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Abstract— Equipment replacement decision which aims to 
find the best time to retire an old system is a key element in the 
planning process. Replacement scenarios consider the life span 
associated to each equipment category and the replacement of 
the obsolete equipment by an equivalent during the remaining 
life span after its obsolescence. This multi-stage decision-making 
problem can be solved by dynamic programming, but technical 
features that change over the years, unpredictable economy and 
time can cause uncertainty in prices. By combining classical 
dynamic programming with fuzzy set theory, this model can be 
revised. The purpose of this paper is to develop an optimal 
equipment replacement policy using combined interval type-2 
fuzzy set and dynamic programming for the first time. The 
proposed methodology is applied to server equipment 
replacement problem.   

Keywords— server equipment replacement, fuzzy dynamic 
programming, interval type-2 fuzzy sets, replacement analysis 

I. INTRODUCTION  

The demand for renewal is attribute to factors such as 
age, worn out, lack of economic sufficiency, or technical 
inadequacy. In this case, engineers can apply different 
scenarios such as the use of old machine after maintenance or 
to purchase a new machine. The basic problem concerns a type 
of machines which deteriorate with age, and make decision 
about when to replace the incumbent machine, when to 
replace its replacement so as to minimize the total cost during 
the next N years.  

In economic terms, the management will have to evaluate 
whether he wants to continue with the existing equipment 
which was purchased maybe few years back and it has still 
some life or to purchase new equipment with certainly some 
added cost. But this added cost could be offset by the lower 
operating costs of the new equipment and also the life which 
ahead.  

There are globally referred to as the “forces of retirement” 
and these forces include the following: 

 Physical Deterioration 

 Technological Obsolescence 

 Functional Obsolescence 

 Legal Obsolescence 

 Style/Aesthetic Obsolescence 

 Economic Obsolescence 

In addition to the problems developing on the machine 
over the years, there are some factors that are effective in the 
decision to renew. The technical features that change over the 
years may be insufficient, there may be fluctuations in the 

economy and money may lose its value over time. Technical, 
economic and time-related uncertainties can be used to 
express the price. In order to express such uncertainties and 
use them in the decision-making problem, the fuzzy set theory 
developed by Zadeh [1] in 1965. The dynamic programming 
model used in the renewal analysis can be revised to cover 
these uncertainties. Thus, instead of the crisp numbers used in 
the classical dynamic programming model, decisions can be 
made with ambiguous expressions created depending on the 
situation. The contribution of this paper is the development an 
optimal equipment replacement policy using combined 
interval type-2 fuzzy set and dynamic programming for the 
first time. The proposed methodology is applied to server 
equipment replacement problem.   

The paper’s overview is as follows. Section II illustrates 
literature highlights. Section III presents proposed 
methodology, which is formalized as  dynamic programming 
with interval type-2 fuzzy numbers. Server equipment 
replacement is selected as the application and dynamic 
approach with interval type-2 fuzzy numbers is applied to 
decide replacement policy in Section IV. Finally, the 
comments and discussion are given in the last section. 

II. LITERATURE REVIEW 

The principles of dynamic programming are used in 
studying certain types of sequential decision problems. A 
sequential decision problem may be characterised as one in 
which each decision affects future decisions.  

The concepts of a “state”, a “stage”, and the principle of 
optimality are necessary in explaining the structure of 
dynamic programming. State variables are those values which 
completely describe the  instantaneous situation of the 
process. The process may be viewed as a planning horizon 
composed of finite or infinite stages. The designation of the 
stage is arbitrary, and depends upon the convenience of the 
planner and the intricacies of the problem. The stage of the 
system may be defined as certain points in time where 
planners make decisions.  

Another important concept in dynamic programming is the 
“decision vector”. At each stage the planner makes a decision 
by choosing between available alternatives or policies, which 
involve a transformation in state variables. Each 
transformation is associated with  a certain amount of cost or 
reward for any given activity . The number of policies open to 
the planner are dependent upon several factors and may vary 
from state to state. A rational decision maker will choose the 
policy which maximizes the objective function of the system 
[2]. 

Replacement is required in systems such as machines, 
tools, vehicles, capital assets and others and it may arise as a 
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result of technological advancement, deterioration in 
efficiencies of these items over their life span, or it may be due 
to temporary or complete failure of these systems. The 
machinery replacement  is seen as the act of finding the 
adequate moment to change equipment in use, based on the 
analysis of a criterion or of a decision criteria group [3].  

Aronson and Aronofsky [4] gives two basic reasons for 
equipment replacement. The first being degradation or 
deterioration and obsolescence and the second is the complete 
or partial failure that may occur in the original unit or units 
which in turn forces the decision of immediate replacement or 
repair of single or group units. Similarly, Sen et al. [5] identify 
some situations when replacement can take place. They 
include: when an old item has failed and does not work at all 
or the item is expected to fail soon; when an existing item 
deteriorates and works badly and also needs expensive 
maintenance; and when a better model of an item has been 
developed. Consequently, there are several approaches for 
resolving equipment replacement problems. These include 
total average cost, equivalent annual cost, differential 
equations, capital budgeting/cash flow, dynamic 
programming, Markovian processes and shortest path 
methods [4].   

