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Abstract—The uncertainty is a common problem in many
areas of science. The best-studied variant is incomplete data
where the values of some attributes are unknown. It turns out
that even in this situation, many known classification methods
fail. The objective of the work is to develop an effective
classification method for uncertain data including pre-processing
and uncertainty aware similarity-based algorithms. The problem
of uncertainty is particularly important in medical diagnostics
where incompleteness and uncertainty is often a natural and
permanent feature of the data. The paper presents the evaluation
of the proposed methods on two publicly available data sets and
compare the effectiveness of the previous results.

Index Terms—fuzzy, uncertainty, similarity, classification, im-
perfect information, decision support, nearest neighbours

I. INTRODUCTION

The problem of classification is to determine the class
(category), to which one must assign a new, previously un-
known object (instance). These objects are described using
various attributes. The problem becomes significantly more
complicated if we allow incompleteness or, more generally,
data uncertainty. The simplest variant assumes missing values
of selected attributes in the test set. Another option is the
missing data in both the test and training set. Also, in both
variants, not only uncertainty due to lack of data can be taken
into account, but also more generally, any kind of epistemic
uncertainty (see [1]). In such conditions, the design of an
effective classifier using classical methods may prove to be
very difficult or even impossible.

The main problems encountered when classifying uncertain
data are:
• the inability to use all available data for model construc-

tion (due to removing objects or missing attributes),
• the inability to classify objects with missing values,
• the need to construct different classification methods for

different data (e.g. a separate model for objects with and
without missing values),

• a significant increase in computational complexity of both
the classifier learning process and the classification itself,

• increase in the complexity of classification methods,
which significantly impedes understanding of constructed
models.

This work was supported by the National Science Centre, Poland, grant
number 2016/21/N/ST6/00316.

The problem of data uncertainty is particularly important in
medical diagnostics where incompleteness and uncertainty is
often a natural and permanent feature of the data [2]. Hence,
any attempt to neglect this problem leads to the models that
do not reflect reality. Editing the data is generally not allowed
in medical applications. Removing incomplete instances from
often too small data set, significantly narrows the research
possibilities. On the other hand, the imputation based approach
can not be used to classify a specific medical case due to the
high risk of the wrong diagnosis because imputed values in
no way reflect the current patient condition.

On the other hand, sometimes even a high level of uncer-
tainty may have no real impact on classification outcomes. We
recall the example of a medical diagnosis problem, where we
have found out that for some patients, the actual value of many
medical markers or indicators does not impact final diagnosis
[3]. In other words, in those situations all possible epistemic
states were classified into the same class.

The classification methods proposed in this work attempt
to solve these problems using uncertainty-aware similarity
measures [4].

II. DEFINITIONS

Let U = {u1, u2, . . . , un} be a crisp universal set. A
mapping A : U → [0, 1] is called a fuzzy set (FS) in U [5].
For each 1 ≤ i ≤ n, the value A(ui) (ai for short) represents
the membership grade of ui in A. Any crisp set X ⊆ U can
be represented as a fuzzy set by its characteristic function 1X .
Let F(U) be the family of all fuzzy sets in U .

Definition 1 (see [6]). A similarity measure of fuzzy sets is
defined as a function on E ⊂ F(U)×F(U)

s : E→ [0, 1] , (1)

where E needs to satisfy:
(S1) (A,B) ∈ E if and only if (B,A) ∈ E,
(S2) (A,B) ∈ E if (A,1U ) ∈ E.

It is common to assume that the higher measure values indicate
a higher similarity of arguments.

Any closed, nonempty subset Ã of F(U) will be called
Fuzzy Membership Function Family (FMFF) (see [7]). Set Ã
represents all the possible states that can hide behind uncertain
information.
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Let Ẽ ⊂ FMFF(U)×FMFF(U) be such that:
(E1) (Ã, B̃) ∈ Ẽ if and only if (B̃, Ã) ∈ Ẽ,
(E2) (Ã, B̃) ∈ Ẽ if

(
Ã, {1U}

)
∈ Ẽ,

(E3) (Ã, B̃) ∈ Ẽ if and only if for any fuzzy sets A ∈ Ã,
B ∈ B̃: (

{A} , {B}
)
∈ Ẽ . (2)

Definition 2 (see [4]). A function s̃ : Ẽ → P([0, 1]) is an
uncertainty–aware similarity measure if:

