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Abstract—In this paper we propose a new framework for
community detection problems. The starting point is a n-vector
which defines some evidence about the elements of a finite set.
This vector is used to build an interaction measure between the
n elements of the set to which it refers. This interaction measure
is represented by a Sugeno λ-measure to which we make it
being also a fuzzy measure. Then, we obtain the weighted graph
associated with this new capacity measure. To carry on with
it, we make use of the Shapley value. We also introduce the
notion of extended vector fuzzy graph, which relates a graph
with the capacity measure introduced in this work. Finally, we
use a community detection method, based on Louvain algorithm,
to search a cluster structure in the weighted graph. This partition
is based on the relations among the individuals obtained from the
initial vector. Let us note that in the case that there exist some
connections among the elements, apart from their affinity, we can
combine this extra information with that given by the vector, in
order to obtain groups with highly-knit elements among which
there are strong relations.

Index Terms—Fuzzy measure, Sugeno λ-measure, Community
detection problem, Extended vector fuzzy graph.

I. INTRODUCTION

Graphs are a mathematical tool really useful to model
the relationships or connections existing between a set of
objects. One of the most popular applications of graphs is
devoted to community detection problems. These problems
are solved with some unsupervised learning tasks [1], [2],
called clustering methods. Given an input set of objects, the
main objective of community detection algorithms [3] is to
define a partition of subgroups within the input set. These
subgroups are called communities, modules or clusters. This
partition depends on the connections or relationships among
the elements to be grouped. The key point is that those objects
which are in the same cluster should be as similar as possible
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between them, whereas they should be as dissimilar as possible
with respect to the elements which are in other group.

Clustering has become an essential tool of model develop-
ment and exploratory data analysis in many areas, such as
medical and biological disciplines, astronomy or engineering
[4]–[7], as well as image processing or pattern recognition
problems [8], [9]. There are many real-world networks in
which the nodes are bound to have a modular structure [10],
[11]. In last decades, many researchers have focused their
attention on this problem, so a wide range of methods have
been proposed to deal with this problem [12], [13].

Classical community detection algorithms are based on a
graph which models the connections between the individuals.
Obviously, the relationships between the objects, represented
by the edges of the graph, should be the key point when
searching a partition (Friedkin claimed that ‘the more distant
two vertices, the less they influence each other’ [14]). How-
ever, it is not the only available information when modeling
a problem. Some improvements where achieved in this field
when the use of weighted fuzzy graphs was introduced in
community detection problems background. Nevertheless, this
tool is not enough to model real-life problems. Recent studies
have proposed the incorporation of some additional informa-
tion, not inherent to the structure of the graph, into community
detection problems. One of these proposals is about modeling
this additional information by means of a fuzzy measure [15]
which defines some affinity relation between the individuals.
This information about affinity relations between the elements
indicates which nodes should be together in the same group.

Following this philosophy of considering some additional
information, here we propose another option, which has never
been addressed. It is based on the incorporation of a vector
defining some evidence about the objects to the community
detection problem. So, we will be able to consider situations
which can not be approached with previous proposals, as this
idea of adding individualized information about each vertex

978-1-7281-6932-3/20/$31.00 ©2020 IEEE



has never been developed. Furthermore, the complexity of the
process is reduced, as only n values are needed, apart from
the crisp graph. As a first step to deal with this problem,
we propose a definition of the fuzzy measure related to the
mentioned vector, which is also a Sugeno λ-measure.

Sugeno was one of the pioneers in the field of fuzzy sets
[16]–[18]. He introduced a particular type of fuzzy measures,
called Sugeno λ-measures [19]. For this particular measure, g,
the following holds: knowing g(A) and g(B) for two disjoint
sets, we can reconstruct the degree g(A ∪B) [20].

So, having a graph and a n-vector giving some evidence
about its vertices, here we propose to build a fuzzy measure
from mentioned vector, based on Sugeno λ-measures. This
type of information, which had not been exploited until now,
is a rich data source when modeling real-life problems. The
approach here addressed allows us to manage the additional
information given by this vector. Particularly, we suggest the
consideration of extended vector fuzzy graphs.

In order to have a simple visualization of the new fuzzy
measure, we define the weighted graph associated with it. This
graph, whose construction is based on the Shapley value [21],
shows how each element is affected by the absence of other.

Once the fuzzy measure is summarized in that basic struc-
ture, (its associated weighted graph), it is not difficult to apply
it in a wide set of problems. Particularly, here we proposed to
use it in community detection problems.

Traditionally, community detection algorithms analyze the
adjacency matrix of a graph to find a ‘good’ partition of its
nodes, in which obtained clusters are composed of tightly-
knit groups of nodes. However, it is obvious that a graph is
not enough for modeling real-life situations, in which there is
much more information regardless the connections among the
individuals. Hence, here we propose a solution for dealing with
the additional information about the graph given by a vector.
Following the philosophy previously mentioned of working
with extended fuzzy graphs [15], our proposal is based on a
modification of Louvain algorithm [22], which can manage the
additional information given by a vector to find communities.