Putterman [6] captures dynamic programming as a 
procedure for finding optimal policies for sequential decision 
problems.  Adda and Cooper [7] simply refer to dynamic 
programming as the process of solving sequential 
optimization problems where one needs to find the best 
decisions one after another. On their part, Gupta and Hira [8] 
view dynamic programming as a mathematical tool used to 
simplify decision problems by breaking such decisions down 
into a sequence of decision steps over time.   

Dynamic programming has also been described as a 
method that in general solves optimization problems that 
involve making a sequence of decisions by determining, for 
each decision, subproblems that can be solved in like fashion, 
such that an optimal solution of the original problem can be 
found from optimal solutions of  the sub-problems” [9]. It is 
important to note that a common thread runs through these 
definitions. The common thread is that dynamic programming 
deals with sequential decision processes that entail dividing 
the problem to be solved into smaller problems known as sub-
problems or stages. The sub-problems are solved one after the 
other, so that the answers to these small problems are used to 
solve the larger ones in order that the overall solution is 
optimal in relation to the original problem.  Cooper and 
Cooper [10] enumerate the main elements associated with a 
dynamic programming problem to include stages, states, 
decisions, transformations and returns. In the literature, 
problems that can be solved by dynamic programming exhibit 
the following properties:   

 The problem can be decomposed into sub-problems 
or stages and a decision is be made in each stage. 

 Each stage has a number of possible states.  

 The decision in each stage is to transform the current 
state into a state associated with the next stage.  

 The Policy (or the best sequence of decisions) at any 
stage is independent of the decisions made at prior 
stages.  

 There is a recursive relationship which identifies the 
optimal decision at stage t, given that stage t + 1 has 
already been solved.   

 The history of the system must have no influence on 
its future  behaviour.  

 The advantages of using dynamic programming in 
equipment replacement problems are that few constraints are 
placed on the function. It is flexible, and it has the ability to 
generate solutions quickly as well as optimize them within a 
wider range of options. Other advantages cited by some 
authors include the determination of absolute (global) maxima 
or minima and its ability to handle non-linear and 
discontinuous functions [11,12]. 

Recently, Tarawneh et al. [13] worked on field evaluation 
and behavior of the soil improved using dynamic replacement. 
They propose a methodology to estimate the settlement of the 
soil improved using dynamic replacement. Wang and Nguyen 
[14] propose a solution to technology replacement policy and 
capacity plan of resources. They had capacity planning with 
technology replacement by stochastic dynamic programming. 
They solved the problem by a pattern search-genetic algorithm 
to maximize the expected net present profit over a finite time 
horizon. Fan et al. [15] used a stochastic dynamic 
programming approach for the equipment replacement 
optimization under uncertainty. They developed the Bellman 
approach and implemented it to solving the equipment 
replacement optimization dynamic programming problem. 
Hsu et al. [16] applied a dynamic programming approach to 
aircraft replacement scheduling. They developed a stochastic 
dynamic programming model to optimize airline decisions 
regarding purchasing, leasing, or disposing of aircraft over 
time. Moghaddam and Usher [17] presented mathematical 
models and a solution approach to determine the optimal 
preventive maintenance schedules for a repairable and 
maintainable series system of components with an increasing 
rate of occurrence of failure. 

Huirne et al. [18] introduced a stochastic dynamic 
programming model, which runs on a personal computer to 
determine the economic optimal replacement policy in swine 
breeding herds. Kececioglu and Sun [19] proposed a general 
discrete-time dynamic programming model for the 
opportunistic replacement policy and its application to ball-
bearing systems. Ding et al. [20] studied on a dynamic 
approach for emergency decision making based on 
prospecttheory with interval-valued Pythagorean fuzzy 
linguistic variables. 

Chaudhuri and Suresh [21] developed An algorithm for 
maintenance and replacement policy using fuzzy set theory. 
Their model can be used for making a maintenance and 
replacement policy for a finite time horizon. Cardoso and 
Gomide [22] studied on Newspaper demand prediction and 
replacement model based on fuzzy clustering and rules. Their 
aim  is to predict newspaper demand as accurately as possible 
to meet customer need and decrease loss, the number of 
newspaper offered but not sold. Popova and Wu [23] used 
renewal reward processes with fuzzy rewards and their 
applications to T-age replacement policies. Zhang et al. [24] 
stressed about fuzzy age-dependent replacement policy and 
simultaneous perturbation stochastic approximation algorithm 
based-on fuzzy simulation. Tolga et al. [25] select an 
operating system using fuzzy replacement analysis and 
analytic hierarchy process. Their aim is creating an Operating 



 

System selection framework for decision makers by using 
fuzzy expression on economic part of the decision 
process. Chang [26] presented a fuzzy methodology for 
replacement of equipment. He modeled addible market and 
cost effects from the replacements against the counterpart 
fuzzily and interactively in addition to the equipment 
deterioration.  

