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Abstract—Precision agriculture employs IoT devices to smartly
monitoring plant vegetation and support food production. Preci-
sion agriculture is highly required to improve product quality
and better suit the requirements of the market. Among the
IoT devices, Unmanned Aerial Vehicles (UAVs), can be equipped
with many sensors that allow precise assessments of plant stress
by flying over the plots. Notwithstanding the great benefits
introduced, IoT devices may suffer from some issues. Many
devices provide data in different formats on the same task,
therefore they need solutions to integrate data and support a
more thorough crop monitoring. This paper introduces a multi-
tier architecture to deal with IoT-based intelligent monitoring,
as well as an implementation of the architecture through multi-
agent modeling of the IoT devices for precision agriculture. The
introduced model allows data acquisition from various sources
(i.e., IoT devices), an ontology-based integration of data provided
by the devices and a knowledge integration process to deal with
domain-specific applications.

Index Terms—Precision agriculture, IoT, UAV, Multi-Agent
Systems, Ontology

I. INTRODUCTION

The spread of IoT technologies provided benefits in many
distinct fields, from healthcare to business. In the agriculture
field, the use of smart sensors paved the way to precision
agriculture, which allows constant monitoring of plant growth
and crop quality. Precision agriculture provides a food sup-
ply chain that better suits the requirements of the market,
it improves process quality, reduces production times and
increases incomes. IoT devices help agriculturists to monitor
threats and damages to their plots; equipped with actuators,
they can also address the detected issues on time, such as
specific environmental conditions, or the spread of viruses,
which may have quick devastating effects on the crop. Among
the various IoT devices, mobile devices, and more specifically,
Unmanned Aerial Vehicles (UAVs) have been investigated to
collect information on plant stress, environmental conditions
[1]. UAVs are low-cost solutions; since they can be equipped
with various sensors and easily take plots from the above,
they are particularly suited to make precise assessments on
vegetation or even take specific actions on selected plants.
In UAV-driven path monitoring, recent studies [2] show how
stochastic models support path planning in a UAV swarm and
avoid collisions; in [3], a routing algorithm allows UAVs to
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avoid multi-obstacle areas in a plot. Geo-localization issues
are faced in [4] determining the UAV position and orientation
during its vision-based navigation or in [5] through data
muling from acoustic sensor networks.

Although the use of multiple IoT devices offers interesting
benefits, they may suffer from various issues that can compro-
mise their efficacy in precision agriculture. Issues are related to
data communication (i.e., network stability issues) [6], control
[7], acquisition and sharing of information [8]. Keeping a
stable network is fundamental to guarantee the collaboration
among the devices and quick replies to the human experts. The
solutions in the literature focus on improving network stability
in wide-range operations [6], swarm control [7], by building
Fuzzy Neural Network models; in [8], an agent-based model
allows UAV teams to build collective knowledge through
Fuzzy Cognitive Maps to support surveillance applications.
Vegetation monitoring and assessment are strictly based on
indices from spectral data or vegetation measures as well as
unsupervised classification techniques for fruit and plant detec-
tion, and vegetation monitoring. The approach proposed in [9],
for instance, applies spectral clustering to the collected images
to detect tomatoes. In [10], sunflower growth is monitored
through multi-temporal imaging.

Since IoT data come from heterogeneous sensors and
returned in different formats, the need for a homogeneous
data reading claims new and challenging methods for data
integration. In [11] a Markov-chain-based model is defined to
integrate data in a IoT ecosystem; another study [12] designs
an ontology-based architecture to support data integration and
sharing among enterprises. Data integration is also required
at agriculture domain level. Agriculture processes, indeed,
consist of multiple phases (i.e., product, techniques, production
processes), and knowledge-based solutions [13], [14] have
been investigated to address inter-phases data integration.
In knowledge-based approaches, ontologies map accurately
the precision agriculture domain [13]; Agri_Ont [14] is an
ontology coming from domain-specific ontologies, such as
IoT devices, precision agriculture, geo-location, and business
aspects. Similarly, in [15], the fusion of two ontologies, one
modeling food production domain, the other the agriculture
processes, provides a rich knowledge base for applications on



viticulture and winemaking.

