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Abstract—This paper proposes a cross-domain statistical
method for comparing defuzzification algorithms based on in-
corporating the concepts of fuzzy sets’ pairwise operators of
similarities and distances. The method measures the correlation
between the changes in defuzzified value between two fuzzy sets
and comparing it with their similarity/distance. Two support-
based defuzzification methods known for fuzzy controllers (COG
and MOM) along with two level-based methods known for rank-
ing fuzzy numbers (ALC and VAL) are chosen and compared
using the proposed method. The results indicate that the chosen
methods in fuzzy number domain more strongly captures the
embedded information in the fuzzy sets than those of fuzzy
rule-based system. The contributions of this paper are firstly
proposing a heuristic method for comparing any two different
fuzzification algorithms, and secondly highlighting the potentials
for cross-domain utilisation of those algorithms where possible.

I. INTRODUCTION

The term defuzzification generally denotes the method of
mapping a fuzzy set to a representative number. Despite having
many common properties, the concept of defuzzification is
handled differently among fuzzy rule-base system commu-
nity and fuzzy arithmeticians. As such, many defuzzification
methods are specialised in isolation between the two groups.
A large number of algorithms are developed on each side
over the years, some, but not many of which are commonly
used. The fact that fuzzy numbers are special cases of fuzzy
sets (restricted by convexity, uni-modality and normality)
has limited some cross-domain reuse of the defuzzification
methods. Moreover, because there are many methods on each
side, there are not much attempts to use a method of one group
in the context of the other. These facts indicate that there are
still rooms for uncovering the common grounds.

This paper is not going to propose yet another defuzzifica-
tion or fuzzy number ranking method. Instead, it proposes an
statistical solution on how the two sides’ defuzzification/rank-
ing algorithms can be compared quantitatively regardless of
their contextual differences. In fact, it can be used for com-
paring any two arbitrary defuzzification methods. Comparing
a method of the first group with the other may initially seem
pointless as they may be developed to represent fuzzy sets
for different purposes, one for reducing an output fuzzy set
of a rule-based system to a crisp number, and the other for
arithmetic purposes such as ranking a group of fuzzy numbers.
Most of the algorithms in the first group are support-based
(i.e., based on averaging the MF) while the second group
methods are mainly level-based (i.e., based on averaging α-
levels) [1].
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This context-independence comparison is achieved through
studying how much a method can capture the embedded
information in a fuzzy set and encoded in different aspects of
its MF. In the absence of any definite application-independent
measure of comparing defuzzification algorithms, a heuristic
method is developed in this paper based on the pairwise
properties of fuzzy sets, i.e., similarity index and directional
distance. Centre of Gravity (COG or Centroid) and Mean of
Maxima (MOM) are chosen as two common defuzzification
methods of rule-based system, as well as Averaging Level
Cuts (ALC) and Fuzzy Number Value (VAL) representing
the second group. A correlation test is designed for assessing
how much each defuzzification method is statistically bound
to any of the pairwise operations on fuzzy sets. This test can
indicate the amount of fuzzy set information captured by the
algorithm solely based on the MF appearance. It is noticeable
that in rule-based fuzzy logic systems, capturing the maximum
information or uncertainties embedded in a fuzzy set is not
limited to the defuzzification element, but also can be done in
other parts such as the inference engine [2], [3].

In summary, the contributions of this paper are 1) providing
a general methodology for statistically comparing any two
defuzzification methods across different application domains;
and 2) applying the developed methodology to exemplar cross-
domain defuzzification algorithms and comparing their per-
formances, thus highlighting the potentials for cross-domain
utilisation of those algorithms where possible.

In the rest of this paper, first the background information
including the definitions will be provided in Section II. Then
in Section III, the proposed comparison method will be
explained. Section IV is for presenting and discussing the
experiment results, which is followed by the paper conclusion
and the future works in Section V.

II. BACKGROUNDS AND DEFINITIONS

In this section, the concepts that are used in the rest of the
paper are formally defined. The definitions start from the basic
concepts, the picked up defuzzification and valuation methods
followed by the pairwise similarity/distance measurements of
the fuzzy sets.