(P1) For all (Ã, B̃) ∈ Ẽ,

s̃(Ã, B̃) = s̃(B̃, Ã) . (3)

(P2) If (F(U),F(U)) ∈ Ẽ then

s̃(F(U),F(U)) = [0, 1] (4)

(P3) For all (Ã, B̃), (Ã, C̃) ∈ Ẽ such that 1X ∈ Ã, 1X ∈ B̃
and 1Xc ∈ C̃ for some X ⊂ U ,

1 ∈s̃(Ã, B̃) , (5)

0 ∈s̃(Ã, C̃) . (6)

(P4) For all fuzzy sets A,B ∈ F(U) such that ({A}, {B}) ∈
Ẽ,

s̃({A}, {B}) = {a}, for some a ∈ [0, 1] . (7)

(P5) For any (Ã, C̃), (B̃, D̃) ∈ Ẽ such that Ã ⊂ B̃ and C̃ ⊂
D̃,

s̃(Ã, C̃) ⊂ s̃(B̃, D̃) . (8)

(P6) For any (Ã, D̃), (B̃, C̃) ∈ Ẽ and for all A ∈ Ã, B ∈
B̃, C ∈ C̃,D ∈ D̃ such that A ⊂ B ⊂ C ⊂ D we have

sad ≤ sbc (9)

where

s̃
(
{A}, {D}

)
= {sad} and s̃

(
{B}, {C}

)
= {sbc} .

(10)

In (P6) it should be noted that inclusion relation plays a
purely technical role – it only guarantees the proper ordering
of the membership functions.

Definition 3. Let s : E → [0, 1] be a similarity measure of
fuzzy sets. Function s̃ : Ẽ → P([0, 1]) can be defined as an
image of a product of two families of fuzzy sets via similarity
measure s:

s̃(Ã, B̃) =
{
s(A,B) : A ∈ Ã, B ∈ B̃

}
, (11)

where

Ẽ =
{

(Ã, B̃) ∈ FMFF(U)×FMFF(U) : Ã× B̃ ⊂ E
}
.

(12)

Let G be a convex subset of [0, 1]× [0, 1] and the Equality
Value Ψ : G→ [0, 1] be continuous and such that:
(Ψ1) for any (a, b) ∈ G, Ψ(a, b) = Ψ(b, a)
(Ψ2) for any (a, d), (b, c) ∈ G such that a ≤ b ≤ c ≤ d we

have that Ψ(a, d) ≤ Ψ(b, c)

TABLE I: Co-implication operators obtained from nine basic
implication operators.

Implication operator Fuzzy equivalence, Ψ(x, y)

Łukasiewicz, IŁK 1− |x− y|

Gödel, IGD

{
1, x = y

min(x, y), x 6= y

Reichenbach, IRC

{
min(x, y), 1− x ≤ y

min(1− x, 1− y), 1− x > y

Goguen, IGG

{
1, x = y = 0
min(x,y)
max(x,y)

, x 6= 0, y 6= 0

Rescher, IRS

{
1, x = y

0, x 6= y

Yager, IYG

{
1, x = y = 0

min(xy , yx), x, y > 0

Weber, IWB

{
1, x, y < 1

min(x, y), x = 1 or y = 1

Fodor, IFD


1− x, y ≤ min(x, 1− x)

y, 1− x < y < x

1− y, x < y < 1− x

x, y > max(x, 1− x)

Kleene-Dines, IKD

{
min(x, y), 1− x ≤ y

min(1− x, 1− y), 1− x > y

(Ψ3) Ψ(0, 1) = 0, Ψ(1, 1) = 1 and Ψ(0, 0) = 1.

Definition 4. The logic-based similarity measure is defined as
an aggregation of the Equality Values Ψ : G→ [0, 1] over all
elements of the universe

sΨ(A,B) =
⊕
u∈U

Ψ(µA(u), µB(u)) . (13)

The domain of such similarity measure is the following:

EG =
{

(A,B) ∈ F(U)2 : ∀ui∈U (A(ui), B(ui)) ∈ G
}
(14)

where G ⊂ [0, 1]2 and

(G1) (a, b) ∈ G if and only if (b, a) ∈ G,
(G2) (a, b) ∈ G if (a, 1) ∈ G .