III. METHODOLOGY 

In this section, the preliminaries and definitions of the 
proposed method with interval type-2 fuzzy numbers [27] are 
given.  

A. Preliminaries 

A type-2 fuzzy set (𝐴ሚሚ) in the universe of discourse X can 
be presented by a type-2 membership function μ஺෨෨(x,u), where 
x∊X and u ∊ 𝐽௫ ⊆ [0,1] as follows; 

 

𝐴ሚሚ = ቄቀ(𝑥, 𝑢), μ஺෨෨
(x, u)ቁ ቚ  ∀𝑥 ∊ X, ∀𝑢 ∊  𝐽௫ ⊆ [0,1] ,   

0 ≤ μ஺෨෨
(x, u)  ≤ 1 }  (1) 

The type-2 fuzzy set 𝐴ሚሚ can also be presented as follows 
[28]: 

𝐴ሚሚ = ∫
௫∈௑

∫
௨∈ ௃ೣ

μ஺෨෨
(x, u)/(x, u)      (2) 

where  𝐽௫ ⊆ [0,1] and ∬ denote union over all admissible x 
and u. 

Interval type-2 fuzzy set [29] is a special case of this 
definition where μ஺෨෨

(x, u) = 1 . Based on the definition, 
trapezoidal interval type-2 fuzzy set is represented as follows 
[28]:  

 

𝐴ሚሚ௜ = ൫Ã௜
௎; Ã௜

௅൯ = (ቆ
𝑎௜ଵ

௎ , 𝑎௜ଶ
௎ , 𝑎௜ଷ

௎ , 𝑎௜ସ
௎ ;

𝐻ଵ൫Ã௜
௎൯, 𝐻ଶ(Ã௜

௎)
ቇ , ቆ

𝑎௜ଵ
௅ , 𝑎௜ଶ

௅ , 𝑎௜ଷ
௅ , 𝑎௜ସ

௅ ;

𝐻ଵ൫Ã௜
௅൯, 𝐻ଶ(Ã௜

௅)
ቇ)   (3) 

 
where Ã௜

௎  and Ã௜
௅  are type-1 fuzzy sets; 𝑎௜ଵ

௎ ,  𝑎௜ଶ
௎ , 𝑎௜ଷ

௎ ,  𝑎௜ସ
௎ ,

𝑎௜ଵ
௅ ,  𝑎௜ଶ

௅ , 𝑎௜ଷ
௅  𝑎𝑛𝑑 𝑎௜ସ

௅  are the references points of the interval 

type-2 fuzzy set 𝐴ሚሚ௜. 𝐻௝(Ã௜
௎) shows the membership value of 

the element 𝑎௝(௝ାଵ)
௎  in the upper trapezoidal membership 

function  (Ã௜
௎) , 1 ≤ 𝑗 ≤ 2 . 𝐻௝(Ã௜

௅) denotes the membership 
value of the element 𝑎௝(௝ାଵ)

௅  in the lower trapezoidal 

membership function Ã௜
௅ , 1 ≤ 𝑗 ≤ 2 [30]. Figure 1 represents 

a trapezoidal interval type-2 fuzzy set. 
 

 

Fig. 1. Illustration of trapezoidal interval type-2 fuzzy set 

Assume k is a crisp number and 𝐴ሚሚଵ, 𝐴ሚሚଶ interval type-2 fuzzy 
sets as given in the following: 
 

𝐴ሚሚଵ = (ቆ
𝑎11

𝑈 , 𝑎12
𝑈 , 𝑎13

𝑈 , 𝑎14
𝑈 ;

𝐻1൫Ã1
𝑈

൯, 𝐻2(Ã1
𝑈

)
ቇ , ቆ

𝑎11
𝐿 , 𝑎12

𝐿 , 𝑎13
𝐿 , 𝑎14

𝐿 ;

𝐻1൫Ã1
𝐿
൯, 𝐻2(Ã1

𝐿
)

ቇ) 

𝐴ሚሚଶ = (ቆ
𝑎21

𝑈 , 𝑎22
𝑈 , 𝑎23

𝑈 , 𝑎24
𝑈 ;

𝐻1൫Ã2
𝑈

൯, 𝐻2(Ã2
𝑈

)
ቇ , ቆ

𝑎21
𝐿 , 𝑎22

𝐿 , 𝑎23
𝐿 , 𝑎24

𝐿 ;

𝐻1൫Ã2
𝐿
൯, 𝐻2(Ã2

𝐿
)

ቇ) 

 
The arithmetic operations given by Chen and Lee [30] are 
follows: 
 