Then, the obtained result is a partition such that nodes that
are in the same cluster are densely connected, and also are
related in some way by means of the information given by the
additional information vector.

The remainder of the paper is organized as follows. In
Section II, we define the fuzzy measure associated with a
vector. We also describe some important concepts related to
the fuzzy measures framework. In Section III we show the
definition of the weighted graph associated with a fuzzy mea-
sure. In Section IV we explain the background of graphs with
additional information. Here we introduce the definition of a
new concept: extended vector fuzzy graph. Then, in Section
V, we propose a particular application of the fuzzy measure
previously mentioned in community detection problems. We
illustrate this idea with an example. Then, we carry out with
some conclusions in Section VI.

II. FUZZY MEASURES BASED ON A VECTOR

Let G = (V,E) be a graph, where V = {1, . . . , n} is a set
of nodes, and E is a set of edges, E = {{i, j}| i, j ∈ V }. Let
x be a n-vector, where ∀i ∈ V , xi ≥ 0 defines some weight
or evidence related to the element i ∈ V . Hence, we consider
the pair (G, x).

In this section we introduce some capacity measures. Par-
ticularly, given a vector x, we focus on these measures built
from the vector x as fuzzy Sugeno λ-measures. Let us recall
some basic definitions.

Definition II.1: Fuzzy measure [23]. Let V = {1, 2, ..., n}
be a set, and let µ : 2V −→ [0, 1] be a function such that
µ(∅) = 0 and µ(V ) = 1. Let us assume that ∀A,B such that
A ⊆ B ⊆ V , it holds that µ(A) ≤ µ(B). Then, the fuzzy set
µ is called fuzzy measure.

Definition II.2: Sugeno λ-measure [19] Let V =
{1, . . . , n} be a finite set, and let λ ∈ (−1,+∞) be a
parameter. A Sugeno λ-measure is a function g : 2V −→ [0, 1]
such that ∀A,B ⊆ V , if A ∩B = ∅, then:

g(A ∪B) = g(A) + g(B) + λg(A)g(B)

Definition II.3: 1-additivity [24] Let µ be a fuzzy measure
defined over the set V = {1, . . . , n}. The fuzzy measure µ is
said to be 1-additive if ∀A ⊆ V , µ can be defined as µ(A) =∑n
i=1 aizi, where zi = 1 if i ∈ A and zi = 0, otherwise.
In this paper we use Sugeno λ-measures (Definition II.2),

to which we also force to be fuzzy measures (Definition II.1).
We will refer to this type of measures as fuzzy Sugeno λ-
measures. Then, the function µ : 2V −→ [0, 1], is a Sugeno
λ-measures if the following points hold:
• µ(A ∪ B) = µ(A) + µ(B) + λµ(A)µ(B), ∀A,B ⊆ V

with A ∩B = ∅.
• µ(A) ≤ µ(B), ∀A ⊆ B ⊆ V .
• µ(∅) = 0 and µ(V ) = 1 =⇒ λ+ 1 =

∏n
i=1(1 + λµ(i))

Depending on the problem modeled by µ, we can differenti-
ate several situations in the characterization of this fuzzy mea-
sure. To make easier the notation, we denote µ(i) := µ({i}).

1) If
∑n
i=1 µ(i) = 1, then λ = 0. Hence, ∀S ⊆ V ,

µ(S) =
∑
i∈S µ(i). In this case, µ does not have any

multiplicative component, so its an additive measure.
2) If p =

∑n
i=1 µ(i) < 1, then λ > 0. Here p is the

additive component of µ, and (1−p) is its multiplicative
component, representing positive interactions.

3) If p =
∑n
i=1 µ(i) > 1, then λ < 0. Here p is the

additive component of µ, and (1−p) is its multiplicative
component, representing negative interactions.

In the framework of this paper, let x = (x1 . . . , xn) be
a n-vector defining some evidence about the elements of V ,
where xi ≥ 0, ∀i ∈ {1, . . . , n}. We define µx, a fuzzy measure
obtained from x according to Sugeno λ-measure. Then, for µx,
the points mentioned in Definition II.1 and Definition II.2 have
to hold. Let us propose a natural definition of µx.



Definition II.4: Let x = (x1, . . . , xn) be a vector, where
xi ≥ 0 ∀i. We assume that x defines some evidence about
the elements of the set V = {1, . . . , n}. Given a parameter
p ∈ (0, 1], a natural definition of µx is:

µx(i) =
pxi∑n
k=1 xk

, ∀i ∈ V

and

µx(A ∪B) = µx(A) + µx(B) + λµx(A)µx(B),

∀A,B ⊆ V , with A ∩B = ∅ and λ+ 1 =
∏n
i=1(1 + λµx(i))

Let us remark that the interpretation of the multiplicative
component of µx depends on the value of p.
• If p = 1, µx is an additive fuzzy measure, and λ = 0.
• If p ∈ (0, 1), the multiplicative component has a positive

character, in the sense that adding more individuals to a
set provides benefit. In this case, λ > 0.