This definition generalizes the concept of additive similarity
measure recently proposed by Couso [8], [9]. It should be
noted that replacing arithmetic mean by any other aggregation
operator does not affect any of the assumptions or properties.
Moreover, this approach allows for direct integration of the
weights of individual elements of the universe into a similarity
measure. From a practical point of view, two families of aggre-
gation operators are noteworthy: weighted means and weighted
medians. The first one because of its simplicity and widespread
use. Second, because of much better computational complexity
when applied to uncertainty-aware similarity measure [4].

All continuous Fuzzy Equivalences defined by Fodor and
Roubens [10] can be used to define Equality Value Ψ. Exam-
ples are given in Table. I.



Uncertainty-aware similarity based
Nearest Neighbour method

Step 1:

Step 2: Step 3:

Step 4:

test instance Ã

incomplete/uncertain
training set {B̃i}

class or NAcalculation of
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similarity measure s̃
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according to given
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selection of k
most similar neighbours

selection of decision class
among k most

similar neighbours

Fig. 1: A scheme of operation of the classifier based on the
kNN method.

III. PROPOSED METHOD

This work will propose a classification method based on the
uncertainty-aware similarity measure presented in the previous
section. The feature that distinguishes it is full support for data
uncertainty. It can easily deal with epistemic uncertainty of any
type, both in the training and test sets.

In expert systems and, more generally, in the problem
of decision support, very often, apart from the effectiveness
itself, the interpretability of the mathematical models used is
also important. Too complicated and difficult to understand
methods discourage their use. Such a problem occurs, for
example, in the field of medical diagnostics, where doctors are
very skeptical about the methods they would use as a black
box [2]. For this reason, one of the basic assumptions was
to maintain simplicity and low conceptual complexity. The
chosen solution is based on the nearest neighbor rule, which
is very similar to the case study method used in medicine.

In this work, we use the variant of the k nearest neighbors
(kNN) method, where instead of the distance between objects
their similarity is used (see [11]). The basic requirement
was the possibility of classifying data subject to epistemic
uncertainty (e.g. resulting from incomplete data). However,
uncertainty-aware similarity measure cannot easily be used to
construct the distance function for kNN. Hence, we add steps
responsible for dealing with uncertainty. Figure 1 presents the
main steps of the proposed classification method.

The basic difference between the distance function and
uncertainty-aware similarity measure is the set-theoretic char-
acter of similarity value. The main problem concerns the
ordering of sets (Step 2), which, unlike real numbers, is not
clearly defined. Standard methods for interval ranking are:

1) ordering by center, lower or upper bound of the interval
2) ordering based on comparing bipolar values [12]

[a1, b1] ≺ [a2, b2], if
a1 + b1 < a2 + b2 or (15)
a1 + b1 = a2 + b2 and a1 − b1 < a2 − b2 ,

3) interval dominance

[a1, b1] ≺ [a2, b2], if b1 < a2 , (16)

4) lattice partial order

[a1, b1] ≺ [a2, b2], if a1 < a2 and b1 < b2 . (17)

These relations can be generalized to case of [0, 1] subsets.
For the third and fourth methods, the order received is only

partial. For this reason, it is not possible to unambiguously
order the intervals. From a theoretical point of view, any linear
extension of a partial order is sufficient. However, in practical
applications, it is better to use a deterministic algorithm that
tries to extrapolate the order such as the Local Partial Order
Model (LPOM, [13]).

Also, the remaining steps of the proposed approach allow
you to adjust the parameters affecting the quality of the
classification. The most important parameter is the selection
of the similarity measure in Step 1. In Step 2, it is necessary
to indicate the order relation on the set of similarity measure
values. The problem of choosing the value of the k parameter
from Step 3 is analogous to the classical the Nearest Neighbor
method.

The last step is to choose the class for the instance based
on k the most similar neighbors. The simple solution is to
choose the dominant class. The inclusion of uncertainty in the
classification process allows the use of another class selection
method. It consists of choosing the class of the neighbor whose
similarity carries the least uncertainty (i.e. the set that is the
value of the similarity measure has the smallest cardinality).
The next method can only be used if the classifier is allowed
not to make a decision. In this method, the class for the object
is the one to which all k most neighbors belong. In the case
of different classes, the decision is not made. No decision
can also be made for the even values of the k parameter and
the dominant class selection method. Such a solution may
be particularly useful in expert systems supporting medical
diagnostics, wherein the case of insufficient premises it is
possible to give no recommendation, thus indicating that more
data should be collected.

