
 

Fuzzy Multivariate Outliers with Application on 

BACON Algorithm 
 

 Huda Mohammed Touny  

Computer Science 

Faculty of Computers and Artificial 

Intelligence 

Cairo, Egypt 

hodam.touny@gmail.com  

 

 Ahmed Shawky Moussa 

Computer  Science 

Faculty of Computers and Artificial 

Intelligence 

Cairo, Egypt 

a.moussa@fci-cu.edu.eg 

 

 Ali S.Hadi 

Department of Mathematics and Actuarial 

Science 

American University in Cairo 

Cairo, Egypt 

ahadi@aucegypt.edu 

 

  

 

Abstract—Depending on a crisp cut-off value to identify 

outliers is not linguistically meaningful or insightful for reliable 

decision-making. In this paper, two methods of fuzzy treatment 

for the Blocked Adaptive Computationally-efficient Outlier 

Nominator (BACON) algorithm are proposed rather than a crisp 

cut-off threshold. Experimentation has shown that the proposed 

fuzzy treatments for BACON provide more meaningful 

interpretations to the final results than its crisp version and 

captured the uncertainty at the boundary between the inliers and 

outliers of the data.  

Keywords—Fuzzy Outliers, Multivariate Outliers, Outlier 

Detection, BACON, Mahalanobis Distance 

 

I. INTRODUCTION  

When talking about data, we can mainly address two major 
facets to describe and model its behavior. Inlier is the first facet 
which is defined as the “data value falling within the expected 
range.” [1] On the opposite view, an anomaly or an outlier is 
defined as “Data value falling outside the expected range” [1] 
which is the facet that helps in data modeling. Authors in the 
literature have proposed many definitions for an outlier with 
seemingly no universally accepted definition [2]. Accordingly, 
Outlier Detection is defined as the process of identifying 
anomalies in a dataset. Outlier Detection has many synonyms 
based on the use-case or the application context. For example, 
in Network Analysis it is called Behavioral Analysis [3]. It can 
also be addressed with abnormality detection in the context of 
surveillance cameras. Other synonyms include novelty 
detection, intrusion detection, noise detection, deviation 
detection or exception mining [2]. Outlier detection is a critical 
task for various application domains and has been researched 
intensively for a long time. The process of outlier detection 
represents a challenge as it is difficult to accurately define and 
quantify. Another challenge lies in the customization of outlier 
detection to the corresponding domain. Thus, many techniques 
have been introduced for outlier detection, yet they do suffer 
drawbacks such as labeling a datum that is close to the 
separating boundary between normal and outlying behavior. 
Hence, fuzzy based outlier detection techniques were 
introduced. Most of such techniques mainly depend on fuzzy 
clustering. The Fuzzy C-Means (FCM) algorithm is the most 

used [4]. Unlike the conventional crisp clustering methods 
which restrict each point of the data set to only belong to 
exactly one cluster, fuzzy clustering techniques rely on the 
fuzzy set theory, which was proposed by Zadeh [5] in 1965. 
The theory introduced the idea of uncertainty of a data point 
belonging to a cluster which was defined by a membership 
function. There are other fuzzy based outlier detection 
techniques that may rely on fuzzy association rules or fuzzy 
reasoning [6]. Other hybrid techniques combine more than one 
technique to overcome the drawbacks of each technique 
individually [7].    

The difficulty of outlier detection becomes much harder in 
higher dimensionality than in one dimension. In this context, 
the direction of an observation is a critical factor to declare an 
observation as outlier. For example, an outlying observation 
may lie close to the majority of the data but deviates from the 
overall data correlation structure. Thus, the Euclidean distance 
is not a dependable metric. As a consequence, Fuzzy C-Means 
is not suitable in the situation of experimenting high 
dimensional data. In [8] Winkler et al. conducted an extensive 
analysis of FCM in high dimensional data to highlight this 
weakness. The Mahalanobis distance is a distance metric which 
is used in the case of analyzing two or more dimensions. An 
efficient distance-based algorithm to identify outliers in large 
and multivariate data was proposed in [9] as Blocked Adaptive 
Computationally-efficient Outlier Nominator (BACON). 
BACON mainly depends on a statistical hypothesis test value 
to declare an observation as outlier. The aim of this paper is to 
propose two fuzzification approaches to the used crisp cut-off 
threshold in BACON to attain more meaningful notion of 
outliers.  