Addition: 𝐴ሚሚଵ ⊕ 𝐴ሚሚଶ = ((𝑎11
𝑈 + 𝑎21

𝑈 , 𝑎12
𝑈 + 𝑎22

𝑈 , 𝑎13
𝑈 + 𝑎23

𝑈 , 𝑎14
𝑈 +

𝑎24
𝑈 ; min ቀ𝐻1൫Ã1

𝑈
൯;  𝐻1൫Ã2

𝑈
൯ቁ , min ቀ𝐻2൫Ã1

𝑈
൯;  𝐻2൫Ã2

𝑈
൯ቁ), ( 𝑎11

𝐿 +

𝑎21
𝐿 , 𝑎12

𝐿 + 𝑎22
𝐿 , 𝑎13

𝐿 + 𝑎23
𝐿 , 𝑎14

𝐿 + 𝑎24
𝐿  ; min ቀ𝐻1൫Ã1

𝑈
൯;  𝐻1൫Ã2

𝑈
൯ቁ, 

min ቀ𝐻ଶ(Ãଵ
௎);  𝐻ଶ(Ãଶ

௎)ቁ))            (4) 
 

Substraction: 𝐴ሚሚଵ𝐴ሚሚଶ = ((𝑎11
𝑈 − 𝑎24

𝑈 , 𝑎12
𝑈 − 𝑎23

𝑈 , 𝑎13
𝑈 −

𝑎22
𝑈 , 𝑎14

𝑈 − 𝑎21
𝑈 ; min ቀ𝐻1൫Ã1

𝑈
൯;  𝐻1൫Ã2

𝑈
൯ቁ, 

min ቀ𝐻ଶ(Ãଵ
௎);  𝐻ଶ(Ãଶ

௎)ቁ), ( 𝑎ଵଵ
௅ − 𝑎ଶସ

௅ , 𝑎ଵଶ
௅ − 𝑎ଶଷ

௅ , 𝑎ଵଷ
௅ − 𝑎ଶଶ

௅ , 𝑎ଵସ
௅ −

𝑎ଶଵ
௅  ; min ቀ𝐻ଵ(Ãଵ

௎);  𝐻ଵ(Ãଶ
௎)ቁ , min ቀ𝐻ଶ(Ãଵ

௎);  𝐻ଶ(Ãଶ
௎)ቁ))      (5) 

 

Multiplication: 𝐴ሚሚଵ ⊗ 𝐴ሚሚଶ = ((𝑎11
𝑈 ∗ 𝑎21

𝑈 , 𝑎12
𝑈 ∗ 𝑎22

𝑈 , 𝑎13
𝑈 ∗

𝑎23
𝑈 , 𝑎14

𝑈 ∗

𝑎24
𝑈 ; min ቀ𝐻1൫Ã1

𝑈
൯;  𝐻1൫Ã2

𝑈
൯ቁ , min ቀ𝐻2൫Ã1

𝑈
൯;  𝐻2൫Ã2

𝑈
൯ቁ), ( 𝑎11

𝐿 ∗

𝑎21
𝐿 , 𝑎12

𝐿 ∗ 𝑎22
𝐿 , 𝑎13

𝐿 ∗ 𝑎23
𝐿 , 𝑎14

𝐿 ∗ 𝑎24
𝐿  ; min ቀ𝐻1൫Ã1

𝑈
൯;  𝐻1൫Ã2

𝑈
൯ቁ, 

min ቀ𝐻ଶ(Ãଵ
௎);  𝐻ଶ(Ãଶ

௎)ቁ))             (6) 
 
Multiplication with a crisp number: 

 𝑘𝐴ሚሚଵ = (൫𝑘 ∗ 𝑎11
𝑈 , 𝑘 ∗ 𝑎12

𝑈 , 𝑘 ∗ 𝑎13
𝑈 , 𝑘 ∗ 𝑎14

𝑈 ; 𝐻1൫Ã1
𝑈

൯, 𝐻2൫Ã1
𝑈

൯൯, 

(𝑘 ∗ 𝑎ଵଵ
௅ , 𝑘 ∗ 𝑎ଵଶ

௅ , 𝑘 ∗ 𝑎ଵଷ
௅ , 𝑘 ∗ 𝑎ଵସ

௅ ;  𝐻ଵ(Ãଵ
௅), 𝐻ଶ(Ãଵ

௅)))                  (7) 
 
Division: 
𝑎෤෨௜௝

𝑏෨෨௜௝

= (ቆ
𝑎ଵ

௎

𝑏ସ
௎ ,

𝑎ଶ
௎

𝑏ଷ
௎ ,

𝑎ଷ
௎

𝑏ଶ
௎ ,

𝑎ସ
௎

𝑏ଵ
௎ ; min൫𝐻ଵ(𝑎௎); 𝐻ଵ(𝑏௎)൯ , min൫𝐻ଶ(𝑎௎); 𝐻ଶ(𝑏௎)൯ቇ, 

ቀ
௔భ

ಽ

௕ర
ಽ ,

௔మ
ಽ

௕య
ಽ ,

௔య
ಽ

௕మ
ಽ ,

௔ర
ಽ

௕భ
ಽ ; min൫𝐻ଵ(𝑎௅); 𝐻ଵ(𝑏௅)൯ , min൫𝐻ଶ(𝑎௅); 𝐻ଶ(𝑏௅)൯ቁ)     (8) 