Recent studies evidence the importance of unmanned mo-
bile devices in agriculture domain, but it is evident how a
cooperative use of them, enhanced by reasoning capabilities
represents the new frontiers for a smart precision agriculture
[1], [2]. The precise localization of sensing devices and the
sensor swarm control need distributed, cooperative approaches,
such as the multi-agent systems [16], that can support data
integration and, quick and proactive decision replies to the
environment solicitations, especially due to the agent-based
wrapping of the IoT devices. In [16] a multi-agent system
for UAV swarm accomplishes information retrieval and mon-
itoring in known environments affected by catastrophes. The
model proposed in this paper, instead, exploits the multi-agent
paradigm to support the whole process for plant monitoring,
including the data acquisition, data integration and high-level
comprehension to assist real-time monitoring.

This work presents a framework design to deal with IoT
device-based smart monitoring for precision agriculture. The
main contributions are described as follows.

o A multi-tier architecture design for IoT devices to deal
with monitoring of environments, including solutions
for data acquisition from devices, data integration from
heterogeneous sources on the same observed aspects,
and a contextualization process to deal with specific
applications.

« An agent-based modeling to manage the data acquisition
from sensing sources and IoT devices, their integration,
and contextualization.

o An implementation of the architecture for the precision
agriculture domain: agent-driven data collection from
sensors, data integration from plots and plants and finally,
application domain-compliant description by semantic
support, such as the ontologies, queries on the collected
knowledge and fuzzy rules.

II. A GENERAL MULTI-TIER IOT-BASED ARCHITECTURE
FOR INTELLIGENT MONITORING

The IoT-based systems are wide-spreading in the various
application domains, from the military mission and surveil-
lance to film-making. In a generic domain, a general-purpose
architecture design for IoT based systems where the data col-
lection and arrangement are compulsory activities to interpret
complex and dynamic environments, and undertake adequate
and responsive solutions, could be defined as sketched in
Figure 1. It is a multi-tier architecture for IoT-based monitor-
ing, composed of three main steps: the data acquisition from
environmental sensing (IoT) devices, the analysis, processing
and integration of the collected data; finally at the upper tier,
the context-dependent specialization, i.e., the contextualization
of the processed data with regard to the goals of the application
domain.

The logical architecture modeling of a precision agriculture
system is shown in Figure 1. Let us remark that the three-
tier modeling describes a representation of a generic IoT-
based system, identifying the main functionalities for the
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Fig. 1: A logical overview of the multi-tier architecture for
precision agriculture illustrates: IoT device data acquisition,
IoT data processing and integration, and data contextualization
for specific applications.

execution and data flow in a system, aimed at accomplishing
surveillance, monitoring and control tasks.

In details, in a precision agriculture system, the lower tier
encloses sensing technologies, mostly IoT devices, such as
fixed sensors and actuators placed in the plot area, palm UAVs,
ground vehicles and sensor-equipped medium-sized UAVs. IoT
devices are meant to work in concert: they are designed to
monitor the plots, generate warnings in case some plant stress
is detected and trigger actuators or humans, accordingly, to
take action. In this lower tier, the IoT devices collect data on
various areas. At the second tier, the data collected by the IoT
devices are integrated. In literature, there are many approaches
for data fusion and integration [11], [12]. For example, as in
the proposed architecture, data integration is accomplished by
defining an ontology for interpreting IoT data and sensing
technologies. At the last tier, the integrated data provides
a high-level description of tasks and features on the plots
inspected, such as weed presence, plant stress, irrigation status.
etc. A multi-domain ontology is used to define and collect
knowledge on various agriculture phases. This ontology is
specialized to describe specific tasks in some domain contexts.
Queries on the gathered knowledge enable actions for specific
precision agriculture applications (e.g., crop vegetation mon-
itoring, agro-analytics). Next sections focus on the presented



architecture, deepening the sketched tiers.