Proposition II.1: Let p = 1 be a parameter. The function
µx introduced in Definition II.4 is a fuzzy Sugeno λ-measure.
Furthermore, µx is a 1-additive fuzzy measure.

Proof: Due to the assumption of p = 1, we have λ = 0.
Then, ∀A ⊆ V , µx(A) =

∑
l∈A µl∑n
k=1 µk

. Then we prove that µx
meets the points mentioned in Definitions II.1,II.2 and II.3.
• µx(∅) = 0 Trivial
• µx(V ) = x1∑n

k=1 xk
+ · · ·+ xn∑n

k=1 xk
= 1

• Let A ⊆ B ⊆ V . Then, µx(B) =
∑

l∈B xl∑n
k=1 xk

=

1∑n
k=1 xk

(∑
l∈A xl +

∑
t∈B\A xt

)
≥

∑
l∈A xl∑n
k=1 xk

= µx(A)

Hence, µx is a fuzzy measure.
• Sugeno λ-measure. Trivial by definition.
• 1-additivity: this point is trivial if ∀i ∈ {1, . . . , n}, we

define ai = µx(i).

Proposition II.2: Let p ∈ (0, 1) be a parameter. Then, µx
(introduced in Definition II.4) is a fuzzy Sugeno λ-measure.

Proof: Because of the assumption of p ∈ (0, 1), we have
λ > 0. Then, we demonstrate that µx meets all the points
mentioned in Definitions II.1 and II.2.
• µx(∅) = 0 Trivial
• λ is defined according to Sugeno λ-measures definition,

so the property λ + 1 =
∏n
i=1(1 + λµx(i)) holds for

this parameter. Because of Definition II.1, µx (V ) = 1,
provided that µx is defined according to Sugeno’s formu-
lation. Particularly in this case, µx is defined in this way,
so µx (V ) = 1.

• Let A ⊆ B ⊆ V . Then, µx(B) = µx(A) + µx(B\A) +
λµx(A)µx(B\A). We have λ > 0, and 0 ≤ µx(A) ≤ 1
and 0 ≤ µx(B\A) ≤ 1. Then, µx(A) ≤ µx(B).
Hence, µx is a fuzzy measure.

• Sugeno λ-measure. Trivial by definition.

Proposition II.3: Let p ∈ (0, 1] be a parameter. Then,
the fuzzy measure µx introduced in Definition II.4 is a
supperadditive fuzzy measure.

Proof: Let A,B ⊆ V such that A ∩ B = ∅. We have
µx(A ∪B) = µx(A) + µx(B) + λµx(A)µx(B). Also, λ ≥ 0;
0 ≤ µx(A) ≤ 1; and 0 ≤ µx(B) ≤ 1. Then, µx(A ∪ B) ≥
µx(A) + µx(B), so µx is a supperaditive fuzzy measure.

To finish this Section, let us illustrate the construction of
a fuzzy measure µx with a toy example, considering several
values of p.

Example II.1: Let V = {1, 2, 3, 4} be a set, and let x =
(2, 1, 10, 10) be a vector. µx is the fuzzy measure obtained
from the vector x according to Definition II.4. Considering
the grill of values p = 1, 0.75, 0.5, 0.25, in Table I, we
show the values of µx depending on different values of p.

TABLE I: Characterization of µx for p = 0.25, 0.5, 0.75, 1.

p = 0.25
λ = 24.01

p = 0.5
λ = 5.21

p = 0.75
λ = 1.33

p = 1
λ = 0

µx({1}) 0,0217 0,0435 0,0652 0,0870
µx({2}) 0,0109 0,0217 0,0326 0,0435
µx({3}) 0,1087 0,2174 0,3261 0,4348
µx({4}) 0,1087 0,2174 0,3261 0,4348
µx({1, 2}) 0,0383 0,0701 0,1006 0,1304
µx({1, 3}) 0,1872 0,3101 0,4195 0,5217
µx({1, 4}) 0,1872 0,3101 0,4195 0,5217
µx({2, 3}) 0,1479 0,2638 0,3728 0,4783
µx({2, 4}) 0,1479 0,2638 0,3728 0,4783
µx({3, 4}) 0,5011 0,6810 0,7933 0,8696
µx({1, 2, 3}) 0,2469 0,3670 0,4703 0,5652
µx({1, 2, 4}) 0,2469 0,3670 0,4703 0,5652
µx({1, 3, 4}) 0.7844 0.8788 0.9272 0.9565
µx({2, 3, 4}) 0,6427 0,7799 0,8603 0,9130
µx({1, 2, 3, 4}) 1 1 1 1

From now on, we differentiate those cases in which µx is
additive, (p = 1 and λ = 0), denoted as µax; and those in which
µx has a multiplicative component with positive character,
(p ∈ (0, 1) and λ > 0), denoted as µmx .