 
Division by crisp number: 
𝐴ሚሚଵ

𝑘
= (൬

1

𝑘
∗ 𝑎ଵଵ

௎ ,
1

𝑘
∗ 𝑎ଵଶ

௎ ,
1

𝑘
∗ 𝑎ଵଷ

௎ ,
1

𝑘
∗ 𝑎ଵସ

௎ ; 𝐻ଵ(Ãଵ
௎), 𝐻ଶ(Ãଵ

௎)൰, 

ቀ
ଵ

௞
∗ 𝑎ଵଵ

௅ ,
ଵ

௞
∗ 𝑎ଵଶ

௅ ,
ଵ

௞
∗ 𝑎ଵଷ

௅ ,
ଵ

௞
∗ 𝑎ଵସ

௅ ;  𝐻ଵ(Ãଵ
௅), 𝐻ଶ(Ãଵ

௅)ቁ)  

where k>0.            (9) 

B. Proposed Model 

 A dynamic programming model for machine replacement 
problem consists of revenue, operating cost and salvage value 
[31]. The year is represented by “i” (i=1,2,…,n) and the State 
at Stage-(i) is the age of machine at the beginning of the 𝑖௧௛ 
year. The recursive equation in fuzzy environment is as 
follows:  

𝑓ሚ௜(𝑡) = 𝑚𝑎𝑥 ቊ
𝐷𝑇𝑡𝑟𝑇(𝑟̃(𝑡) − 𝑐̃(𝑡) + 𝑓ሚ௜ାଵ(𝑡))                                   if keep,

𝐷𝑇𝑡𝑟𝑇(𝑟̃(0) + 𝑠̃(𝑡) − 𝑐̃(0) − 𝑝෤ + 𝑓ሚ௜ାଵ(𝑡1))      if replace.
     (10) 

 The boundary condition is  

𝑓ሚ௜ேାଵ(𝑡) =  𝑠̃(𝑡),  ∀𝑡.         (11) 

where, 

𝑓ሚ௜(𝑡) = maximum net income for years (i=1,2,…,n),  

𝑟̃(𝑡) = yearly revenue, 

𝑠̃(𝑡) = salvage value, 



 

𝑐̃(𝑡) = operating cost, 

𝑝෤ = acquisition cost of new machine. 

Defuzzifying and comparing fuzzy costs to decide “keep” 
and “replace”, we use the DTtrT method [32] as follows: 

DTtrT =
( ೠೠష೗ೠ)శ( ഁೠ ೘భೠష ೗ೠ)శ( ⍺ೠ ೘మೠష ೗ೠ)

ర
ା ௟ೠା

൫ ೠಽష೗ಽ൯శ( ഁಽ ೘భಽష ೗ಽ)శ( ⍺ಽ ೘మಽష ೗ಽ)

ర
ା ௟ಽ

ଶ
     

            (12) 

The alternatives at Stage-(i), call for either keeping or 
replacing the machine at the beginning of the year.  

IV. APPLICATION 

A university wants to replace its 4-years-old servers. All 
computers have the same components and they are bought at 
the same time. The decision makers apply the interval type-2 
fuzzy dynamic programming replacement analysis method for 
their computers over the next 5 years.  

The cost of new machine is $(200K, 215K, 230K, 250K; 
1, 1)( 207K, 220K, 225K, 238K; 0.8, 0.8). To determine the 
revenue of the computer, we look at the annual saving 
achieved by computer capacity, speed, maintenance and repair 
costs and electricity costs. Thus, annual savings that increase 
productivity is about $(30K, 40K, 50K, 60K; 1, 1) (33K, 42K, 
47K, 57K; 0.8, 0.8). This is the revenue of new computer 
every year this number decreases.  

The operating costs include the cost of electricity, 
maintenance, repair and updating of machines. As a machine 
ages, it slows down, consumes more electricity and the 
maintenance cost increases. The new machine costs $(300, 
400, 550, 650; 1, 1)(350, 425, 485, 575; 0.8,0.8) per year. The 
salvage value of one year old machine is $(180, 195, 205, 220; 
1, 1)(185, 198, 202, 213; 0.8,0.8).  

The revenues, operating costs and salvage values by age 
are given in Table I. According to the regulation of the 
university, the machines which are 8 years old must be 
replaced.  

To implement dynamic programming, “keep” and  
“replace” decisions are made according to the Eq.(10)-(11). 

 

Fig. 2. Network diagram of the server replacement problem 

Figure 2 summarizes the network diagram of the computer 
replacement problem. 

Table II-III-IV-V-VI and VII in Appendix present results 
for various alternatives of interval type-2 fuzzy dynamic 
programming problem.  

 At Stage-1, original 4 years old equipment unit has 
to be replaced. This means that the server computer 
at the beginning of the next year would be one year 
old.    

 At  Stage-2, the equipment unit must be kept, so 
machine would be two years old.  