1) A Multidisciplinary Approach to Defuzzification: In the
context of fuzzy rule-based system, defuzzification is an
essential building block towards the end of the system where
a crisp output is needed (e.g., for the voltage needed to drive
a motor). Since the output fuzzy sets are the outcome of a
highly non-linear inference system, it is quite common that the
output fuzzy sets (before defuzzification) are highly irregular
in shape. These sets can be non-convex, non-normal and multi-
model, as they are not meant to be human-interpretable.
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In fuzzy arithmetic, a fuzzy number [4] is a generalisation
of ordinary numbers to uncertain values by representing the
number as a fuzzy set. Such a fuzzy set is meant to be
human-interpretable, so that by definition, the fuzzy set that
represents a fuzzy number is restricted to be normal, convex
and uni-modal1. Defuzzification in this context is the process
of choosing a representative ordinary value, and is mostly
used for ranking the fuzzy numbers. Many support-based and
level-based defuzzification algorithms are developed for fuzzy
numbers, a couple of which will be reviewed in the this
section.

In this paper, the defuzzification of the output fuzzy sets in
rule-based systems is considered conceptually different from
the defuzzification of fuzzy numbers. This is not because of
the underlying algorithms (which is essentially the same, and
could be even interchangeable), but because of the defuzzifica-
tion purpose (representation-only versus valuation). Therefore
for clarity in this paper, the term “defuzzification” is used
for the context of fuzzy rule-based system only. For fuzzy
numbers, the process is called valuation. Because of having
common grounds for comparing defuzzification and valuation
in this paper, the scope is also limited to convex normal uni-
model fuzzy sets.

It is noticeable here that some known valuation methods
have been used for rule-based system (and vice-versa), though
being relatively rare. For example in [6], α-levels are used
for defuzzification when the explicit MFs are not known, but
α-cuts are. An approximated MF is then generated by piece-
wise linear functions derived from the known α-cuts; finally,
the approximated MF is defuzzified by known defuzzification
methods such as COG.

In the following sub-sections, the choices of two common
defuzzification and two common valuation methods will be
briefly reviewed.

2) The Chosen Defuzzification Methods: The majority of
defuzzification methods used for fuzzy rule-based systems
are support-based, i.e., based on different forms of averaging
the membership function (MF). Some known defuzzifica-
tion algorithms in this group are termed as COG, MOM/-
FOM/LOM (Mean/First/Last of Maxima), MOS/FOS/LOS
(Mean/First/Last of Support) and BADD (Basic Defuzzifi-
cation Distributions). There are many reviews, comparisons
and extensions over such methods in the literature (see for
example, [1]). In this paper, in order to limit the scope, COG
and MOM are focused, as they are arguably the most widely-
used defuzzification methods for fuzzy rule-based systems [7],
[8].

The Centre of Gravity (COG), also known as centroid, is
defined using the MF of a fuzzy set represented as µ(x). In
discrete model, where the x-axis is quantised as a collection
of xi’s, the COG is defined as:

COG =

∑
xiµ(xi)∑
µ(xi)

(1)

Mean/Middle of Maxima (MOM) is another widely-used
defuzzification method due to its calculation simplicity. MOM

1The uni-modality condition is lifted in some papers, such as in [5].

Fig. 1. An example of the calculated four different values by COG, MOM,
ALC and VAL algorithms for the case of a fuzzy set with triangular NF (not
an accurate scale

is simply defined as the mean of the x-values whose member-
ship degrees are maximum [1]. This maximum for normal
sets is 1. If the set has a single peak (i.e., a uni-modal set) the
MOM is equivalent to the corresponding x-value to the peak.

MOM = Mean(xi | µ(xi) = max) (2)

3) The Chosen Valuation Methods for Fuzzy Numbers:
Most of the valuation algorithms used for ranking fuzzy
numbers are level-based, i.e., based on alpha-cut representation
of fuzzy sets. An α-cut is simply a subset of a fuzzy set whose
membership grades are greater than or equal to α ∈ [0, 1] [9].