III. THE WEIGHTED GRAPH ASSOCIATED WITH A FUZZY
SUGENO λ-MEASURE.

Let x be a vector defining some evidence about the elements
of a finite set, V = {1, . . . , n}. Let µx be the function obtained
from x according to Definition II.4 (let us assume we only
consider these cases in which it is a fuzzy Sugeno λ-measure).
To deal with µx in a simple way, we propose to calculate
the weighted graph associated with it, Gµx

. To define this
weighted graph, we make use of the Shapley value [21] as
follows: for each pair of nodes {i, j}, where i, j ∈ V , we
calculate the weight Fij , which appraises how each individual
of the pair is affected by the absence of the other.

Fij = φ
(
Shi(µx)− Shji (µx), Shj(µx)− Shij(µx)

)
(1)

where φ : [−1, 1] −→ [0, 1] is a bi-variate aggregation
operator [25]; Shi(µx) and Shji (µx) are the Shapley values
of i on µx in the presence of all the elements of V or in the
presence of all the elements of V except j, respectively.

In the framework of Sugeno λ-measures, the calculation
of Shapley value has exponential complexity when λ 6= 0.



Some sampling techniques have been proposed to solve this
issue [26], [27]. However, these methods are not needed when
additive fuzzy measures are considered, since in these cases
the calculation of the Shapley value is immediate. For this
reason, we focus on additive fuzzy measures. Particularly, now
we work with Sugeno λ-measures in which λ = 0. This is, we
work with the function µax. Then, after a brief remark about
the Shapley value, we will provide some properties of µax.

Remark III.1: Let µ : 2V → [0, 1] be a fuzzy measure,
where |V | = n. For every i ∈ V , the Shapley value can be
calculated as:
Shi(µ) =

∑
S⊆V \{i}

(n−|S|−1)!|S|!
n! (µ(S ∪ {i})− µ(S))

An alternative definition of this index was proposed in [28].
Then, being pred(i) the set of predecessors of the individual
i ∈ V ; π(n) the set of all the possible permutations of the
elements of V ; and o ∈ π(n) one of this orders, the Shapley
value can be rewritten as:

Shi(µ) =
1

n!

∑
o∈π(n)

[µ (pred(i) + {i})− µ (pred(i))] (2)

This formula is applied to prove the following proposition.
Proposition III.1: Let µax : 2V −→ [0, 1] be the fuzzy

Sugeno λ-measure obtained from vector x according to Defi-
nition II.4, with p = 1. Then, ∀i ∈ V , its Shapley value related
to µx when i is in a coalition with all the elements of V is:

Shi(µ
a
x) =

xi∑n
k=1 xk

Proof: Regarding Equation (2), Shi(µ
a
x) =

1
n!

∑
o∈π(n)[µ

a
x (pred(i) + {i}) − µax (pred(i))]

= 1
n!

∑
o∈π(n)[(µ

a
x(pred(i)) + µax(i)) − µax (pred(i))] =

1
n!

∑
o∈π(n) µ

a
x(i) = 1

n!

∑
o∈π(n)

xi∑n
k=1 xk

= xi∑n
k=1 xk

.

Proposition III.2: Let µax : 2V −→ [0, 1] be the fuzzy
Sugeno λ-measure obtained from vector x according to Def-
inition II.4, with p = 1. Then, ∀i ∈ V , its Shapley value
related to µx when i is in a coalition with all the elements of
V except j is:

Shji (µ
a
x) =

xi∑n
k=1
k 6=j

xk

Proof: Let x∗ =
(
x1, . . . , x(j−1), x(j+1), . . . , xn

)
. Then:

Shji (µ
a
x) = Shi(µ

a
x∗) = 1

n!

∑
o∈π(n)[µ

a
x∗ (pred(i) + {i}) −

µax∗ (pred(i))] = 1
n!

∑
o∈π(n)[(µ

a
x∗(pred(i)) + µax∗(i)) −

µax∗ (pred(i))] = 1
n!

∑
o∈π(n) µ

a
x∗(i) =

1
n!

∑
o∈π(n)

xi∑n
k=1
k 6=j

xk
= xi∑n

k=1
k 6=j

xk

IV. NETWORKS WITH ADDITIONAL INFORMATION: THE
EXTENDED VECTOR FUZZY GRAPH

Given a finite set of elements, graphs are used to model
the relationships or connections among its individuals with
edges or arcs. Then, the pair G = (V,E) is a graph, where
V = {1, . . . , n} is a set of nodes and E = {{i, j} | i, j ∈ V }
is a set of links or edges. An alternative to represent a graph is

by means of its adjacency matrix, A, which shows the direct
connections among the nodes. A specific type of graphs are
weighted graphs, whose links have a numerical weight.