A. IoT devices and data

The architecture comprises several IoT devices, including
mobile and fixed sensors. Among them, there are medium-
sized UAVs equipped with various sensors, that fly over
various plots. Additional fixed sensors are installed on the
ground, and small-sized UAVs (e.g., palm drones) targeted at
monitoring small areas. The architecture is decentralized and
allows the communication among the devices through cloud
services.

IoT devices for precision agriculture fall into two main
categories:

o [oT devices at the plot level: these devices are generally
mobile aerial devices, such as UAVs, that fly over the
plots and take measurements related to the whole plot
to perform plot demarcation, evaluate ground conditions
and acquire more refined images than the ones retrieved
through satellites.

o 10T devices at the plant level: these devices may be
fixed sensors (e.g., barometers, gyroscopes, cameras) or
small-sized mobile devices (e.g., palm drones) devoted to
acquire data about plants.

The IoT devices are equipped with one or more distinct sensors
to capture data from the environment. At the same time, data
collected from these devices can be divided into four main
categories, listed as follows.

o Environmental data describes the climate and ground con-
ditions. They are acquired through scalar sensors, such
as barometers, magnetometers and satellites that return
values representing the wind pressure and direction, the
current weather and weather forecast.

e Proximity data estimate the proximity among devices,
and between the device and features (i.e., plots, plants);
if mounted on UAVs and UGVs, they monitor distance,
constantly. LIDARs, infrared and ultrasonic sensors, as-
sess feature proximity and perform feature detection.

e Video and image data taken in various temporal phases,
enable monitoring plant vegetation and crop evolution.

o Spectral data are the most significant data acquired,
because they allow to define vegetation indices'. These
indices reveal the presence and relative abundance of
pigments, water, and carbon as expressed in the solar-
reflected optical spectrum (400nm to 2500nm). The
analysis of object reflectance from the images at different
band ranges allows assessing significant parameter val-
ues (e.g., chlorophyll concentration, water presence) to
assess plant vigor and stress. The broadband and narrow-
band greenness are two types of vegetation indices that
have been taken into consideration. The former captures
spectral reflectance in the band range [600,690] nm to
describe foliage cover, chlorophyll concentration, canopy
area, and canopy architecture. The latter is much more
sensitive, considering spectral reflectance in the red edge
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of the spectrum (band range [690,740] nm). These in-
dices provide great support to precision agriculture al-
lowing identification, analysis and management of site-
specific spatio/temporal variations of the soil. Other veg-
etation indices taken into consideration are Light Use
Efficiency, Canopy Nitrogen, Dry or Senescent Carbon,
Leaf Pigments and Canopy Water Content. Analyses of
spectral images are often based on the spectral clustering
to generate clusters of pixels at different wavelengths.
The spectral clustering takes into account vicinity of
irregular form groups which provides more refined results
than classical clustering approaches. When the spectral
clustering converges, it provides detection of plot features
(e.g., fruit, ground, canopy).

B. IoT data processing and integration

This tier is in charge of data processing and integration
from various sources. Digital and analog values, retrieved from
scalar sensors represent measurements explaining a specific
feature (e.g., wind pressure, humidity rate, etc.). More en-
hanced sensor data such as spectral images instead, require
to be processed to extract meaningful data from them. To this
purpose, spectral clustering can be used to process spectral
images and capture objects of interest (e.g., canopy, ground,
fruit) through image segmentation. Then, vegetation indices
(see Section II-A) on the detected features assess plant stress,
water supply status and fruit vegetation.