Aα = {xi | µ(xi) ≥ α};α ∈ [0, 1] (3)

A method of flat averaging of all midpoints of the alpha-
cuts, i.e., without weighting, is introduced by Yager in [10],
called ALC in [11] too. The ALC algorithm is also equivalent
to calculating the Expected Value (EV) of a fuzzy number as
introduced by Oussalah in [11] and Heilpern in [12].

ALC = Mean(Mid(xi) | xi ∈ Aα ; α ∈ [0, 1]) (4)

It is intuitive to consider the individual contributions of
each α-cut, in which the x values that appear in more α-
cuts should have a greater contribution in defuzzification than
the others. Based on this idea, the value of a fuzzy number is
defined by Delgado et al. in [5], based on using α-levels as
weighting factors in averaging the α-cut midpoints. The value
of a fuzzy number, by the following definition, is called VAL
in this paper.

V AL =

∑
αMid(xi ∈ Aα)∑

α
α ∈ [0, 1] (5)

ALC and VAL, as defined here, are two dominant valuation
methods in this group, and will be used later in this paper.
Similarly, the ideas of interval-valued defuzzification and the
mean of fuzzy numbers initially suggested by Dubois and
Prade [13] is another area of research for defuzzifying a fuzzy
number having a level-based approach.

An example of the calculated four different values by COG,
MOM, ALC and VAL algorithms for the case of a fuzzy set
with triangular MF is shown in Fig. 1



4) Pairwise Comparisons of Fuzzy Sets: In this paper, the
comparison between the chosen defuzzification and valuation
algorithms are carried out based on measuring their correla-
tions to a couple of known pairwise comparisons of fuzzy
sets (details in the next section). Therefore, they are formally
introduced here.

Measuring the similarity between two fuzzy sets has been
widely known in the literature [14]. One of the most common
similarity measures on fuzzy sets is the Jaccard’s Similarity
Index [15], an adaptation of the initial Jaccard’s coefficient
[16] for fuzzy sets. This index (called SI hereafter) assigns a
value between 0 (completely dissimilar sets) to 1 (completely
similar sets) to a pair of fuzzy sets. For two fuzzy sets A and
B, SI is defined as:

SI(A,B) =

∑
min(µA(xi), µB(xi))∑
max(µA(xi), µB(xi))

(6)

5) Directional Distance: Another group of pairwise opera-
tors between two fuzzy sets is measuring the distance between
them in the same unit as the x-axis of the MFs of the two
compared sets. Many such methods exist (e.g., [17]–[19]).
The focus of this paper is on measuring Directional Distance
(abbreviated here as DD) [20], which is able to measure the
distance between two fuzzy sets as a signed value (in two
directions). A positive DD indicates how much the second
set’s MF is on the right side of the first set’s, and the negative
DD shows that the second set is on the left side of the first. A
zero DD means the two sets are shaped around a single value
along the x-axis.

The definition of the DD between two FSs is based on the
distance between their α-cuts. According to [20], if the α-
cuts of two arbitrary FSs X and Y are defined as intervals
[µX ]α = [xα, xα] and [µY ]α = [yα, yα] respectively, their DD
is defined as:

DD(X,Y ) =

∑(
α.h([µX ]α, [µY ]α)

)∑
α

; α ∈ [0, 1] (7)

h([µX ]α, [µY ]α) =

{
xα − yα, if |xα − yα| > |xα − yα|
xα − yα, otherwise.

(8)
where h is a modified version of Hausdorff distance [19]
between two intervals.

In the next section, based on the above definitions, the
proposed method for comparing the picked defuzzification and
valuation methods is provided.

III. METHODOLOGY

In the following sub-sections, the proposed solution for
statistically comparing different diffuzification/valuation algo-
rithms are explained.

1) Comparison Algorithm: In order to evaluate the good-
ness of a particular defuzzification algorithm, one may mea-
sure its performance when utilised in a fuzzy logic system or
the other one may assess it against a set of defuzzification
axioms (e.g., [21]). Similarly for fuzzy number, there are

Fig. 2. The relation between the directional distance of two fuzzy sets vs.
the signed difference in their defuzzified values.

axioms developed for assessing the ranking performances
(e.g., in [22]).