On the other hand, there is a broader concept: fuzzy graphs.
Fuzzy graphs, introduced by Rosenfeld [29] and based on the
fuzzy relations among the individuals [18], are used to model
situations in which there is some uncertainty.

Definition IV.1: [29] Let V 6= ∅ be a finite set. Considering
the conjunction operator B, let the functions η : V −→ [0, 1],
and ψ : V × V −→ [0, 1] be such that for all x, y ∈ V ,
ψ(x, y) ≤ B (η(x), η(y)). A fuzzy graph is the triplet G =
(V, η, ψ), where η is known as the fuzzy vertex set of G, and
ψ is known as the fuzzy edge set of G.

The fuzzy vertex set it is usually assumed to be crisp. Then,
we can simplify previous definition, under the assumption
that a fuzzy graph is characterized by the pair G = (V, ψ).
Sometimes it is also assumed the existence of E, a crisp set of
edges. In this context, the edges in E limit the value of each
fuzzy arc, forcing it to be 0 if the related link does not exist
in the crisp set of edges. Under both assumptions, we provide
the following definition of a fuzzy graph.

Definition IV.2: Let G = (V,E) be a graph, and let ψ :
E → [0, 1] be a fuzzy set. The triplet G̃ = (V,E, ψ) is a
fuzzy graph, also called crisp graph G with fuzzy edges ψ.

Two nodes that are not adjacent in the crisp graph G, can
not have any membership degree in the fuzzy measure ψ.
Then, the crisp graph G provides all the available information,
considering the weight associated with each edge. For this
reason, we can see fuzzy graphs as weighted graphs. In order
to generalize fuzzy graphs, we suggest the use of extended
fuzzy graphs [15], which are based on fuzzy measures [23].

Definition IV.3: [15] Let the pair G = (V,E) be a graph,
and let µ be a fuzzy measure defined over the set of nodes V ,
µ : 2V −→ [0, 1]. The triplet G̃ = (V,E, µ) is an extended
fuzzy graph or crisp graph with fuzzy measure µ.

The context of this study is about the pair (G, x), where G
is a graph and x is a vector. We modify the notion of extended
fuzzy graph to adapt it to this background.

Definition IV.4: Let G = (V,E) be a graph, and let x be a
vector defining some evidence about the elements of V . µx is
the fuzzy measure obtained from x (see Definition II.4). The
triplet G̃x = (V,E, µx) is an extended vector fuzzy graph.

V. COMMUNITY DETECTION PROBLEMS WITH 1-ADDITIVE
FUZZY MEASURES

Community detection problem consists of finding ‘good’
partitions for given graphs, that is, a group structure of nodes
which are densely connected. These groups are called clus-
ters, communities or modules. Community detection problem,
which has lot of applications in many fields, has been widely
analyzed in last decades [30], [31]. Classical algorithms use
the connections of the graphs, (that is, the set of edges),
to find modules of tightly-knit nodes. It is clear that the
relationships between the individuals are a key factor when
identifying communities in a graph. However, it should not be
the only one. It is obvious that in real-life problems there is



extra information beyond the connections among the elements.
This extra information is a rich source of knowledge to find
coherent groups. So, we think it would be reasonable to
model the additional information and then apply it for solving
problems, particularly, for searching partitions in a graph.

Previous studies have analyzed these situations, by adding
the information of a fuzzy measure [15] to community detec-
tion problems. This idea is based on the use of extended fuzzy
graphs G̃ = (V,E, µ). Its starting point is one of the most
popular methods in community detection framework, Louvain
algorithm ‘ [22]’. The key idea is about an alternative vision
of this method, such that we differentiate between two input
parameters: one is devoted to find ‘possible’ clusters, and the
other is devoted to calculate the maximum of modularity.

The key point is to calculate Gµ, the weighted graph
associated with µ, whose adjacency matrix is F . The proposal
in [15] is about an aggregation of both matrices, A and F ,
M = θ (A,F ), where θ is an aggregation operator [32]
defined over the set of quadratic n-matrices X , used to
aggregate two matrices into one. Then, the algorithm proposed
to consider some additional information when finding commu-
nities is a quite basic method: it is based on the application
of the Louvain algorithm with a modification, which consists
on using the matrix M to calculate the modularity variation.
Of course, just the adjacency matrix A is used to find the
connections in the graph (two nodes can not be in the same
cluster if they are not connected in the crisp edges set E).
In that previous work it was proposed a linear combination of
matrices A and F . However, any aggregation function θ could
be used [25], [33], [34].