The most important advantages of the proposed method in-
clude the simplicity of its concept, ease of implementation and
a homogeneous method of operating on complete, incomplete
and general uncertain data. The third advantage is particularly
important because there are few models with this property.

The basic disadvantage of the proposed method is high
computational complexity. Although the learning phase of
the classifier, in this case, is not associated with a large
computational effort, the cost of classifying a single instance
is quite high. Assuming that the computational complexity
of the similarity measure is O(f(n)), the first step requires
O(mf(n)) operations, where m is the number of instances in
the training set. The ordering of the values in the second step,
depending on the method used, can be done in O(m logm),
if the selected order is a total order, or O(m2), for partial
order sorted using topological sort or LPOM algorithms.
Steps three and four require O(k) operations. Thus, in total,
O(mf(n)+m logm) or O(mf(n)+m2) operation is required
to classify a single test instance. This complexity, although
large, still allows effective classification, even with several



thousand items in the training database. It is important to
note, that due to the complex nature of data being handled, it
is hard to replace the brute force approach with well-known
data structures such as KD or ball trees [14], [15].

IV. EVALUATION

It is difficult to carry out a fair comparison of the developed
methods with other known classifiers. Most of them cannot
operate on uncertain (interval or set) data. On the other
hand, comparing methods created to deal with information
uncertainty on complete and certain data significantly favors
classic solutions.

Another problem is the availability of well-documented,
incomplete data sets that could serve such a comparison. To
overcome this problem, the KEEL project created an archive
of the data sets [16]. Unfortunately, it contains only one real
data set (in various variants) that can be used to perform this
task.

For this section, implementations of the similarity measures
and classification methods were provided under the open
source license [17]. The recognized and free programming
language R was chosen as the platform.

This section is devoted to the evaluation of the proposed
classification methods on a dyslexic data set from the KEEL
archive and OvaExpert data set. The effectiveness will be
compared with the previous methods proposed by the authors
of those data sets.

A. The dyslexic dataset

Dyslexia can be defined as an impairment of the learning
process in people with the correct intelligence quotient and
without other physical or psychological problems that could
explain this condition. The dyslexic dataset [16] contains
the values of twelve indicators (attributes) to assess whether
reading, writing and calculating skills are developed according
to the age of the child. The data include 65 children between
the ages of 6 and 8, residing in the province of Asturias in
Spain. It is estimated that 4-5% of children suffer from this
problem.

The data set is subject to the uncertainty resulting from
the decision of the psychologist. Each attribute takes values
from the range of [0, 10]. In the event of difficulties in
determining the exact value, the psychologist may use any
interval. Also, the dataset is not complete and some attribute
values are not available. The descriptions of all instances were
normalized and converted to a Fuzzy Membership Familly
(FMFF). The missing values have been replaced by the set
of all possibilities, i.e. [0, 1].

During the examination, the child is classified into the
following four groups: without dyslexia, for control, with
dyslexia and other disorder. Each child as a result of the
examination can be assigned to many groups at the same time.

The evaluation was carried out using 10-fold cross-
validation, the same as in [18], [19], thanks to which it will
be possible to compare the obtained results.
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Fig. 2: Averaged classification error on the dyslexic dataset.
The results of classifiers based on the GFS method are also
marked on the left.

1) Results and discussion: Figure 2 shows the average error
rate in the four-class classification. For comparison, the results
obtained by both variants of the GFS (Genetic Fuzzy System)
method, which were proposed by the authors of the dyslexic
dataset, are also presented. The basic variant (crisp) does very
poorly with uncertain data, obtaining a classification error of
0.657. Its extended version performs much better, obtaining
an error rate in the range [0.421, 0.558].

However, both of these methods are significantly inferior
to most variants based on the similarity measure. A classifier
based on Yager Fuzzy Equality and mean aggregation obtained
a classification error of 0.14. This is not an isolated result, as
for many other Fuzzy Equalities the error is not higher than
0.2.

The lower part of Fig. 2 presents results of median-based
similarity measures. The first observation is that on this dataset
mean aggregation proved to be more robust. Median still can
achieve good performance but the error rate is higher, except
Reichenbach Fuzzy Equality.