For a cross-comparison between the algorithms in the two
subject areas (fuzzy arithmetic vs. rule-based systems), it is
arguable if the above axiomatic or performance assessment
methods are reasonable since the assessment settings are usu-
ally different. The alternative assessment can be a comparison
method relying on the appearance characteristics of the fuzzy
set’s MF independently from how the fuzzy set is used for
a specific purpose. The pairwise operators discussed in the
previous section have such potential, thus can be considered.

The general idea is to choose a defuzzification/valuation
method and a pairwise distance/similarity operator, and check
their statistical correlations when applied over a large number
of fuzzy set pairs. More precisely, the correlation is checked
between the change in the defuzzification/valuation result and
the distance/similarity outcome. It is assumed that for any two
fuzzy sets, the differences between their defuzzification/valu-
ation results should follow (i.e., be a monotonic function of)
the two sets’ similarity and/or distance.

For example, more similarity means less defuzzification
difference, so imagine that for two sets, their SI is measured
as 10%, the calculated COGs show 12% difference, and
the calculated VALs are 15% different. In this case, COG
has done it better since its change has better reflected the
similarity. If the DD is measured for the same sets, the winner
defuzzification method would be the one that keeps changing
more closely with the DD. An illustrative example is shown
in Fig. 2.

In other words, the theory is that if a defuzzification/-
valuation algorithm shows a closer link to the appearance
characteristics of its corresponding fuzzy set, it indicates a
better capture of the information embedded in the MF by that
method, thus making a better representative value out of the
set.

Based on the above idea, a statistical test is designed
for comparing between the picked defuzzification/valuation
algorithms (COG, MOM, ALC and VAL) based on assessing
how they are bound with the picked pairwise operators (SI and
DD). The assessment algorithm includes the following tasks:

• Generate a large number of randomised fuzzy sets. For
compatibility with fuzzy numbers, the generated sets are
normal and convex.



Fig. 3. A number of the sample generated random sets

• For each generated fuzzy set, compute its COG, MOM,
ALC and VAL.

• For each possible pair of the generated fuzzy sets, com-
pute their SI and DD. For fuzzy sets number i and j, these
are called SIij and DDij .

• For each of the above fuzzy set pairs, calculate the dif-
ferences between their COGs, MOMs, ALCs and VALs.
These are called ∆COGij , ∆MOMij , ∆ALCij and
∆V ALij .

• Over all the fuzzy set pairs (the ith and the jth set), cal-
culate statistical correlations between any of (∆COGij ,
∆MOMij , ∆ALCij , ∆V ALij) values and any of (SIij ,
DDij) values. The stronger the correlation, the better
the algorithm in respect to the corresponding pairwise
operator.

2) Generating Random Fuzzy Sets and pairing them: A
computer program is developed to generate 50 convex normal
sets. Having 50 sets generated, 1225 combinations are possible
for the required set pairs2, which are statistically sufficient for
this experiment.

For generating each set, the program chooses three random
numbers in an arbitrary range over the x-axis (here 1 to 100),
as being the left, mid and right points of the MF. The generated
set is supposed to be non-symmetric, therefore the mid point
is not actually in the middle of the left and the right points.
Then the MF randomly (but monotonically) grows from 0 to
1 between the left and the mid points, then falls randomly
towards 0 as it reaches to the right point. A number of the
sample generated random sets are shown in Fig. 3

3) Pairwise Calculations: The 50 fuzzy sets are considered
to have randomly distributed defuzzified values, similarities
and differences. Each of the 50 sets is defuzzified using the
4 discussed methods. Having discretized fuzzy sets (here in
100 levels of discretization over x- and y-axes), a computer
program is designed to calculate the necessary results as
explained previously. For each of the 1225 pairs, the pairwise
differences between the defuzzified values in each method are
calculated. Finally, the DD and SI are calculated for each pair
according to their definitions in (6) and (7).

4) Correlation Measurements: Two widely-known statisti-
cal correlation tests are considered: Pearson’s Bivariate Cor-
relation Coefficient [23] and Distance Correlation [24]. The

2No repetition or self-paired are allowed, thus (50 × 49)/2 = 1225.

first one returns a value between -1 to 1 indicating how linear
two variables follow each other’s changes, in which 1 means
a completely linear direct relation, 0 means no relation and -1
means a completely inverse linear relationship. The bivariate
correlation is defined as:

Correlation(X,Y ) =

∑n
i=0[(xi − x)(yi − y)]√∑n
i=1[(xi − x)2(yi − y)2]

; (9)

where X = {x1...xn} and Y = {y1...yn} are two sample sets
of n points with average values x and y.