In this section we propose a specific application of the
fuzzy measure obtained from a vector: community detection
problems with additional information. Let G = (V,E) be a
graph, and let x be a vector defining some evidence about the
elements of V . The issue is about considering the information
given by x when detecting communities in a graph. Let us
illustrate this problem with a toy example.

Example V.1: Let G = (V,E) be a graph (Figure 1), and
let x = (9, 9.5, 8, 9.2, 8.7, 10, 1, 1.5, 2, 1.7, 2.5, 0.5)
be a vector defining some information about the elements of
V , for example the rating of a film given by 12 people.
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Fig. 1: Graph G = (V,E)

Any community detection algorithm which only considers
the structure of the graph, particularly Louvain algorithm [22],
identifies three clusters in this structure, so that the obtained
partition is P = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}. On
the other hand, we recall the assumption that x provides
information about the rating of a particular film given by
12 people. Considering that two individuals whose opinions
are similar are prone to having great affinity, it could be
logical that, not only considering the graph structure, but

also the information given by x, obtained partition should be
P x = {{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}}.

Knowing this alternative vision of Louvain algorithm
which differentiates several information sources [15], in
Sugeno Louvain Algorithm we propose a method which can
consider the additional information provided by a vector when
finding communities in a graph. The first step of the algorithm
is to calculate the weighted graph associated with µx, whose
adjacency matrix is F (see Equation (1)). Let us remark that
the performance of our algorithm, as well as Louvain’s one,
depends on the permutation of the elements of V considered,
o ∈ π (V ). Then, according to the structure of the Louvain
algorithm, we divide our algorithm into two phases. The first
one starts with each node in an isolated community. This phase
iterates moving nodes from one community to another (just
considering the communities of the related neighbours) until
a maximum of modularity is reached, as it is done in the
respective phase of the Louvain algorithm. Here the difference
lies in that in Sugeno Louvain Algorithm, the matrix used
to find the maximum of modularity is M, which combines
the different information sources available. Let us remark that
the only neighbours considered are those provided by the
adjacency matrix A. The philosophy of second phase is quite
similar to the first one, but in this case, considering as nodes
the communities obtained in the first phase. Sugeno Louvain
Algorithm can be summarized in following pseudocode, where
o is a permutation of the elements of V ; θ : X 2 −→ X is an
aggregation operator [25], [33] used to aggregate two matrices
into one; and ∆Qk(j) is the variation of modularity obtained
when moving k to j’s community.

Algorithm 1 Sugeno-Louvain input=(A, x) output=P
1: Define µx, the fuzzy measure related to vector x
2: Calculate Gµx , the weighted graph associated with µx. Its

adjacency matrix is F
3: M = θ (A,F)
4: Phase 1
5: ∀i ∈ V , let i be an isolated community
6: o =

(
o1, . . . , on

)
= permutation(V )

7: for i = 1 to n do
8: search in A all the neighbours of oi, (e1, . . . , er)
9: for j = 1 to r do

10: calculate ∆Qoi(ej) in matrix M
11: end for
12: j∗ = { ej | ∆Qoi(j

∗) = maxj∈{1...,r}{∆Qoi(ej)} }
13: if ∆Qoi(j

∗) > 0 then
14: Move node oi to j∗ ’s community
15: else
16: oi remains in its community
17: end if
18: end for
19: Phase 1 Ends
20: Phase 2
21: A∗ is the aggregated matrix obtained from A, whose nodes are

the communities found in Phase 1
22: M∗ is the aggregated matrix obtained from M, whose nodes

are the communities found in Phase 1
23: While there is some change, apply Phase 1 and Phase 2,

considering matrices A∗ and M∗

24: Phase 2 Ends



To avoid the exponential complexity of the calculation of
the Shapley value for Sugeno λ-measures, we propose to
calculate the fuzzy measure related to vector x according to
Definition II.4, with p = 1, so that µax is an additive fuzzy
measure. Particularly, we propose a specific application of
Sugeno Louvain Algorithm in Algorithm 2.

According to propositions III.1 and III.2, following proper-
ties hold for the additive fuzzy measure µax:

Shi(µ
a
x) = xi∑n

k=1 xk

Shji (µ
a
x) = xi∑n

k=1
k 6=j

xk

Then, when additive fuzzy measures are considered, the
complexity of the Sugeno Louvain Algorithm is reduced,
as the only initial step is the calculation of the matrix F ,
which is immediate for additive fuzzy measures. Therefore,
the complexity of 1-Additive Sugeno Louvain Algorithm is
the same as Louvain algorithm.