Another observation is that Rescher and Weber Fuzzy
Equalities yield higher errors, than others. This is because
these two operators are extreme cases that in most cases assign
0 and 1, respectively. This makes them ignore all uncertainty
in the data, hence error rate is comparable with the crisp GFS
method. The last observation is that 0.14 error is a very good
result. It overcomes the results obtained by the generalized
Jaccard index extended to uncertain data proposed in [4], [20].

B. The OvaExpert dataset

This subsection is devoted to the problem of differential
diagnosis of ovarian tumors. This was the starting point for
research on the classification of incomplete and uncertain data.



Two scenarios for using the proposed classification methods
will be presented. In both cases, the extensive evaluations were
carried out on actual medical data.

Malignant ovarian tumors are one of the most difficult
problems of modern gynecological oncology both in terms of
diagnostics and treatment [21]. Not fully understood etiology,
as well as increasing morbidity and mortality, further increase
the importance of this issue. The high mortality rate in women
is due to the fact that ovarian cancers are difficult to detect in
the early stages [21].

In recent years, several studies have been conducted to iden-
tify patient-describing parameters that would enable the pre-
operative prediction of ovarian tumor type. In addition to the
classic features collected during the medical interview, such as
menopausal status or the occurrence of cancer in the patient’s
family [22], attention was paid to information obtained during
the ultrasound examination [23]. Cancer markers CA-125 and
HE4 are a separate category, the level of which is also one of
the most important premises during differentiation [24].

The OEA model, which was created on the OvaExpert
dataset especially to deal with ovarian tumor diagnosis under
data uncertainty should be treated as a state of the art solution
for this problem [25]. In this paper we proposed another
approach, that is more universal since it can be applied to
any field and the results show that efficacy is close to original
results.

1) Scenario 1: diagnostics based on raw patient data:
The first scenario assumes the use of all available medical
data to make a diagnosis. This is the simplest and most direct
method since the only transformation that the data undergoes is
normalization to FMFF. The similarity measure is used directly
to compare the medical data of two patients.

The research group consists of 388 patients treated with
ovarian tumors at the Clinic of Operational Gynecology at the
Medical University of Karol Marcinkowski in Poznań, Poland
in the years 2005 - 2015. Of these, 61% were diagnosed
with benign and 39% were malignant. In addition, 56% of
patients had no missing data and 40% were incomplete in less
than 50%. The distribution of missing data is shown in Fig.
3. A significant subset of this dataset, covering the majority
of patients with a complete description, was presented in a
medical context in the work [3].

The evaluation procedure is based on the classic division
into training (optimization) and test data sets. The initial data
set does not have a homogeneous distribution of the missing
data. If such data were divided evenly, this could lead to a
situation in which some levels of missing data would not
be available at the optimization and/or testing stage. This
situation is very undesirable because the goal is to develop
a method that works for all levels of missing data. The test
set consists of instances with missing data and some of those
with a complete data set. On the other hand, the optimization
set is built from instances with a complete description, and
the incompleteness is simulated. In the simulations, it was
assumed that the incompleteness of data occurs randomly
because it is not possible to accurately simulate the diagnostic
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Fig. 3: Division of patients in terms of data completeness level.

process. The actual distribution of the levels of lack of data
is not known, hence in the optimization phase, an assumption
was made about its homogeneity. Thanks to this, instances
with different levels of data incompleteness occur in both the
optimization and test sets.

The description of each instance is converted to a FMFF. Let
the U be the universe composed of all attributes describing the
patient. The degrees of membership of a given attribute ui ∈ U
to the FMFF Ã, representing the patient, carry information
about the extent to which the value of this attribute for a given
instance is large. Importantly, if the value of a certain attribute
is not available, the entire unit interval is used as the set of
possible membership degrees. The more information regarding
the normalization procedure and semantics is given in [7].

The optimization set consists of 200 complete instances,
while the test set contains the remaining 18 complete patient
descriptions and all descriptions with a data incompleteness
level below 50% - a total of 175 instances. Instances incom-
plete in over 50% were excluded from the study.

Reducing the number of instances, or the removal of outliers
can significantly impact the effectiveness and efficiency of the
classification algorithm. However, the problem of data pre-
processing seems to be neglected in the available literature on
uncertain data classification. The first approaches to this prob-
lem were taken in [26], [27]. Although results are promising,
authors assess the quality of instance by the single numerical
value. Such an approach neglects the epistemic nature of the
data because this uncertainty score is external to the data itself.