For example in the case of measuring the correlation be-
tween In the ∆COGij and DDij among the 50 generated
fuzzy sets,

X = {∆COGij | i = 1...50, j = i+ 1 ...50} (10)

Y = {DDij | i = 1...50, j = i+ 1 ...50} (11)

The other similar method, Distance Correlation also delivers
the similar outcomes but it is not limited to determining linear
relationship, so that it can investigate a wider range of cases
where two variables follow each other’s changes. More details
on its calculation formula can be found in [24].

IV. EXPERIMENT RESULTS AND DISCUSSIONS

Fig. 4 and 5 illustrate the experiment results shown in scatter
graphs. The following observations are made from Figs 4-5:

• In regards to Fig. 4 (a,b), all 4 methods follow the DD but
in different levels of linearity and variance. VAL shows
the closest match with less perturbation, then ALC, then
COG and finally MOM.

• For Fig. 5 (a,b), an inverse following of the SI is observed
for all 4 methods, as expected, but again with different
levels of concentration and linearity. COG in this case
has performed better than the others, followed by ALC,
VAL and MOM.

• From Fig.4 (a,b), more variances in respect to DD are
observed for both defuzzification methods (COG and
MOM) than the so-called valuation methods (VAL and
ALC). This statistically show that the valuation methods
have captured more information from a fuzzy set’s MF
than the other group. For instance, the higher the variance,
the higher the chance of having two pairs of fuzzy sets,
in which their directional distance is almost the same,
but the difference between their defuzzified values is
relatively high. This fact is the case in the SI dependency
graph (Fig.5 (a,b)) only between COG and ALC.

• There is a concentrated trace of points along y-axis in Fig.
5 (a,b). This is the results of many set pairs having zero
similarities. It is noticeable that if two sets are disjoint
their similarity is zero according to SI definition. This
means that SI test has excluded a relatively high number
of samples disregarding the information embedded in the
wide range of differences between their defuzzified/valu-
ated outcomes. This observation gives more credit to the
results of DD-test than SI-test.

The statistical analysis of the results are shown in Tables II
and II. The following facts can be observed from the tables:



(a)

(b)

Fig. 4. The graphs show (a) the dependencies between two defuzzification
methods MOM and COG to Directional Distance; (b) the dependencies
between two fuzzy number valuation methods VAL and ALC to the same
Directional Distance.

• Both tables show some similar statistical facts. This
shows that the biravriate correlation and distance cor-
relation have measured almost the same correlation be-
haviour. Since the bivariate correlation measurement is
limited to linear relationships, this shows that the majority
of the discovered correlations are of linear type.

• The best method in accordance to DD correlation is VAL
and the worst is MOM. Both valuations methods have
outperformed the both defuzzification methods.

• With respect to SI, the stronger correlation is for COG
from the defuzzification group of methods. Note that in
this table 1 and -1 are both showing high correlations.
MOM is still the worst and the two other methods in
the valuation group remained at the middle. Unlike the
DD case, the difference between the best and the worst
performances is relatively large up to about 27%.

• Within the group of valuations, in respect to DD, VAL
has always outperformed ALC, though with very small
differences. In respect to SI, interestingly, VAL has out-
performed ALC.

• Within the defuzzification group, COG has always out-
performed MOM.

In summary, for ranking the picked algorithms out of the
shown graphs and tables, DD and SI tests have a slightly dif-

(a)

(b)

Fig. 5. The graphs show (a) the dependencies between two defuzzification
methods MOM and COG to the Jaccard’s Similarity Index; (b) the dependen-
cies between two fuzzy number valuation methods VAL and ALC to the same
Similarity Index. In both, the absolute value of the differences are considered
since they are being correlated to an unsigned similarity index.

ferent statistical outcomes, however DD measurement seems to
be more statistically credible. The results are mainly in favour
of the valuation algorithms than the defuzzification algorithms,
leading to rank the algorithms in the following order: (1) VAL;
(2) ALC; (3) COG; and (4) MOM.