 At  Stage-3, two years old machine can be replaced 
or kept. So, there is two ways of the same cost.  

o Strategy 1: If university decide to “replace” at 
Stage-3, machine would be one year old at 
Stage-4, so it must be kept and at Stage 5 it 
would be kept as well.  

o Strategy 2: If university decide to “keep” at 
Stage-3, machine would be three years old at 
Stage-4, so it must be replaced and at Stage 5 it 
must be kept. Therefore, machine would be two 
years old at the end of the next 5 years.  

Thus, the maximum net income is $(44.5K, 210.6K, 
368.3K, 512.8K; 1,1)(121.525K, 253.84K, 328.07K, 
456.55K; 0.8,0.8) and the optimal replacement strategy is 
either R-K-R-K-K / R-K-K-R-K.  

Figure 3 summarizes the network diagram of two optimal 
results for the server replacement problem. 

 

Fig. 3. Network diagram of two optimal results for the server replacement 
problem 

V. CONCLUSION AND FUTURE WORK 

This study demonstrates a new version fuzzy dynamic 
programming approach with interval type-2 fuzzy numbers in 
replacement analysis. This article contributes to the literature 
by applying an interval type-2 fuzzy dynamic programming  
to equipment replacement problem. A numerical example for 
university server equipment is proposed to satisfy the actual 
methodology. Unlike classical dynamic programming, prices 



 

are expressed by taking into account the change in technical 
characteristics, the unpredictability of the economy and the 
value of money in years. The multi-stage decision-making 
approach has been revised with intervel type-2 fuzzy set. 
Thus, more detailed expressions have been used, rather than 
the crisp numbers used in the classical model. Based on the 
given cost in interval type-2 fuzzy numbers, two strategies 
emerge for replacement decision with the same net income. 

In future studies, other fuzzy types can be examined and 
can be applied to different types of equipment. 
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APPENDIX  

TABLE I.  THE REVENUES, OPERATING COSTS AND SALVAGE VALUES BY AGE  

Age  
(t) 

Revenue 
𝒓෤(𝒕) 

Operating Cost 
𝒄෤(𝒕) 

Salvage Value 
𝒔෤(𝒕) 

0 
(30,40,50,60;1,1) 

 (33,42,47,57;0.8,0.8) 
(0.3,0.4,0.55,0.65;1,1)  

(0.35,0.425,0.485,0.875;0.8,0.8) 
Xa 

1 
(29,37,48,55;1,1)  

(31,39,45,53;0.8,0.8) 
(0.65,0.75,0.875,0.95;1,1) 

 (0.7,0.825,0.85,0.875;0.8,0.8) 
(180,195,205,220;1,1) 

(185,198,202,213;0.8,0.8) 

2 
(27,35,45,52;1,1)  

(30,38,43,50;0.8,0.8) 
(1.1,1.3,1.45,1.6;1,1)  

(1.25,1.375,1.375,1.45;0.8,0.8) 
(165,185,200,210;1,1) 

(175,190,199,205;0.8,0.8) 

3 
(24,31,44,50;1,1)  

(27,33,42,47;0.8,0.8) 
(1.645,1.9,2.1,2.35;1,1) 

 (1.75,2.165,2.05,2.265;0.8,0.8) 
(155,170,180,195;1,1) 

(163,174,177,189;0.8,0.8) 

4 
(20,28,41,47;1,1)  

(20,27,35,42;0.8,0.8) 
(2.15,2.4,2.5,2.675;1,1) 

 (2.3,2.65,2.375,2.57;0.8,0.8) 
(140,145,165,185;1,1) 

(143,150,160,180;0.8,0.8) 

5 
(17,24,38,45;1,1)  

(33,42,47,57;0.8,0.8) 
(2.87,3.0,3.15,3.3;1,1)  

(2.95,3.125,3.125,3.225;0.8,0.8) 
(123,130,150,170;1,1) 

(127,140,144,155;0.8,0.8) 

6 
(14,20,34,41;1,1)  

(17,23,31,38;0.8,0.8) 
(3.145,3.4,3.575,3.75;1,1)  
(3.3,3.5,3.55,3.575;0.8,0.8) 

(84,95,113,127;1,1)  
(90,103,105,120;0.8,0.8) 

7 
(10,16,29,38;1,1)  

(13,18,26,34;0.8,0.8) 
(3.315,3.6,3.845,4.05;1,1) 

(3.475,3.725,3.775,3.95;0.8,0.8) 
(63,70,87,102;1,1)  

(65,75,84,96;0.8,0.8) 

8 
(7,13,26,35;1,1) 

 (9,15,23,31;0.8,0.8) 
(3.975,4.1,4.35,4..55;1,1)  

(4.0,4.275,4.3,4.375;0.8,0.8) 
(44,50,57,65;1,1) 

 (47,52,55,62;0.8,0.8) 
a. X means that there is no salvage value for a computer less than one year old.  