Algorithm 2 1-Additive Sugeno Louvain input=(A, x)
output=P

1: Fij = min{| xi∑n
k=1

xk
− xi∑n

k=1
k 6=j

xk
|, | xj∑n

k=1
xk
− xj∑n

k=1
k 6=i

xk
|}

2: M = θ (A,F)
3: Phase 1
4: ∀i ∈ V , let i be an isolated community
5: o =

(
o1, . . . , on

)
= permutation(V )

6: for i = 1 to n do
7: search in A all the neighbours of oi, (e1, . . . , er)
8: for j = 1 to r do
9: calculate ∆Qoi(ej) in matrix M

10: end for
11: j∗ = { ej | ∆Qoi(j

∗) = maxj∈{1...,r}{∆Qoi(ej)} }
12: if ∆Qoi(j

∗) > 0 then
13: Move node oi to j∗ ’s community
14: else
15: oi remains in its community
16: end if
17: end for
18: Phase 1 Ends
19: Phase 2
20: A∗ is the aggregated matrix obtained from A, whose nodes are

the communities found in Phase 1
21: M∗ is the aggregated matrix obtained from M, whose nodes

are the communities found in Phase 1
22: While there is some change, apply Phase 1 and Phase 2,

considering matrices A∗ and M∗

23: Phase 2 Ends

Let us recall the Example V.1. We show that 1 −
Additive Sugeno Louvain Algorithm provides the partition
which seems logical when considering the information of x.

Example V.2: Let G = (V,E) be the graph in Figure 1, and
let x = (9, 9.5, 8, 9.2, 8.7, 10, 1, 1.5, 2, 1.7, 2.5, 0.5) be a
vector defining some information about the elements of V . Let
µax be the fuzzy measure obtained from x according to Defini-
tion II.4, with p = 1. Let Gµa

x
be the weighted graph associ-

ated with µax, whose adjacency matrix is F , (Figure 2), where
Fij = φ

(
Shi(µ

a
x)− Shji (µax), Shj(µ

a
x)− Shij(µax)

)
=

min{| xi∑n
k=1 xk

− xi∑n
k=1
k 6=j

xk
|, | xj∑n

k=1 xk
− xj∑n

k=1
k 6=i

xk
|}. Due to

µax’s additivity, the calculation of the Shapley value is imme-
diate (see Proposition III.1 and Proposition III.2).

Considering the adjacency matrix of G, A any com-
munity detection algorithm based on modularity optimiza-
tion, (for example Louvain algorithm [22], detects the par-
tition P = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}. How-
ever, if we pay attention to the extra information pro-
vided by x, the obtained partition should be P x =
{{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}}. We can see that parti-
tion Px preserves better than P the information provided by
vector x, in the sense that in Px maintains together in a group
nodes which have a high score in x, cluster {1, 2, 3, 4, 5, 6},
and maintains in another group nodes which have a low score
in x, cluster {7, 8, 9, 10, 11, 12}. This situation is showed by
matrix F (see Figure 2: the values related to nodes whose
score in x is high, are the highest in the matrix (those related
to i, j = 1, . . . , 6, they are highlighted in the matrix).

1
10000



0 246 203 238 224 259 22 34 45 38 57 11
246 0 214 252 236 276 23 36 48 41 61 11
203 214 0 208 196 226 20 30 40 34 51 9
238 252 208 0 229 265 23 34 46 39 59 11
224 236 196 229 0 249 21 33 44 37 55 10
259 276 226 265 249 0 25 37 51 43 64 12
22 23 20 23 21 25 0 3 5 4 6 1
34 36 30 34 33 37 3 0 7 6 9 1
45 48 40 46 44 51 5 7 0 8 12 2
38 41 34 39 37 43 4 6 8 0 10 2
57 61 51 59 55 64 6 9 12 10 0 3
11 11 9 11 10 12 1 1 2 2 3 0


Fig. 2: Matrix F

Then, let us show the performance of 1 −
Additive Sugeno Louvain Algorithm in a well known
example: the dolphins network.

Example V.3: The dolphin network [35], [36] has been
widely analyzed in the literature. It is an undirected social
network about frequent associations between some dolphins
in a community living on Doubtful Sound, New Zealand. It
comprises 62 nodes and 159 links. In Figure 3 we show the
partition provided by Louvain Algorithm, which has 5 groups,
C1, . . . , C5. Particularly, node 2 is assigned to cluster cluster
C1, node 8 is assigned to cluster C2, node 24 is assigned to
cluster C4, node 37 is assigned to cluster C5 and node 41 is
assigned to cluster C3. The groups are: C1 = {2, 6, 7, 10, 14,
18, 23, 26, 27, 28, 32, 33, 42, 49, 55, 57, 58, 61}; C2 = {1, 3, 8,
11, 20, 31, 43, 48}; C3 = {13, 15, 17, 34, 35, 38, 39, 41, 44, 45,
47, 50, 51, 53, 54, 59, 62}; C4 = {5, 12, 16, 19, 22, 24, 26, 30,
36, 46, 52, 56}; C5 = {4, 9, 21, 29, 37, 40, 60}.