As stated in Section II-A, the data come from different types
of sensors, in different formats. To exploit all the data for
monitoring tasks, a data integration is required. For instance,
humidity value assessed through a hygrometer and the Vogel-
mann Red Edge Index (VREI), describing water presence in
the same area, need to be integrated in a common format to
express plant vigor in that specific area. Data integration can be
achieved by using various methodologies, as demonstrated in
literature [11], [17], [18]. In [11] a Markov-chain-based model
is used to project raw data into a sequence of states to perform
multi-modal data integration computation over the states. In
[17] a multi-layered network is built to bridge agricultural
data collected, edge computing, data transmission and cloud
data, and exploits the deep reinforcement learning to support
quick decisions (i.e., determine the water supply required).
In [18], an intelligent fuzzy inference system is introduced to
deal with Variable Rate Irrigation (VRI). The system integrates
the knowledge on precision irrigation and zones to generate
maps aimed at controlling the central pivot of the irrigation
system and, accordingly, govern the pivot to guarantee an
appropriate irrigation for the zone. Other solutions to data
integration use the ontology modeling [12], defining concepts
and relations that describe the specific domain and, at the
same time, exploiting an existing ontology that provides usable
knowledge. The Semantic Sensor Network Ontology (briefly,
SSN) is indeed, a well-known ontology to describe sensors
and their measures. It uses in turn the GeoRSS ontology,
which models GPS data, to represent knowledge on the areas
monitored by the IoT devices. The ontological design allows



integrating the vegetation indices and the scalar values on
plot features (e.g., wind pressure) in the same area and the
objects detected through clustering in those areas. This way,
the ontology provides a complete description of IoT data
integration on plot features of the same area.

C. Domain-oriented context

The last tier of the architecture, namely Domain-oriented
context, employs context-based solutions to put the integrated
IoT data on areas and plot features in a domain, and supports
the accomplishment of specific precision agriculture applica-
tions, such as agro-analytics, plot real-time monitoring, crop
yield, etc., or specific activities, e.g., irrigation management,
seeding, weed management, etc.

Data, integrated at the lower level, need further processing
concerning the application context, in order to guarantee com-
mon interoperability among highly-varied data. For example,
in the irrigation process for growing buckwheat, the ground
humidity rate, provided by a hydrometer, and the vegetation
index Vogelmann Red Edge Index (VREI), assessed through
spectral cameras, need to be related and read in the context
of the specific application to fulfill (i.e., the assessment of
the possible plant water supply planning). Context-aware data
interpretation is often achieved, at a higher level, through
the use of well-defined semantic technologies for data (e.g.,
RDF, OWL, SPARQL and Linked Data) and ontologies (e.g.,
AGROVOC, Agricultural Ontology Service and AgOnt) [19],
[20]. In particular, the architecture uses AGROVOC, which
provides a vocabulary on precision agriculture to model knowl-
edge on domain concepts and the data collected. Since each
application may involve sub-domains or related domains of
precision agriculture, the AGROVOC ontology can not be ade-
quate to describe the reference application domain, completely.
Additional domain-specific ontologies [13]-[15] can be used
to extend precision agriculture concepts in several application
contexts (e.g., agriculture techniques, production evaluation,
food chain). In particular, in [13], ontology modeling allows
the classification of the information related to a specific
context and application. In [14], an ontology architecture
(AgriOnt) is defined to bridge various subdomains of precision
agriculture. In [15], an ontology network is defined over
preexisting ontologies for agricultural production and food
processing. To allow the architecture to support the decision
on application tasks, Fuzzy Logic has been explored [21].
Vegetation indices and sensor measurements are described by
fuzzy sets and related to the application through fuzzy rules.
Recalling the previous water supply case, a fuzzy rule allows
the detection of water supply required in terms of VREI and
hygrometer measurement (i.e., if VREI is low and hygroMeas
is low, then waterSupply is low). Fuzzy rule-based reasoning
provides support for making decision and solve the application
task.

III. A MULTI-AGENT MODELING OF THE ARCHITECTURE

The multi-tier architecture, presented in Section II is a high-
level representation of generic activities, that allows collecting
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Fig. 2: Multi-agent modeling of IoT devices: plant agents and
plot agents, wrap IoT devices placed in sub-areas of plots and
devices flying over the plot, respectively. An analyzer agent
support data analysis.

and processing data across the tiers to get a comprehensive do-
main description for further application-based processing. To
introduce this architecture applied to the precision agriculture
domain, the agent-based modeling is used to solve device het-
erogeneity, data interoperability and vehicle autonomy issues
encountered across the tiers. The multi-agent modeling allows
supporting data acquisition and action planning activities for
each fixed or mobile device in the environment; collecting
tier-based data and processing them to achieve an individual
or collective goal; interact to each other when the final goal
requires it. It achieves a distributed computing, where each
agent can autonomously acquire and process data that are then
shared and integrated.