The paper is organized as follows: Section II briefly 
discusses the BACON algorithm. Section III presents the 
related work. Section IV explains both of the proposed 
fuzzification approaches of BACON. Section V explains the 
used datasets, whereas Section VI presents the experimental 
results and Section VII presents a summarized conclusion of 
the paper. 

 



II. BACON ALGORITHM 

BACON is an iterative distance-based algorithm which was 
proposed to efficiently identify outliers in large and 
multivariate data [9]. BACON initially starts with a basic 
subset of data points which are assumed to be outlier-free, and 
then it iteratively adds points that have a small Mahalanobis 
distance to that clean subset. BACON stabilizes when 
iterations no more change the size of the clean subset. Outliers 
then are defined to be the points which reside outside of the 
clean subset. Therefore, it is theoretically possible to consider 
BACON as a clustering algorithm with the number of clusters 
being only two. The steps of BACON are listed below: 

Step 1: Identify an initial basic subset of     observations 
that can be presumed to be outliers-free, where   is the 
dimension of the data and   is an integer chosen by the 
expert. Initial subset is chosen based on one of two methods: 
Mahalanobis distance given in (1) or Distance from the vector 
of coordinate-wise median given in (2).  

                                                  (1) 

                                             (2) 

where     and   are the mean and covariance matrix of the   
observations and   is the coordinate-wise median of the 
observations. 

Step 2:  Compute discrepancies for all observations as given in 
(3). 
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where            are the mean-vector and the covariance 
matrix of the observations in the basic subset. 

Step 3: Form a larger basic subset consisting of observations 
with the smallest discrepancies. This new basic subset may 
exclude some of the previously included observations, but it 
must be at least as large as the previous basic subset. 

Step 4: Repeat Steps 2 and 3 until the basic subset can no 
longer grow safely. 

Step5: Declare the observations excluded by the final basic 
subset as outliers. 

III. RELATED WORK 

Outlier detection has been intensively investigated for a 
long time in various substantive areas. With the emergence of 
fuzzy set theory, more studies were introduced to demonstrate 
the significant role of fuzzy logic in outlier detection. 
Moreover, researches carried out survey studies of fuzzy logic-
based methods to investigate their importance in outlier 
detection [10]. In [11] Kim et al. presented a fuzzy logic-based 
outlier detection framework that is applied at the data entry 
phase for high dimensional cumulative biomedical database. 
The proposed framework is capable of identifying an outlier 
data record by testing the vertical and horizontal consistency of 
the sought records’ attributes’ values. The vertical consistency 
concerns about the deviations in the attribute values in person-
wise follow-up data, while the horizontal consistency concerns 
about the deviation of an attribute value from its domain over 

all the data records. All attributes of the record are assigned an 
outlierness degree determined by a trapezoid fuzzy 
membership function. The proposed framework offers a 
flexibility to tune the behavior of the outlier detection process 
depending on a changeable cut-off threshold for the degree of 
outlierness, which in turn affects the outlier detection rate. 
Experiments were performed on artificial datasets and some 
data sets were modified by random noise to get outliers. 
Results showed that the proposed method can detect 
meaningful outliers at data entry stage. For further work, the 
authors aim to detect more complicated outliers where 
attributes seem normal individually but their combination is 
anomalous. 

Cateni, Colla and Vannucci [12] discussed how industrial 
data exhibit high dimensionality and require conflicting 
computation requirements as time vs. efficiency. This tradeoff 
is mainly highlighted in the paper by proposing a Fuzzy 
Inference System (FIS) that is able to detect anomalies by 
firstly combining several outlier detection methods, which 
mainly depend on clustering and neighbor points analysis. The 
proposed FIS is then fed by these four features as an input and 
outputs an index within the interval [0, 1] as a risk indicator 
that the observed pattern is an outlier. The performance of the 
proposed fuzzy method was compared to Grubbs [13], the 
comparison was mainly subject to the percentage of the 
detected outliers for each data variable. The results showed that 
the proposed fuzzy method outperformed Grubbs by 
recognizing 100% of the outliers in most of the cases without 
priori assumptions of the data distribution, yet its computation 
time is almost 10 times larger than Grubbs. Another drawback 
of the proposed fuzzy method lies in the assumption that the 
present outlier must deviate markedly from the center of data 
as to have a very low membership to the possible cluster to 
which it could be assigned. Heuristically tuning the parameters 
of the membership functions is also considered as a drawback.  