Let x be a vector defining some evidence about the
individuals of the dolphins network, where x2 = x8 =
x24 = x37 = x41 = 1, and xi = 0 otherwise If we
apply the 1 − Additive Sugeno Louvain Algorithm con-
sidering that vector, the obtained partition has 4 clusters,
Cx1 , . . . , C

x
4 (see Figure 4), in contrast to the solution with

5 groups provided by the aplication of Louvain Algorithm.



Fig. 3: Partition of dolphins network with Louvain Algorithm

Due to the consideration of the vector x, those nodes whose
value in mentioned vector is 1, are likely to stay together
in the same cluster, leading to changes in the structure of
groups in which the rest of the nodes are organized. If
the vector x is not considered, those nodes are assigned to
different groups. Then, considering as input parameters the
adjacency matrix of the dolphin network, and that vector x,
the groups obtained with 1 − Additive Sugeno Louvain
Algorithm are: Cx1 = C1\{2, 26, 27, 28}; Cx2 = C2 ∪
{2, 24, 26, 27, 28, 29, 37, 40, 41}; Cx3 = (C3\{41}) ∪ {21};
Cx4 = (C4\{24}) ∪ {4, 9, 60}.

Let us remark that the complexity of the 1 −
Additive Sugeno Louvain Algorithm does not grow when
the scale of the graph increases. However, according to our
best knowledge, this experimental verification does not apply
on this paper, so we will soon work on a wide development of
computational results which will be included in other articles.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this work we deal with the problem of finding com-
munities in a graph from which we have some additional
information, independent of its topology, provided by a vector.

Hence, given a graph G = (V,E), the starting point is the n-
vector x, which defines some evidence related to the elements
of V . Then, we introduce the definition of the function µx
(see Definition II.4). It is the fuzzy measure related to x [37],
[38] which fixes the properties of Sugeno λ-measures [19].
Depending on the problem, we differentiate several options
in the definition of µx. Particularly, we propose two different
characterization of it, µax and µmx (Definition II.4, with p = 1
and p ∈ (0, 1), respectively).

Fig. 4: Partition of dolphins network with
1−Additive Sugeno Louvain Algorithm

Having defined the fuzzy measure related to vector x, we
propose a modification of the notion of extended fuzzy graph,
in order to adapt it the context we handle in this work. Hence,
we introduce the concept of extended vector fuzzy graph,
G̃x = (V,E, µx), where G = (V,E) is a graph and µx is
obtained from vector x, which defines some evidence about
the elements of V .

Then, we propose a particular application of this fuzzy mea-
sure associated with a vector: community detection problems.
So, we first define Gµx

, the weighted graph associated with
µx [15]. For the specific case of µax , which is an additive
fuzzy measure, several properties of its related Shapley value
[21] are enunciated. Finally, inspired by the performance of
Louvain algorithm [22], we propose a community detection
algorithm to find a partition in the extended vector fuzzy graph
G̃x = (V,E, µx), called Sugeno Louvain Algorithm. This
cluster structure, apart from considering the direct connections
of the graph G, given by E, is obtained considering the
information provided by the vector x. Hence, this partition
is consistent with all the available information, not only the
direct connections among the elements but also the additional
evidence given by x. We also provide a particular application
of this method, devoted to additive fuzzy measures, such that
our proposal has the same complexity as Louvain algorithm.
It is called 1−Additive Sugeno Louvain Algorithm, and it
is summarized in Algorithm 2. To illustrate the performance
of this method, we provide its performance in two cases. The
first one is a toy example with which it is easy to understand
the algorithm. Then, we work with a well-known example in
networks literature, the dolphins network [35], [36], providing
the partition obtained with Louvain Algorithm [22], and with



1−Additive Sugeno Louvain Algorithm.
In this work we have focused on additive fuzzy measures

obtained from a vector and its application in community
detection problems. However, there is a wide framework to
develop about non-additive fuzzy measures (see for example
the work done in [39]). Our immediate further work is the
development of an experimental study to test the efficiency
of the approach here addressed as well as an analysis of
the processing time and memory usage of the algorithms
here proposed, among others points. We will also work in
a theoretical analysis in order to analyze the behaviour of the
multiplicative component of µx. Then, we propose to expand
the background of this paper, by considering not only additive
Sugeno λ-measures in which λ 6= 0. We will also analyze other
possible application of the capacity measures here introduced,
besides community detection problems.
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[31] D. Gómez, E. Zarrazola, J. Yáñez, and J. Montero, “A divide-and-link

algorithm for hierarchical clustering in networks,” Information Sciences,
vol. 316, pp. 308–328, 2015.

[32] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap, “Aggregation
functions: Construction methods, conjunctive, disjunctive and mixed
classes,” Information Science, vol. 181, pp. 23–43, 2011.

[33] Some Properties of Consistency in the Families of Aggregation Opera-
tors, vol. 107. Berlin: Eurofuse 2011:Workshop on Fuzzy Methods for
Knowledge-Based Systems, 2001.
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