
F-Transform and Convolutional NN:
Cross-Fertilization and Step Forward

1st Vojtech Molek
Institute for Research and Applications of Fuzzy Modeling

Ostrava Univesity
Ostrava, Czech Republic

vojtech.molek@osu.cz

2nd Irina Perfilieva
Institute for Research and Applications of Fuzzy Modeling

Ostrava Univesity
Ostrava, Czech Republic

irina.perfilieva@osu.cz

Abstract—We propose to assign the F-transform kernels to the
CNN weights and compare them with commonly used initializa-
tion. By this, we develop a new initialization mechanism where
the F-transform convolution kernels are used in the convolutional
layers. Based on a series of experiments, we demonstrate the
suitability of the F-transform-based deep neural network in the
domain of image processing with the focus on classification.
Moreover, we support our insight by revealing the similarity
between the F-transform and first-layer kernels in certain deep
neural networks.

Index Terms—F-transform, convolutional neural networks,
pretraining

I. INTRODUCTION

Our goal is two-fold: to extend the deep learning (DL)
methodology of convolution neural networks (CNN) by rea-
sonable (F-transform-based) initialization and to contribute
to the F-transform technology by learning mechanisms. The
first goal is within data-driven machinery, while the second
one is an example of a model-driven tool. In short, our idea
is to assign the F-transform kernels to the CNN weights
and evaluate the accuracy on the benchmark dataset. This
motivation is supported by theoretically proved results about
the approximation abilities of the F-transform technique. In
the language of CNNs, these results assure that the kernels
associated with the F-transform can extract a sufficient amount
of features for satisfactory reconstruction. On the other hand,
the extracted by the F-transform features (called components)
can be further tailored to a given dataset using the procedure
of learning. In this contribution, we show how this cross-
fertilization helps to improve both techniques.

In detail, we are focused on a smart and conscious initial-
ization of convolutional kernels in convolutional layers where
neurons have restricted receptive fields. Our approach can be
named as a “preprocessing of methodology”.

The preprocessing is realized in the convolution layers
together with feature extraction. In subsequent fully-connected
layer(s), the extracted features are used for classification,
recognition, etc. Therefore, the initial objects are modeled
by the extracted features, so that the former ones can be
approximately reconstructed from the latter.

In our contribution, we discuss a pretraining method for
CNN. It is common practice to use CNN trained on large
datasets and do final fine tuning on a domain-specific dataset.

Fig. 1. Visualisation of convolutional kernels used for extracting F-transform
components of different degrees.

The size of a domain-specific dataset is usually smaller, so
the fine-tuning benefits dramatically from the pretrained model
[1].

Using a pretrained model means to use the knowledge ex-
tracted from data, as CNNs are data-driven models, in a large
dataset, and to apply this knowledge to solve a related problem
on a smaller dataset. Pretraining models on a large amount
of data come with significant computation requirements, so
the possibility of sharing models does not only save time but
resources as well.

In our contribution, we propose a different philosophy on
pretraining models. Rather than expensively learning weights
from data, we initialize a subset of the parameters with
handcrafted values. Our handcrafted values are convolutional
kernels originating from the theory of fuzzy modeling and
the analysis of CNN functioning. In particular, we use the F-
transform theory that has been successfully applied to image
processing tasks [2]–[4]. The F-transform represents image
data using the components, which are numerical values, ex-
pressing different geometrical properties. These properties are
of local influence, as each component is computed over a
small neighborhood. By increasing degree n of Fn-transform,
each component gains additional expressivity: if n = 0, then
a weighted average intensity is extracted, if n = 1, then
an average value of a gradient is obtained, and so forth.
The inverse F-transform reconstructs the original data from

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

the computed components with a requested precision. High
precision means that components carry a high amount of
information about original data. We argue that components
can be used as an intermediate representation of data within
CNNs.

In the following sections, we will recall the fundamentals
of F-transform theory and practical results. The results were
obtained by using compact CNN architecture for image clas-
sification task on CIFAR-10 [5] dataset.

II. THE F-TRANSFORM OF A HIGHER DEGREE
(Fm-TRANSFORM)

In this section, we recall the main facts (see Ref. [6]
for more details) about the higher degree F-transform and
specifically F2-transform - the technique, which will be used
in the CNN with the F-transform kernels (FTNet) proposed
below.