The weakness of depending on a binary inclusion or 
exclusion criterion to declare an observation as outlier is 
discussed in [14]. The authors highlighted how the classical 
tests as, in Grubs and Dixon [13, 15] are unstable in detecting 
outliers as they produce contradictory conclusions under the 
same circumstances. The study suggested a less crisp decision 
criterion by proposing a novel treatment of outliers based on 
fuzzy logic. The proposed treatment depends on 2-input/1-
output fuzzy inference engine. The inference engine then maps 
the inputs to an outlierness degree to be high, intermediate or 
low. The performance of the proposed system was tested 
through simulated datasets indicating the efficiency in 
assigning candidate outliers an outlying degree rather than 
eliminating them.  

A generic fuzzy treatment method for outlier detection was 
introduced in [7] with an application on penicillin production 
data. The proposed method depends on a 2-input/1-output 
fuzzy inference system.  The Hampel [16] identifier along with 
the FCM membership values are fed to the fuzzy inference 
system as inputs. The outlierness degree of an observation is 
then computed as an output. Moreover, authors introduced a 
comparative study with four individual methods. Results 
indicated that the proposed method provides a satisfactory 



decrease in the number of false positives and false negatives 
compared to each method individually. 

IV. PROPOSED SOLUTION 

The main aim of this study is to both propose and develop 
two fuzzy treatment approaches to the candidate outliers 
obtained by BACON. As mentioned in Section II, BACON is 
an iterative algorithm. In Step 3, BACON performs a 
hypothesis test to decide whether a point should be included in 
the new basic subset. BACON depends on an iteration-based 

critical value in its hypothesis test which is             
 , where 

   is the      percentile of the chi square distribution with   
degrees of freedom,               and  

                           

             ,   is the size of the dataset,    is the 
dimension of the dataset,   is the size of the basic subset, and  

     
   

   
  

 

     
       

   

   
  

 

      
            (4). 

The idea of the proposed solution mainly depends on 
making this cut-off threshold a fuzzy number. Thus, the end 
decision of a data point should be more linguistically 
interpretable rather than being binary as an absolute outlier or 
inlier. This means that a point could be both outlier and inlier 
but with different belonging degrees to both classes. Therefore, 
and according to the steps of BACON mentioned in Section II, 
a point with a discrepancy relatively close to the cut-off 
threshold will have a more belonging degree to be an outlier 
than a point with a farther discrepancy from the cut-off 
threshold as shown in Fig. 1. This in turn will have an impact 
on the decision making process regarding the risk 
interpretation of each point with respect to its overlapped 
belonging degrees in both inlier and outlier classes. 

As Fig. 1 shows, in the Mahalanobis distance of Mtcars 
dataset, BACON will consider observation 33 and 34 absolute 
outliers with equal outlying degree even though it is obvious 
how farther observation 34 than observation 33 from the cut-
off threshold represented by a red line in Fig. 1. BACON will 
also consider observations 18, 20, and 25 as absolute inliers 
despite being relatively close to the cut-off threshold. The 
proposed solution shall assign two membership degrees to 
those extreme points with respect to having two classes as 
inlier and outlier. 

The two proposed fuzzy treatment approaches mainly 
depend on the crisp cut-off threshold, which BACON 
calculates in the last iteration. In both approaches, the distance 
domain is used instead of the original data domain. 
Accordingly, all the used calculations strictly depend on the 
corresponding distance value for all data points calculated by 
BACON. Both approaches then consider setting a left and right 
tolerance limits on the crisp cut-off to form a fuzzy number and 
two unbalanced classes as presented in Fig. 2.  

The two proposed approaches are: 

A. Coefficient of Variation (CoV) 

In this approach, both left and right tolerance limits are set 
using the coefficient of variation, which is calculated as the 
standard deviation divided by the mean. The idea behind using 

coefficient of variation relies on its ability to give a sense of 
how uncertain the data is, given an expected value, which is the 
mean in this case. 

  

 

B. Median Absolute Deviation (MAD) 

Using MAD comes from the unreliability of the classical 
estimates such as the mean in the first approach, since we are 
dealing with a distance domain which already has outlier 
values in the first place as shown in Fig. 1, hence the need for 
more robust measure such as MAD. Considering the non 
normal distribution of the distances, a heuristic to set the right 
and left limits of the fuzzified cut-off threshold is given in (5).  