Two main approaches to data reduction for NN rule can be
distinguished: condensation (CNN, [28]) and editing (ENN,
[29]). The first try to build a minimal consistent subset of
the training set. The second reduces the dataset by removing
noisy instances. In this study, we focus on the second approach
because CNN based methods are not able to find any consistent
set when data is uncertain in an epistemic manner.

Because the removal of a noisy data point might lead to a
new source of noise, Repeated Editing Nearest Neighbour rule
(RENN) repeatedly removes noisy data until no noise of this
kind is found [30]. This approach was used in our medical
dataset evaluation.

The goal of the optimization phase is to select, based
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on simulated incompleteness, optimal parameter values for
each of the proposed methods. The simulated incompleteness
level was between 0% and 50% with 5% steps. For each
level of incompleteness, 10 repeats of the following procedure
were performed. First of all, 75 instances of each class were
drawn from the optimization set (malicious, benign). Then
the determined percentage of attributes describing selected
patients is obfuscated (erased). Such data is used in a 10-
fold cross-validation procedure of all the variants of the
proposed classification methods. The classifiers are assessed
based on performance averaged for all repeats and levels of
data incompleteness. The single step of the optimization phase
is shown in Fig. 4.

The result of the optimization phase is a set of classifiers that
did best on simulated incomplete data. In the test phase, they
are run on data from the test set, for which the source of uncer-
tainty is the actual diagnostic process. The entire optimization
set is used as the instance base for the proposed classifiers.
To examine how the developed classification methods behave
when the instance database is incomplete, its various levels
were simulated. The classification quality assessment obtained
is then averaged for all replicates and data incompleteness
levels.

2) Scenario 2: diagnostics based on diagnostic models:
A common problem with many distance- or similarity-based
classification methods is a decrease in efficiency as a number

of dimensions increase. This is because distances in mul-
tidimensional space become large regardless of the actual
proximity or similarity of the compared objects. Of course,
the strength of this undesirable effect depends on the selection
of the original similarity measure. For example, while using
Euclid’s distance much better efficiency should be expected
with a reduced number of dimensions.

The second scenario involves reducing the number of
attributes describing the patient. Many methods are known
for reducing the dimensionality of data sets, e.g. principal
component analysis. However, another method will be used
in this case. There are many models for the problem of
differential diagnosis of ovarian tumors. Most of them used
on complete data describing the patient return a numerical
value from a certain range indicating a suggested diagnosis.
The values returned by several models can be used to construct
new attributes describing the patient.

The evaluation uses the same data set as the first scenario.
Six diagnostic models were selected for the reduction (see
[25]): two based on scoring systems (SM, Alcazar) and four
on logistic regression (LR1, LR2, Timmerman, and RMI).

Selected diagnostic models require complete data. This
raises the problem of how to calculate the return value of
the model for instance, which is not complete. This problem
was solved using uncertaintification [25]. The basic idea is to
replace a single value in the [0, 1] interval (0 means a benign
change, while 1 - a malignant one) with the set of all values
that can be obtained by completing the incomplete description
of the patient in any way. The data obtained in this way is
subject to epistemic uncertainty, which makes it perfectly fit
into the developed classification methods. Each instance is
represented by a FMFF. In this scenario, we define the universe
as a set of diagnostic models and the degree of membership
µÃ(u) describes the similarity of the value returned by a given
model to a malignant diagnosis.

The evaluation procedure is identical to the previous one,
except that in the step normalization into FMFF instead of
normalizing the data, a reduction is performed.

3) Results and discussion: The quality of classification
algorithms can be expressed through many different indicators,
such as accuracy, sensitivity, and specificity. In the considered
problem of medical diagnostics, the best classifier should
provide very high sensitivity as well as slightly lower, but
still high specificity. Moreover, for some instances, data may
not indicate which decision to make. In this case, the classifier
should not indicate the diagnosis and the patient should be sent
to a reference treatment center. For this reason, it is acceptable
that some instances will not have a class assigned (less than
100% decisiveness). Since choosing one quality indicator that
would meet all criteria is a very difficult task [31], the total
cost method was used, where the sum of costs assigned to
individual decisions is taken as a measure of the quality of
the classification. Correct classification as true positive or true
negative is not associated with any cost. The highest cost is
attributed to the false negative diagnosis, when the classifier
indicates benignity, while in fact, the patient has a malignant
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Fig. 5: Evaluation results for the proposed classification meth-
ods depending on the level of uncertainty. The effectiveness
of the reference models was also plotted.

tumor. The cost of false positive was set as twice lower than the
cost of false negative because unnecessary surgery still poses
some danger to the patient’s health. Also, if the classifier fails
to make a decision, there is a difference in the assigned cost.
It is lower than in the case of false positive because the patient
is sent to a reference center, where a good diagnosis can still
be made. However, the cost in the case when the tumor is
malignant is twice as high as for a benign tumor.