We aim at expressing the F-transform in the form of a
convolution of two functions: a given (object) function and
a function that generates a fuzzy partition. The latter serves
as a kernel function. We will start by reminding the basic
definitions regarding the F-transform. We will focus on the
discrete F-transform only.

A. Discrete F-transform

Let us consider the discrete F-transform [7]. We choose an
interval [a, b] as a universe, and assume that a function f is
given at points p0, . . . , pl−1 ∈ [a, b].

Below, we recall the definition of a fuzzy partition. Let a =
x0 < · · · < xn = b, n ≥ 3 be fixed nodes within [a, b]. Fuzzy
sets A1, . . . , An−1 identified with their membership functions
A1, . . . , An−1, defined on [a, b], establish a fuzzy partition of
[a, b] if they fulfill the following conditions for k = 1, . . . , n−
1:

1) Ak : [a, b]→ [0, 1], Ak(xk) = 1;
2) Ak(x) = 0 if x /∈ (xk−1, xk+1), k = 1, . . . , n− 1;
3) Ak(x) is continuous;
4) Ak(x) strictly increase on [xk−1, xk],

k = 1, . . . , n − 1; and strictly decrease on
[xk, xk+1], k = 1, . . . , n− 1;

5)
∑n

k=1Ak(x) = 1, x ∈ [x1, xn−1].

A1, . . . , An−1 are called basic functions.
We say that the fuzzy partition given by A1, . . . , An−1, is

an h-uniform fuzzy partition if the nodes xk = a + hk, k =
0, . . . , n, are equidistant, h = (b − a)/n and two additional
properties are met:

6) Ak(xk−x) = Ak(xk+x), x ∈ [0, h], k = 1, . . . , n−1;
7) Ak(x) = Ak−1(x − h), k = 2, . . . , n − 1, x ∈

[xk−1, xk+1].

Assume that fuzzy sets A1, . . . , An−1 establish a fuzzy
partition of [a, b] and f : P → R is a discrete real val-
ued function defined on the set P = {p0, . . . , pl−1} where
P ⊆ [a, b] and l > n. The following vector of real numbers
Fn[f] = [F1, . . . , Fn−1] is the (direct) discrete F -transform

of f w.r.t. A1, . . . , An−1 where the k−th component Fk is
defined by

Fk =

∑l−1
j=0Ak(pj)f(pj)∑l−1

j=0Ak(pj)
, k = 1, . . . , n− 1. (1)

A semantic meaning of an F-transform component is in giving
the best weighted average value of function f over the area
covered by the corresponding basic function. More details are
given in the following proposition [7].

Lemma 1: Let function f be given at nodes p1, . . . , pl ∈
[a, b] and A1, . . . , An be basic functions which form a fuzzy
partition of [a, b]. Then the k-th component of the discrete
F-transform gives minimum of the function

Φ(y) =

l∑
j=1

(f(pj)− y)2Ak(pj). (2)

By using an inversion formula we can approximately recon-
struct function f from the vector of components of its direct
discrete F-transform. We define [7] the inverse discrete F -
transform as

fF,n(pj) =

n−1∑
k=1

FkAk(pj), j = 0, . . . , l − 1.

Moreover, the following Theorem 1 says that the inverse dis-
crete F-transform fF,n can approximate the original function
f at common nodes with an arbitrary precision (proved in [7]).

Theorem 1: Let a function f be given at nodes p0, . . . , pl−1
constituting the set P ⊆ [a, b]. Then, for any ε > 0, there
exist nε and a fuzzy partition A1, . . . , Anε

of [a, b] such that
P is sufficiently dense with respect to A1, . . . , Anε

and for all
p ∈ {p0, . . . , pl−1}

|f(p)− fF,nε(p)| < ε

holds true.

B. F-Transform as Convolution

Let us assume that the interval [a, b] is h-uniformly parti-
tioned by fuzzy sets A1, . . . , An−1, f is a discrete function,
and the F-transform of a discrete function f is given by Fn[f]
with components obtained by(1).

It is easy to see that if the fuzzy partition A1, . . . , An−1 of
[a, b] is h-uniform, then there exists an even function

A : [−h, h]→ [0, 1]

such that for all k = 1, . . . , n− 1,

Ak(x) = A(x− xk) = A(xk − x), x ∈ [xk−1, xk+1].