                             
  

              

  
 ,        (5) 

where    is the 1 -    percentile of the chi square distribution 
with   degrees of freedom, whereas   and   represent the 
dataset size and dimension, respectively. In the 
experimentations done   was set to 0.05. 

V. DATASET 

In this section we explain the used datasets in assessing the 
performance of the proposed fuzzy treatment approaches to the 
candidate outliers obtained by BACON. Three datasets were 
used in this study which are Bushfire [17], Philips [18] and 
Mtcars [19] as the shown Table. I.  

In Mtcars dataset, two artificial outliers were planted as 
points 33 and 34 concerning attributes mpg and disp as shown 
in Fig. 1. In Bushfire all attributes were involved in the study 
except the second.  

 

    Fig. 2. Proposed Fuzzy Treatment for the crisp cut-off of BACON 

 

 

 

 

                  Fig. 1. Mahalanobis distance for Mtcars dataset 

 

 

 



TABLE I.   
DATASETS USED IN THE EXPERIMENTS 

Dataset 
No. of 

dimensions 
Size 

Outlying 

observations 

Mtcars 2 34 33,34 

Bushfire 4 38 
 

7:11, 32:38, 12,13,31 

Philips 9 677 

 

491:565 and 

other 
suspicious points 

 
Philips dataset is mainly used because of an effect called 

masking. Masking is the situation in which there are 
observations exist as outliers but are not detectable by 
Mahalanobis distance. These observations remain outliers but 
in a lower variance subspace. A robust Mahalanobis distance 
unmasks these observations so they become detectable. In [18] 
a robust analysis has been conducted on Philips dataset to 
introduce diagnostic plots to highlight the outlying 
observations in the presence of the masking effect. As Fig. 3 
shows, there are three clusters which are the first 100 points, 
491 to 565 and the rest of the observations. Other diagnostic 
plots for Phillips dataset have been introduced in [20] stating a 
disagreement concerning the number of the present outlying 
observations which could possibly include but not restricted to 
suspicious observations such as 175, 297, 298, 433 [21]. In this 
study, all the nine attributes of Phillips dataset were involved. 

 

VI. EXPERIMENTS AND RESULTS 

In this section we discuss and compare the results of the 
three algorithms: BACON, Fuzzy BACON V1 (FBACON1), 
and Fuzzy BACON V2 (FBACON2). BACON remains the 
fastest along the three datasets as shown in Table. II as both 
FBACON1 and FBACON2 introduce an additional step to 
BACON. 

TABLE II.   
COMPUTATION TIME FOR BACON, FBACON1  

AND FBACON2 IN SECONDS  

Dataset BACON FBACON1 FBACON2 

Mtcars 0.345201 1.241204 1.1694 

Bushfire 0.314 1.280603 1.233403 

Philips 0.3588 8.939511 7.79645 

 

In Mtcars dataset, BACON detected the two planted 
outliers which are observation 33 and 34. In Bushfire, BACON 
detected 7 – 13 and 31 – 38 as outlying observations. Bushfire 
is an ideal example for investigating the labeling of 
observations that lie on the decision boundary such as 13 and 
31. In the current research, we contend that it is intuitive and 
rational that if an observation lies close to the decision 
boundary then it should be considered inlier and outlier yet 
with different belonging degrees to both classes. BACON as 
discussed in Section IV depends on a test to whether declare an 
observation to be an outlier. The decision boundary in the last 
iteration of BACON is highlighted as a red line in Fig. 4 with 
both observations 13 and 31 being close to it. Yet, they both 
are labeled as definite outliers as if they lie as far as 
observation 9 or 10 from the boundary decision as shown in 
Fig.4. 

 

The calculated Mahalanobis distances for observations 13 
and 31 in the last iteration of BACON are 0.447325 and 
4.479342, respectively, and they were tested against the cut-off 
value of 4.169758 as shown in Fig. 4. On the other hand both 
of the proposed solutions have assigned membership degrees to 
observations 13 and 31 in both outlier and inlier classes. 
Table.III shows the output of FBACON1 and FBACON2 
compared to BACON for bushfire dataset. Although 
FBACON1 and FBACON2 assign both observations higher 
outlier membership degrees, it remains obvious that both 
observations are not definite outliers and should not be treated 
as observation 10 for example. The Results in Table III show 
how FBACON2 strongly demonstrates the fuzziness of both 
observation 13 and 31 giving very close membership degrees 
in inlier and outlier classes as shaded in yellow. The 
computation time of BACON and both FBACON1 and 
FBACON2 is shown in Fig. 5 and it shows that FBACON2 
slightly outperforms FBACON1. 

