictions for the Joint Supervision model, respectively,
while Figures 4, 6 and 8 show respective plots for the
Fuzzy Numbers model. By observing these predictions, it
can be noted that the Joint Supervision model consistently
obtains narrower intervals, which is consistent with the results
observed in Tables I and II.

V. CONCLUSIONS

A methodology for PI construction based on modified multi-
output Fuzzy Takagi-Sugeno models using a Joint Supervision
cost function was proposed. The model was built in an attempt
to take advantage of the simplicity, convexity an overall good

Fig. 4. Fuzzy Numbers Prediction Interval for 1-step predictions on the
validation set.

Fig. 5. Joint Supervision Prediction Interval for 3-step predictions on the
validation set.

interval quality of the Joint Supervision method’s cost function
along with the high interpretability of Takagi-Sugeno systems.
The proposed approach was tested with real data and compared
with a Fuzzy Numbers interval model which can build precise
state-of-the-art PIs using a more complex cost function, imple-
menting the optimization of both methods with PSO. It was
found that both models obtain comparable results, although
the Fuzzy Numbers approach showcased a tendency to exceed
the desired the coverage level on the validation set, which,
considering the model coverage was precisely tuned during
the training phase, would hint to an imprecision in the interval
model itself, while the Joint Supervision method obtained a
smaller, more precise, margin for the coverage level values,
therefore producing, on average, slightly narrower intervals
than the Fuzzy Numbers approach. Because of these results,



Fig. 6. Fuzzy Numbers Prediction Interval for 3-step predictions on the
validation set.

Fig. 7. Joint Supervision Prediction Interval for 6-step predictions on the
validation set.

it can be concluded that the proposed fuzzy Takagi-Sugeno
Joint Supervision methodology preliminarily has comparable
performance to other state-of-the-art solutions, although ad-
ditional experiments are required to confirm if the proposed
model is capable of outperforming them. Additionally, there
is space for improvement in the Joint Supervision method’s
computational cost: Since PSO was used for the optimization
procedure in this work, improvements could be achieved by
employing gradient-based methods that can take advantage
of the convex Joint Supervision cost function, which should
reduce parameter initialization uncertainty and overall training
times. Furthermore, the need of repeated retraining during
the hyperparameter tuning phase of the algorithm could be
revised to explicitly introduce the desired PICP into the Joint
Supervision cost function in order to eliminate the need for a

Fig. 8. Fuzzy Numbers Prediction Interval for 6-step predictions on the
validation set.

costly iterative process during the training phase.
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