We call A a generating function of an h-uniform fuzzy
partition.

Let us assume that points p0, . . . , pl−1 are equidistant in the
interval [a, b] and moreover pj = a+ jh/m; j = 0, . . . , l−1,
where m and l are connected by the following equality: l =
nm+1. Thus chosen points p0, . . . , pl−1 assure that the nodes
x0, . . . , xn are among them, i.e. for each k = 0, . . . , n, there

exists j such that xk = pj . Moreover, the following Lemma 1
holds true.

Lemma 2: Let A1, . . . , An−1 establish an h-uniform fuzzy
partition of [a, b] and points p0, . . . , pl−1 from [a, b] are chosen
as above. Then there exists a constant c > 0 such that for all
k = 1, . . . , n− 1,

l−1∑
j=0

Ak(pj) = c. (3)

Proof 1: In order to prove (3), it is sufficient to show that
for all k = 1, . . . , n− 2,

l−1∑
j=0

Ak+1(pj) =

l−1∑
j=0

Ak(pj). (4)

Indeed, the uniformity of our partition and the fact that

Ak+1(pj+m) = Ak(pj), j = 0, . . . , l − 1−m,

leads to
l−1∑
j=0

Ak+1(pj) = Ak+1(pkm) + · · ·+Ak+1(p(k+2)m) =

Ak(p(k−1)m) + · · ·+Ak(p(k+1)m) =

l−1∑
j=0

Ak(pj),

k = 1, . . . , n− 2.

Remark 1: Let us remark that (3) is not the generalized
Ruspini condition, because the sum is taken over points
p0, . . . , pl−1. Actually, the sum in (3) is taken over those
points that are covered by a single basic function Ak, k =
1, . . . , n− 1.

By (3), the expression (1) can be rewritten as follows:

Fk =

∑l−1
j=0A(xk − pj)f(pj)

c
; k = 1, . . . , n− 1. (5)

Let us consider Fk as a value of a discrete function F , defined
on the set Zn−1 = {1, . . . , n − 1} with values from R such
that F : Zn−1 → R and F (k) = Fk. We will use (5) for an
analytic extension of F from Zn−1 to Zl = {0, 1, . . . , l− 1},
so that

F (t) =

∑l−1
j=0A(pt − pj)f(pj)

c
; t = 0, . . . , l − 1. (6)

Similarly, we can assume that functions A and f are defined
on the set Zl and rewrite (6) into

F (t) =

∑l−1
j=0A(t− j)f(j)

c
; t = 0, . . . , l − 1. (7)

Finally, we will normalize values of A dividing them by c
and keep the same denotation A for the normalized function.
Then without loss of generality, we will continue working with
the below given expression for F :

F (t) =

l−1∑
j=0

A(t− j)f(j); t = 0, . . . , l − 1. (8)

Analyzing (8), we see that the function F : Zl → R is
a convolution of two discrete functions: f (referred above
as an object-function) and A (referred above as a kernel-
function). Let us remark that function F contains the F-
transform components Fk, k = 1, . . . , n−1, among its values.
In order to extract the F-transform components Fk, we shall
select the step value m, so that the convolution (8) is computed
for t = 0,m, 2m, The value m determines a so called
stride.

C. Fm-transform

In this section, we define the Fm-transform, m ≥ 0, of a
function f with polynomial components of degree m. For this
purpose, we use the integral form of the F-transform. Let us
fix [a, b] and its fuzzy partition A1, . . . , An, n ≥ 2.

Definition 1 ([6]): Let f : [a, b] → R be a function from
L2(A1, . . . , An), and let m ≥ 0 be a fixed integer. Let Fm

k be
the k-th orthogonal projection of f |[xk−1,xk+1] on Lm

2 (Ak),
k = 1, . . . , n. We say that the n-tuple (Fm

1 , . . . , F
m
n) is an

Fm-transform of f with respect to A1, . . . , An, or formally,

Fm[f] = (Fm
1 , . . . , F

m
n).