TABLE II.  STAGE-6 

t 𝒇𝟔(𝒕) Decision 

0 (30,40,50,60;1,1) (33,42,47,57;0.8,0.8) - 

1 (29,37,48,55;1,1) (31,39,45,53;0.8,0.8) - 

2 (27,35,45,52;1,1) (30,38,43,50;0.8,0.8) - 

3 (24,31,44,50;1,1) (27,33,42,47;0.8,0.8) - 

4 (20,28,41,47;1,1) (20,27,35,42;0.8,0.8) - 

5 (17,24,38,45;1,1) (33,42,47,57;0.8,0.8) - 

6 (14,20,34,41;1,1) (17,23,31,38;0.8,0.8) - 

7 (10,16,29,38;1,1) (13,18,26,34;0.8,0.8) - 

8 (7,13,26,35;1,1) (9,15,23,31;0.8,0.8) - 

TABLE III.  STAGE-5  

t 
𝑲𝒆𝒆𝒑 

𝒓෤(𝒕) − 𝒄෤(𝒕) − 𝒇෨𝟔(𝒕 + 𝟏) 
𝑫𝒕𝑻𝒓𝒕 

𝑹𝒆𝒑𝒍𝒂𝒄𝒆 
𝒓෤(𝟎) + 𝒔෤(𝒕) − 𝒄෤(𝟎) − 𝒑෥ + 𝒇෨𝟔(𝟏) 

𝑫𝒕𝑻𝒓𝒕 𝒇𝟓(𝒕) 

D
ec

is
io

n
 

1 
(193.05, 221.125, 247.25, 264.35;1,1) 

(205.125,228.15,243.175,257.3;0.8,0.8) 
882,63 

(139.35,199.45,244.6,299.7;1,1) 
(164.425,212.515,230.575,275.65;0.8,0.8) 

838,8235 
(193.05, 221.125, 247.25, 264.35;1,1) 

(205.125,228.15,243.175,257.3;0.8,0.8) 
K 

2 
(180.4,203.55,223.7,245.9;1,1) 

(191.55,210.625,218.625,237.75;0.8,0.8) 
813,125 

(124.35,189.45,239.6,289.7;1,1) 
(154.425,204.515,227.575,267.65;0.8,0.8) 

805,4235 
(180.4,203.55,223.7,245.9;1,1) 

(191.55,210.625,218.625,237.75;0.8,0.8) 
K 

3 
(161.65,173.9,207.1,233.355;1,1) 

(167.735,180.95,199.835,225.25;0.8,0.8) 
736,809 

(114.35,174.45,219.6,274.7;1,1) 
(142.425,188.515,205.575,251.65;0.8,0.8) 

746,2235 
(161.65,173.9,207.1,233.355;1,1) 

(167.735,180.95,199.835,225.25;0.8,0.8) 
R 

4 
(140.325,155.5,188.6,214.85;1,1) 

(146.43,167.735,179.35,196.7;0.8,0.8) 
659,993 

(99.35,149.45,204.6,264.7;1,1) 
(122.425,164.515,188.575,242.65;0.8,0.8) 

682,8235 
(140.325,155.5,188.6,214.85;1,1) 

(146.43,167.735,179.35,196.7;0.8,0.8) 
R 

8 Must replace - 
(3.35,54.45,96.6,144.7;1,1) 

(26.425,66.515,83.575,124.65;0.8,0.8) 
285,1235 

(3.35,54.45,96.6,144.7;1,1) 
(26.425,66.515,83.575,124.65;0.8,0.8) 

R 

TABLE IV.  STAGE-4  

t 
𝑲𝒆𝒆𝒑 

𝒓෤(𝒕) − 𝒄෤(𝒕) − 𝒇෨𝟓(𝒕 + 𝟏) 
𝑫𝒕𝑻𝒓𝒕 

𝑹𝒆𝒑𝒍𝒂𝒄𝒆 
𝒓෤(𝟎) + 𝒔෤(𝒕) − 𝒄෤(𝟎) − 𝒑෥ + 𝒇෨𝟓(𝟏) 

𝑫𝒕𝑻𝒓𝒕 𝒇𝟒(𝒕) 

D
ec

is
io

n
 

1 
(208.45,239.675,270.95,300.25;1,1) 

(221.675,248.775,262.8,290.05;0.8,0.8) 
970,155 

(152.4,225.575,286.85,344.05;1,1) 
(184.55,242.665,271.75,319.95;0.8,0.8) 

962,4535 
(208.45,239.675,270.95,300.25;1,1) 

(221.675,248.775,262.8,290.05;0.8,0.8) 
K 

2 
(139.75,208,263.3,325.6;1,1) 

(170.975,225.14,247.2,300.4;0.8,0.8) 
892,9485 

(137.4,215.575,281.85,334.05;1,1) 
(174.55,234.665,268.75,311.95;0.8,0.8) 

929,0535 
(137.4,215.575,281.85,334.05;1,1) 

(174.55,234.665,268.75,311.95;0.8,0.8) 
R 

3 
(121,178.35,246.7,313.055,52;1,1) 

(147.16,195.465,228.41,287.9;0.8,0.8) 
816,6325 

(127.4,200.575,261.85,319.05;1,1) 
(162.55,218.665,246.75,295.95;0.8,0.8) 

869,8535 
(127.4,200.575,261.85,319.05;1,1) 