 

 

 

 

 

 

 

Fig. 4. Mahalanobis distance for Bushfire dataset 

 

 

            Fig. 3. Robust Mahalanobis distance for Philips dataset 

 



TABLE III.  OUTPUT FOR BACON, FBACON1 AND FBACON2 FOR BUSHFIRE DATASET

Observation   
Original 

BACON output 

FBACON1 membership 

degree 

FBACON2 membership 

degree 

inlier  outlier  inlier  outlier  

1  definite inlier  definite inlier 0.9600174 0.03998259 

2  definite inlier  definite inlier  definite inlier 

3  definite inlier  definite inlier  definite inlier 

5  definite inlier  definite inlier  definite inlier 

6  definite inlier  definite inlier 0.9376714 0.06232861 

12 definite outlier  definite outlier  definite outlier  

13 definite outlier  0.3520339 0.6479661 0.4376028 0.5623972 

14  definite inlier definite inlier 0.9328029 0.06719707 

15  definite inlier definite inlier 0.8969458 0.1030542 

16  definite inlier definite inlier definite inlier 

18  definite inlier definite inlier definite inlier 

21  definite inlier definite inlier definite inlier 

22  definite inlier definite inlier 0.869288 0.130712 

23  definite inlier definite inlier 0.911155 0.08884496 

24  definite inlier definite inlier 0.9752324 0.02476755 

28  definite inlier definite inlier 0.9793917 0.02060825 

29  definite inlier definite inlier 0.7771846 0.2228154 

30  definite inlier definite inlier 0.8210952 0.1789048 

31 definite outlier  0.3349662 0.6650338 0.4304053 0.5695947 

 

 
     In Philips dataset, BACON found 92 outlying observations 

[9] including a cluster containing the observations from 491 to 

565. BACON also detected other outlying observations which 

are 16, 297, 298, 429, 430, 431, 432, 433, 435, 436, 70, 95, 

104, 116, 120, 175, and 605. In BACON three suspicious 

observations are labeled to be definite outliers as shown in 

Fig. 6. The 3 points are 120, 435, and 436. The latter two 

overlap as they closely lie on the decision boundary. All three 

observations have been tested in the last iteration of BACON 

against the value of 5.5737 as cut-off threshold to be declared 

as definite outliers, although the difference between the testing 

value and their Mahalanobis distance is small compared to 

points 297 and 298. The Mahalanobis distance of observations 

120, 435 and 436 are 5.602519, 5.65154 and 5.645079, 

respectively. The three observations should have a degree of 

membership in both inlier and outlier classes, thus declared as 

fuzzy outliers rather than definite outliers. The proposed 

membership degrees of FBACON1 and FBACON2 to the 

three suspicious observations are shaded in yellow in Table. 

IV. Moreover, Table. IV shows the assigned membership 

degrees of FBACON1 and FBACON2 to other observations 

which were declared to be definite outliers by BACON. 

Although the results of FBACON1 and FBACON2 do not 

markedly deviate from each other, they have different 

computation times as shown in Fig. 7 which shows again that 

FBACON2 takes less time than FBACON1. 

 

 

 
 

                       
                     Fig. 6. Mahalanobis distance for Philips dataset 

 

 

 

      

 Fig. 5.  Computation time for BACON,  FBACON1 and FBACON2    

                                        for  Bushfire dataset 

 

 