Fm
k is called the kth Fm-transform component of f .
Explicitly, each kth component is represented by the mth

degree polynomial

Fm
k = ck,0P

0
k + ck,1P

1
k + · · ·+ ck,mP

m
k , (9)

where

ck,i =
〈f, P i

k〉k
〈P i

k, P
i
k〉k

=

∫ b

a
f(x)P i

k(x)Ak(x)dx∫ b

a
P i
k(x)P i

k(x)Ak(x)dx
, i = 0, . . . ,m.

Definition 2: Let Fm[f] = (Fm
1 , . . . , F

m
n) be the direct Fm-

transform of f with respect to A1, . . . , An. Then the function

f̂mn (x) =

n∑
k=1

Fm
k Ak(x), x ∈ [a, b], (10)

is called the inverse Fm-transform of f .
The following theorem proved in [6] estimates the quality

of approximation by the inverse Fm-transform in a normed
space L1.

Theorem 2: Let A1, . . . , An be an h-uniform fuzzy partition
of [a, b]. Moreover, let functions f and Ak, k = 1, . . . , n be
four times continuously differentiable on [a, b], and let f̂mn be
the inverse Fm-transform of f , where m ≥ 1. Then

‖f(x)− f̂mn (x)‖L1 ≤ O(h2),

where L1 is the Lebesgue space on [a+ h, b− h].

D. F2-transform in the Convolutional Form

Let us fix [a, b] and its h-uniform fuzzy partition
A1, . . . , An, n ≥ 2, generated from A : [−1, 1] → [0, 1]
and its h-rescaled version Ah, so that Ak(x) = A(x−xk

h) =
Ah(x − xk), x ∈ [xk − h, xk + h], and xk = a + kh. The

F2-transform of a function f from L2(A1, . . . , An) has the
following representation

F 2[f] = (c1,0P
0
1 + c1,1P

1
1 + c1,2P

2
1 , . . . ,

cn,0P
0
n + cn,1P

1
n + cn,2P

2
n), (11)

where for all k = 1, . . . , n,

P 0
k (x) = 1, P 1

k (x) = x− xk, P 2
k (x) = (x− xk)2− I2, (12)

where I2 = h2
∫ 1

−1 x
2A(x)dx, and coefficients are as follows:

ck,0 =

∫∞
−∞ f(x)Ah(x− xk)dx∫∞
−∞Ah(x− xk)dx

, (13)

ck,1 =

∫∞
−∞ f(x)(x− xk)Ah(x− xk)dx∫∞
−∞ (x− xk)2Ah(x− xk)dx

, (14)

ck,2 =

∫∞
−∞ f(x)((x− xk)2 − I2)Ah(x− xk)dx∫∞
−∞ ((x− xk)2 − I2)2Ah(x− xk)dx

. (15)

In ([6], [8]), it has been proved that

ck,0 ≈ f(xk), ck,1 ≈ f ′(xk), ck,2 ≈ f ′′(xk), (16)

where ≈ is meant up to O(h2).
Without going into technical details, we rewrite (13) - (15)

into the following discrete representations

ck,0 =

l∑
j=1

f(j)g0(ks− j)

ck,1 =

l∑
j=1

f(j)g1(ks− j)

ck,2 =

l∑
j=1

f(j)g2(ks− j) (17)

where k = 1, . . . , n, n = b lsc, s is a stride and g0, g1, g2 are
normalized functions that correspond to generating functions
Ah, (xAh) and ((x2 − I2)Ah). It is easy to see that if s = 1,
then coefficients ck,0, ck,1, ck,2 are results of the corresponding
discrete convolutions f ?g0, f ?g1, f ?g2. Thus, we can rewrite
the representation of F2 in (11) in the following vector form:

F 2[f] = ((f ?sg0)TP0+(f ?sg1)TP1+(f ?sg2)TP2), (18)

where P0, P1, P2 are vectors of polynomials with components
given in (12), and ?s means that the convolution is performed
with the stride s, s ≥ 1.

III. FTNET – EMBEDDING KNOWLEDGE INTO CNN

Ref. [9] proposed incorporation of F-transform into convo-
lutional neural network – FTNet. Here, we recall all essential
details.