TABLE I
THE CALCULATED BIVARIATE CORRELATIONS BETWEEN DIFFERENT

DEFUZZIFICATION/VALUATION METHODS, DIRECTIONAL DISTANCE AND
SIMILARITY INDEX.

Variable Bivar-Corr. to Direc-
tional Distance

Bivar-Corr. to Jaccard’s
Similarity Index

∆V AL 0.9962 (best) -0.74144 (-8.52%)
∆ALC 0.9953 (-0.10%) -0.78741 (-2.85%)
∆COG 0.9768 (-1.95%) -0.8105 (best)
∆MOM 0.9823 (-1.40%) -0.6195 (-23.56%)

TABLE II
THE CALCULATED DISTANCE CORRELATIONS BETWEEN DIFFERENT

DEFUZZIFICATION/VALUATION METHODS, DIRECTIONAL DISTANCE AND
SIMILARITY INDEX.

Method Dist-Corr. to Directional
Distance

Dist-Corr. to Jaccard’s
Similarity Index

∆V AL 0.9953 (best) 0.7514 (-12.17%)
∆ALC 0.9906 (-0.47%) 0.8149 (-4.74%)
∆COG 0.9693 (-2.61%) -0.8555 (best)
∆MOM 0.9823 (-2.09%) -0.6108 (-28.61%)



V. CONCLUSIONS AND FUTURE WORKS

This paper is a comparative study on the utilities of two
groups of algorithms in mapping a fuzzy set to a number:
Defuzzification (in the context of fuzzy rule-based systems)
and valuation (a term used here referring to such a mapping
in the context of fuzzy numbers and their rankings). Two
mostly used algorithms of the first group are COG and
MOM, along with two algorithms of the second groups being
fuzzy number value VAL and ALC. The analysis utilises two
pairwise fuzzy sets operations DD (Directional Distance) and
SI (Jaccard’s Similarity Index) in order to provide a common
testing platforms known in the two contexts. The analysis is
around a theory that the better algorithm more closely follow
the changes in the distance/similarity between any two sets
since this test indicates the amount of fuzzy set information
captured by the algorithm.

As such, an statistical test is designed to rank the al-
gorithms when their performances are tested over a large
number of arbitrary fuzzy sets pairs. Each method performance
is defined as the correlation strength between the changes
in the defuzzified/valuated results within a pair against the
directional distance and the similarity between the two sets.
50 randomly generated sets leading to 1225 possible pairs,
and two correlation measures (bivriate correlation coefficient
and distance correlation) were used. The results show that
is general, the VAL algorithm outperformed the other three
algorithms, followed by ALC, COG and MOM, respectively.

This research does not make recommendations on priori-
tising a particular method over the other just because it
outperformed in this statistical analysis, nor suggests a new
defuzzification method. Other factors such as computational
complexities and the application context are to be incorporated
for making decisions in selecting a particular defuzzification
method. However, this research, statistically suggests that
the main valuation methods developed for fuzzy numbers
have a greater potential of capturing the maximum possible
information from fuzzy sets.

Although some axiomatic measures have been developed
for evaluating defuzzification methods (e.g., [21], [22]), there
is no definite application-independent indicator to be used for
comparing the utilities of the defuzzification methods nor a
measure of capturing the information associated in a fuzzy set
by a such methods. Therefore, the contribution of this paper
in using SI and DD as means of such comparison shall be
considered as heuristic, and its results as indicative only.

The other practical outcome of this research is to show
the potential of sharing the defuzzification algorithms between
the communities of rule-based systems and fuzzy arithmetic.
As such, a main follow-up path after this research is to
test the applicability and utility of valuation algorithm in
fuzzy arithmetic (e.g., VAL) for fuzzy rule-based system (e.g.,
in a fuzzy controller) and assess its performance, computa-
tional complexities and other practical implications. Moreover,
adding some defuzzification methods for a more comprehen-
sive analysis, and also performing different types of fuzzy
number sampling are the other possible future works.
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