TABLE IV.  OUTPUT FOR BACON, FBACON1 AND FBACON2 FOR PHILIPS DATASE

Observation   
Original BACON 

output 

FBACON1 membership 

degree 

FBACON2 membership 

degree 

inlier  outlier  inlier  outlier  

14  definite inlier 0.9303739 0.06962613 0.9960101 0.00399 

26  definite inlier 0.6481621 0.3518379 0.6707582 0.329242 

35  definite inlier 0.7620384 0.2379616 0.8020018 0.197998 

55  definite inlier 0.7654098 0.2345902 0.8058874 0.194113 

70 definite outlier  0.09180652 0.9081935 0.02955305 0.970447 

95 definite outlier  0.2996337 0.7003663 0.2690759 0.730924 

96  definite inlier 0.9887479 0.01125213 definite inlier 

98  definite inlier 0.7582134 0.2417866 0.7975934 0.202407 

116 definite outlier  0.3051567 0.6948433 0.2754412 0.724559 

120 definite outlier  0.4783641 0.5216359 0.4750644 0.524936 

334  definite inlier 0.8612514 0.1387486 0.9163457 0.083654 

429 definite outlier 0.2177979 0.7822021 0.1747593 0.825241 

435 definite outlier  0.4415288 0.5584712 0.4326113 0.567389 

436 definite outlier  0.4463832 0.5536168 0.4382061 0.561794 

437  definite inlier 0.9736967 0.02630326 definite inlier 

458 definite inlier 0.7629163 0.2370837 0.8030136 0.196986 

 

 
 

      In Mtcars dataset, BACON identified the planted outlying 

observations as definite outliers which are 33 and 34. The last 

iteration of BACON relied on the value of 3.318423 as a cut- 

off to test the Mahalanobis distances of observations 33 and 34. 

The calculated Mahalanobis distances of observations 33 and  

34 are 4.792307 and 29.30728, respectively. Although 

observation 33 is closer to the decision boundary than 

observation 34 as shown in Fig.1, BACON declares them both 

as equally outlying observations. It is also obvious that other 

observations which BACON considers inliers are also close to 

the decision boundary in which their degree of belonging to the 

outlier class should be considered. The membership degrees of 

all observations of Mtcars dataset are shown in Table. V. In the 

case of Mtcars dataset, FBACON1 introduces more 

interpretable results than FBACON2 while the computing time 

of  FBACON2 remains better than FBACON1 as shown in Fig. 

8.  

 

VII. CONCLUSION  

Using a crisp cut-off threshold in outlier detection can only 
be useful when all outlying observations being positioned far 
from it. If an observation lies relatively close to the cut-off 
threshold then it is more meaningful to be labeled as a fuzzy 
outlier and to have membership degrees in both inlier and 
outlier classes. In this paper we proposed two fuzzification 
approaches to the candidate outliers produced by BACON 
named as FBACON1 and FBACON2. Experiments showed the 
ability of the proposed approaches to handle the fuzzy nature 
of candidate outlying observations rather than declaring them 
as definite outliers and capturing their uncertainty through 
introducing more meaningful interpretations. This, in turn, 
shall bring new insights to the fuzzy nature of decision-
boundary points. The insights may also lead to an optimization 
of the parameter tuning process to precisely tune the limits of 
decision boundary and, consequently, the number and nature of 
the outliers. 

 

  
Fig. 8. Computation time for BACON, FBACON1 and FBACON2  

     for Mtcars dataset 

 

 

 

 

 

      
 Fig. 7. Computation time for BACON, FBACON1 and FBACON2 
                                         for Philips dataset 

 

 

 

 

 



TABLE V.  OUTPUT FOR BACON, FBACON1 AND FBACON2 FOR MTCARS DATASET

Observation 
Original BACON 

output 

FBACON1 membership 

degree 

FBACON2 membership 

degree 

inlier outlier inlier outlier 

3  definite inlier 0.9749073 0.02509269  definite inlier 

5  definite inlier 0.888199 0.111801  definite inlier 

10  definite inlier 0.9812789 0.01872109  definite inlier 

11  definite inlier 0.8885347 0.1114653  definite inlier 

15  definite inlier 0.8119575 0.1880425  definite inlier 

16  definite inlier 0.8340223 0.1659777  definite inlier 

17  definite inlier 0.8074302 0.1925698  definite inlier 

18  definite inlier 0.7426551 0.2573449  definite inlier 

19  definite inlier 0.8568625 0.1431375  definite inlier 

20  definite inlier 0.6631987 0.3368013  definite inlier 

21  definite inlier 0.9529676 0.04703239  definite inlier 

24  definite inlier 0.9990268 0.000973238  definite inlier 

25  definite inlier 0.7222767 0.2777233  definite inlier 

26  definite inlier 0.9686658 0.03133423  definite inlier 

28  definite inlier 0.8373078 0.1626922  definite inlier 

30  definite inlier 0.9349432 0.06505679  definite inlier 

32  definite inlier 0.9507306 0.04926945  definite inlier 

33   definite outlier 0.1644011 0.8355989    definite outlier 

34 definite outlier 
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