In Ref. [9], we modified the baseline network by replacing
convolutional kernels in the first and second convolutional
layers with the F-transform kernels according to (17) adapted
to functions of two variables. To properly work with colorful
image data, we expand our kernels to 3D by processing

each color channel separately. Moreover we perform cluster
analysis on InceptionResNetV2 [10] first layer weights and
use 6 cluster centroids1 (Fig. 2) as additional kernels. In total,
we have a set of 14 kernels for the first convolutional layer
initialization. Other convolutional layers are initialized with

Fig. 2. 6 centroids extracted from InceptionResNetV2.

F-transform kernels as well. However, since the number of
channels changes in dependence on a number of previous
layer filters, we randomly sample from the set of our 8
F-transform kernels. Cluster centroids are not used beyond
first convolutional kernels. Note that F-transform kernels are
parametrized by their width, height, rotation, and sign (+/-).
This parametrization allows us to freely enlarge the set of F-
transform kernels as well as generate kernels for different filter
sizes.

A. FTNet architecture

FTNet architecture contains repeating basic block (Fig. 3).
We follow the rule of thumb, and with each block repetition,
as the spatial resolution decreases, we increase the number of
convolutional layer filters. The overall architecture is shown
in Tab. I. We use batch normalisation and L2 weight decay

Fig. 3. Building block used in FTNet.

with strength 1e-4 to reduce the overfitting. Throughout our
experiments, the architecture does not change.

TABLE I
FTNET ARCHITECTURE

Layers Parameters
Weights size Output size Activation

block1 3× 3× 3× 14 16× 16× 14 ReLU
block2 3× 3× 14× 28 8× 8× 28 ReLU
block3 3× 3× 28× 56 4× 4× 56 ReLU
dense 896× 256 256 ReLU
dense 256× 10 10 softmax

1We have used dendrogram to estimate the number of clusters.

B. Training

We train FTNet on 80% of the training part of CIFAR-
10 and use the remaining 20% for validation purposes. The
training data are randomly augmented2 during the training
to further prevent overfitting. We use SGD optimizer with
momentum m=0.9, variable learning rate with decay γ=1e-2.
Two conditions are used during training: one to stop training
and one to decrease learning rate, both depended on the
decreasing value of validation loss. Since hyperparameters
fundamentally influence training procedure, in further section
with the results, we report accuracies for different optimizers,
learning rates, and batch sizes, 500 being default one.

C. Weights initialization

FTNet uses two types of initialization: one for the first
convolutional layer and second for other convolutional layers.
The difference is in the input of layers; while the first
convolutional layer input is batch of 3 channel images, all suc-
cessive convolutional layers have batches of n feature maps.
n depends on the previous layer parameters. We initialize the
first convolutional layer with the set of previously described
6 centroids and set of F-transform kernels (Fig. 1).

Other convolutional layers weights are uniformly sampled
from the set of F-transform kernels A such that wk

i,j = A`,
where ` ∼ U(0, |A|) and wk

i,j is j-th filter of k-th convo-
lutinal layer convolving i-th input feature map. With such a
initialization, each successive convolutional layer perform F-
transform on components extracted by previous convolutional
layer, creating unique descriptors.

Lastly, we follow the idea of Xavier initialization [11] and
rescale w such that w ∈ [−

√
6

X∗Y ∗I+J ,
√

6
X∗Y ∗I+J] where

X,Y are width and height of F-transform kernels, I is number
of input feature maps and J is number of filters. Note that
rescaling the kernels is crucial for good convergence, and
without rescaling, FTNet underperforms.

D. Performance of FTNet

We compare two different initializations: initialization with
F-transform kernels, described in Sec. III-C and Xevier initial-
ization. In both cases, we do not use biases. The test accuracy
for different hyperparameters is shown in Tab. II. Fig. 4
contains process of training in terms of training/validation loss
and accuracy.

IV. SIMILARITY BETWEEN F-TRANSFORM KERNELS AND
OTHER KERNELS

We performed a clustering analysis of 6 CNN first layer
weight vectors to confirm our hypothesis that networks learn
certain groups of filters known in image processing. Since F-
transform kernels shares similarities with said known image
processing kernels, that would further support F-transform
suitability for weights initialization. Fig. 5 shows the results of
clustering; 6 medoids per network. We can see that medoids
are roughly from the classes of Gaussian, edge detection, and

2Rotation, width/height shift, shear, zoom, and horizontal flips.