Figure 5 presents the characteristics of the total cost vari-
ability in both scenarios (scenario 1 – left, scenario 2 – right
plot) depending on the simulated level of uncertainty in the
training set. For comparison, the values obtained by the most
commonly used medical diagnostic models for ovarian tumors
are also presented (blue, upper dashed lines). We also plot
the cost of OEA model (green, lower dashed line) which was
achieved with 1000 repeats compared to 10 in this study.

Unlike the original diagnostic models, the increase in uncer-
tainty level does not result in a significant increase in the cost
of classification for the proposed methods. This feature allows
concluding that the proposed classification methods can work
effectively even at a 50% level of incompleteness.

Classic diagnostic models are based on very simple math-
ematical methods, so it should not come as a surprise that
the proposed methods obtained a much lower average total
classification cost. The comparison also includes the OEA
model, for which the total cost is generally slightly lower (72)
than the results obtained by the proposed methods. However,
this difference is not large, especially considering that the
classifiers tested are more versatile because they do not use
external medical knowledge. The average total classification
cost for both scenarios is presented in Figure 6.

In the first Scenario, the overall total cost is small. For a
Goguen Fuzzy Equality based classifier, it is 91.4 using the
mean as aggregation operator. It is a model based solely on raw
data without additional medical knowledge. Adding weights to
the model (based on medical knowledge) did not significantly
improve the efficiency of classification, from which one can
conclude about the good ability to differentiate input data
based on the uncertainty level. On the other hand, the use
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Fig. 6: The average total classification cost for diagnostic
models and proposed classification methods. Scenario 1 and 2
(upper and lower parts, respectively).

of instance selection techniques to detect outliers (RENN)
significantly improves classification efficiency (cost reduction
by almost 10%).

In the second scenario, the results are very similar to the
OEA model, but at the expense of using external medical
knowledge to reduce the data set. However, this reduction sig-
nificantly weakened the positive impact of instance selection
(RENN). It can be concluded that the simultaneous reduction
using diagnostic models and selection of instances can lead
to the loss of relevant information. One may observe that the
median achieves results comparable to the arithmetic mean but
have better computational complexity.

V. CONCLUSIONS AND FURTHER WORK

The presented results form the basis for the adoption of
a new approach to the problem of medical data classification.
Rather than ignoring or artificially improving the quality of the
input data, it should be explicitly addressed in the data model,
and then in the classifier during both the learning and testing.
This approach offers many advantages comparing to data
editing. The classifier with more accurate (though incomplete)



description of reality, will be able to learn the greater number
of dependencies, and then make a better classification.

In this paper, we showed that the use of uncertainty
aware similarity measure in uncertain data classification leads
to easy-to-interpret models thanks to the proposed Nearest
Neighbour based method. Moreover, pre-processing of uncer-
tain data improves the classification effectiveness.

We also showed that developed classification methods
achieve better results for incomplete data than classical di-
agnostic models applied to the data set. Moreover, results are
comparable with state of the art diagnostic model – OEA. The
advantage of the proposed method is that is general and does
not require any domain-specific assumptions. This allows to
conclude that utilization of all available knowledge (including
uncertain one) improves efficiency in medical decision support
systems.

For further research, we recommend a deeper study of
uncertainty aware similarity measures and their practical as
well as computational properties. As was indicated in the pre-
sented results, the selection of appropriate Equality Value has
a significant impact on the classification quality. Finding and
investigating new equality values and considering equivalence
relationships for interval data can result in a further increase
in classification quality [32], [33].

Proposed methods should be also evaluated on different,
non-medical data sets. This should also include the optimiza-
tion of classification computational complexity. As mentioned
in the paper, currently due to the complex nature of data
handled, there is no known way to speed up classification
using tree data structures. This problem needs to be solved to
handle big data sets.
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