(162.55,218.665,246.75,295.95;0.8,0.8) 
R 

7 
(9.3,66.605,4,122,179,385;1,1) 

(35.475,80.74,105.85,155.175;0.8,0.8) 
358,606 

(35.4,100.575,168.85,226.05;1,1) 
(64.55,119.665,153.75,202.95;0.8,0.8) 

508,5535 
(35.4,100.575,168.85,226.05;1,1) 

(64.55,119.665,153.75,202.95;0.8,0.8) 
R 

 



 

TABLE V.  STAGE-3  

t 
𝑲𝒆𝒆𝒑 

𝒓෤(𝒕) − 𝒄෤(𝒕) − 𝒇෨𝟒(𝒕 + 𝟏) 
𝑫𝒕𝑻𝒓𝒕 

𝑹𝒆𝒑𝒍𝒂𝒄𝒆 
𝒓෤(𝟎) + 𝒔෤(𝒕) − 𝒄෤(𝟎) − 𝒑෥ + 𝒇෨𝟒(𝟏) 

𝑫𝒕𝑻𝒓𝒕 𝒇𝟑(𝒕) 

D
ec

is
io

n
 

1 
(165.45,251.7,329.1,388.4;1,1) 

(204.675,272.815,312.925,364.25;0.8,0.8) 
1086,084 

(167.8,244.125,310.55,379.95;1,1) 
(201.1,263.29,291.375,352.7;0.8,0.8) 

1049,979 
(165.45,251.7,329.1,388.4;1,1) 

(204.675,272.815,312.925,364.25;0.8,0.8) 
K 

2 
(152.8,234.125,305.55,369.95;1,1) 

(191.1,255.29,288.375,344.7;0.8,0.8) 
1016,579 

(152.8,234.125,310.55,379.95;1,1) 
(191.1,255.29,288.375,344.7;0.8,0.8) 

1016,579 
(152.8,234.125,310.55,379.95;1,1) 

(191.1,255.29,288.375,344.7;0.8,0.8) 
K/R 

6 
(45.65,117.0,199.45,263.905;1,1) 

(77.975,139.115,181.25,237.65;0.8,0.8) 
598,961 

(71.8,144.125,218.55,286.95;1,1) 
(106.1,168.29,194.375,259.7;0.8,0.8) 

688,6785 
(71.8,144.125,218.55,286.95;1,1) 

(106.1,168.29,194.375,259.7;0.8,0.8) 
R 

TABLE VI.  STAGE-2  

t 
𝑲𝒆𝒆𝒑 

𝒓෤(𝒕) − 𝒄෤(𝒕) − 𝒇෨𝟑(𝒕 + 𝟏) 
𝑫𝒕𝑻𝒓𝒕 

𝑹𝒆𝒑𝒍𝒂𝒄𝒆 
𝒓෤(𝟎) + 𝒔෤(𝒕) − 𝒄෤(𝟎) − 𝒑෥ + 𝒇෨𝟑(𝟏) 

𝑫𝒕𝑻𝒓𝒕 𝒇𝟐(𝒕) 

D
ec

is
io

n
 

1 
(232,250.675,267.375,273.15;1,1) 

(229.825,243.525,267.465,283.4;0.8,0.8) 
1173,609 

(124.8,256.15,368.7,468.1;1,1) 
(184.1,287.33,341.5,426.9;0.8,0.8) 

1165,907 
(232,250.675,267.375,273.15;1,1) 

(229.825,243.525,267.465,283.4;0.8,0.8) 
K 

5 
(85.5,164.975,253.55,329.08;1,1) 

(122.875,192.165,226.25,298.75;0.8,0.8) 
794,731 

(67.8,191.15,313.7,418.1;1,1) 
(126.1,229.33,283.5,368.9;0.8,0.8) 

948,007 
(67.8,191.15,313.7,418.1;1,1) 

(126.1,229.33,283.5,368.9;0.8,0.8) 
R 

TABLE VII.  STAGE-1  

t 
𝑲𝒆𝒆𝒑 

𝒓෤(𝒕) − 𝒄෤(𝒕) − 𝒇෨𝟐(𝒕 + 𝟏) 
𝐃𝐭𝐓𝐫𝐭 

𝑹𝒆𝒑𝒍𝒂𝒄𝒆 
𝒓෤(𝟎) + 𝒔෤(𝒕) − 𝒄෤(𝟎) − 𝒑෥ + 𝒇෨𝟐(𝟏) 

𝑫𝒕𝑻𝒓𝒕 𝒇𝟏(𝒕) 

D
ec

is
io

n
 

4 
(85.125,216.65,352.3,462.95;1,1) 

(145.53,256.955,318.85,410.6;0.8,0.8)  
1066,9 

 
 (44.15,210.6,368.3,512.8;1,1) 

(121.525,253.845,328.075,456.55;0.8,0.8) 
1097,432 

 
(44.15,210.6,368.3,512.8;1,1) 

(121.525,253.845,328.075,456.55;0.8,0.8)  
R 

 