TABLE II
FTNET AND XAVIER INITIALIZATION TEST ACCURACIES.

Hyperparameters F-transform (%) Xavier (%)
SGD(lr=1e-2, γ=1e-2, m=0.9) 66.32% 60.03%

L2(1e-2), batch=500
SGD(lr=1e-1, γ=1e-2, m=0.9) 71.52% 71.25%

L2(1e-2), batch=500
SGD(lr=1e-1, γ=1e-2, , m=0.9) 67.30% 66.99%

L2(1e-2), batch=100
SGD(lr=1, γ=1e-2, m=0.9) 66.28% 66.61%
L2(1e-2), batch=500

Adam(lr=1e-1, γ=1e-2) 77.03% 78.06%
L2(1e-2), batch=500

Adam(lr=1e-2, γ=1e-2) 75.73% 75.08%
L2(1e-2), batch=500

texture detection kernels. F-transform kernels can be assigned
to these respective classes as well.

V. CONCLUSION AND THE FUTURE WORK

We have introduced new pretraining/initialization method
based on the fuzzy modeling technique – F-transform. F-
transform proved themselves being suitable for initialization
of convolutinal layer filters. Their parametrization makes them
versatile alternative to existing methods, mostly founded on
statistical tools. We have shown accuracies of F-transform and
Xavier initialization on the CIFAR-10 test set. F-transform
almost exclusively achieved higher accuracy and more stable
learning process.

Lastly, we provided evidence of a certain grouping of
convolutional filters in the first layers of known CNNs. F-
transform kernels belong to these groups as well.

Future work includes performing experiments with ”noisy”
F-transform kernels as some of the kernels includes 0 values
that might cause slower or inconsistent training. Another direc-
tion is to use F-transform initialization on some of the state-
of-the-art networks such as ResNet-18 and other optimizers
too.

ACKNOWLEDGMENT

The work was supported from ERDF/ESF ”Centre
for the development of Artificial Intelligence Methods
for the Automotive Industry of the region” (No.
CZ.02.1.01/0.0/0.0/17 049/0008414)

REFERENCES

[1] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and
N. Houlsby, “Large scale learning of general visual representations for
transfer,” arXiv preprint arXiv:1912.11370, 2019.

[2] P. Hurtik and S. Tomasiello, “A review on the application of fuzzy
transform in data and image compression,” Soft Computing, pp. 1–13,
2019.

[3] I. Perfilieva, P. Hodáková, and P. Hurtı́k, “Differentiation by the f-
transform and application to edge detection,” Fuzzy Sets and Systems,
vol. 288, pp. 96–114, 2016.

[4] V. Pavel and P. Irina, “Interpolation techniques versus f-transform in
application to image reconstruction,” in Fuzzy Systems (FUZZ-IEEE),
2014 IEEE International Conference on. IEEE, 2014, pp. 533–539.

[5] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

Fig. 4. Process of training (red curve) and validating (blue curve) of Tab. II. First column is training and validation loss of F-transform kernels, second
column is F-transform training and validation accuracy. Third and fourth column is training and validation loss and accuracy of Xavier initialization. First to
fourth row correspond to second to fifth row of Tab. II.

Fig. 5. Each row contains 6 cluster medoids of one of the selected CNN: 1st
AlexNet [12], 2nd InceptionV3 [13], 3rd MobileNet [14], 4th ResNet [15],
5th VGG 16 [16], 6th VGG 19 [16].

[6] I. Perfilieva, M. Danková, and B. Bede, “Towards f-transform of a higher
degree.” in IFSA/EUSFLAT Conf., 2009, pp. 585–588.

[7] I. Perfilieva, “Fuzzy transforms: Theory and applications,” Fuzzy sets
and systems, vol. 157, no. 8, pp. 993–1023, 2006.

[8] I. Perfilieva and V. Kreinovich, “Fuzzy transforms of higher order
approximate derivatives: A theorem,” Fuzzy Sets and Systems, vol. 180,
no. 1, pp. 55–68, 2011.

[9] V. Molek and I. Perfilieva, “Convolutional neural networks with the
f-transform kernels,” in International Work-Conference on Artificial
Neural Networks. Springer, 2017, pp. 396–407.

[10] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence, 2017.

[11] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010,
pp. 249–256.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[13] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[14] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