The introduced agent-based model defines specific agents
in correspondence with the types of devices in the precision
agriculture domain. Each agent achieves a wrapping on a
specific device, through an interface to interact with the device,
exploits its features and services, and monitors the device in
action. Three different types of agents are designed in the
modeling, devoted to accomplishing different tasks:

« Plot agent: this agent wraps a medium-sized UAV that is
assigned with the task of collecting data on entire plots
from considerable heights.

« Plant agent: this agent is associated with a small-sized
drone, such as a little ground robot or a palm drone
that has the task to collect data on plants at very close
distances from the subject.

« Analyzer agent: this agent occupies the highest tier of the
architecture. It interacts with the agents of the lower tiers
to acquire information about the data collected and stored
in the cloud. Then, it can start the appropriate processes
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for data analysis and processing.

The multi-agent modeling is sketched in Figure 2, that shows
the description of the different types of agents, in correspon-
dence with the devices at the different architecture tiers. The
plot and plant agents monitor the environment; they provide a
multi-level view on the crop to serve various tasks. The plot
agent collects global views on the demarcated plot and returns
a digest description of the plot to support ground condition
analysis. The plant agent provides local views on plants:
the analysis of plant stress, pesticide handling, water supply
handling, etc. The analyzer, at upper tiers, starts analysis and
processing activities to produce a complete, comprehensive
view on the plots inspected.

A. Agent interaction

The data acquisition phase (lower tier in Figure 1) is
described in Figure 3a. The data collection phase may have
several collection turns. In a turn, the plot agents visit various
plots and collect data from each of them; in the meanwhile,
the plant agents collect data from local areas inside a plot. In
detail, each plant agent acquires data from a specific small area
which it has been assigned with. To perform data acquisition,
the plant agent uses the sensors mounted on its wrapped device
and also it queries fixed sensors, placed in the recognition area
to get local data. In the meantime, the plot agents, that also
wrap mobile devices, move following a prefixed path; they can
stay in hovering to acquire data through their sensors. These
agents indeed collect data captured by drones with embedded
cameras, such as videos and spectral images.

Once the plant agents completed a data collection turn (see

Figure 3b), they share collected data with plot agents, at the
second architecture tier (IoT data processing and integration).
The plot agents process videos or spectral images (see Sec-
tion II-B) to calculate vegetation indices and detect features
through image classification. They embed techniques such as
clustering and Machine Learning to get a preliminary process
of data. Anyway, both agents share the data collected and
processed them by a cloud service.
The analyzer agent interacts with the agents at the lower tier; it
is in charge of starting data analysis and processing activities,
through cloud computing (see Figure 3b). Data gathered in
a turn, include the sensor data about the areas (the plant
agent data), as well as the whole plot (the plot agent data)
over time, and the GPS data about the area or plot. At this
stage, the analyzer acquires processed data from cloud; these
data are semantically described by known and ad-hoc defined
ontologies, in order to define data from sensors (e.g., by means
of SSN Ontology), area position (e.g., GeoRSS), to get a
synthetic view on the same areas and plot coming from distinct
devices.

The last architecture tier (Domain-oriented context) con-
cerns an ontology-based contextualization on domain appli-
cations. To perform this task, additional, high-level ontolo-
gies modeling the domain of interest are introduced. Then,
according to the type of devices, application goal, time of
measurement, position and identity of the monitored crop, the

analyzer agent works with the domain ontologies to associate a
semantics to the integrated data. At this tier, the achieved goals
are domain-oriented, such as the analysis of the vegetation
phases, plant stress and plot condition to serve the application.
The analyzer agent, acting as the ground station, “interprets”
data from cloud computing to alert human experts or plant and
plot agents to make a decision/action. Actions are assigned
to agents according to the type of device they wrapped, for
instance, UAVs are in charge of spraying and irrigation, while
ground vehicles perform seeding and weed management.

The three types of agents, along with their methods and
functionalities, are depicted in Figure 4 as a UML class
diagram. The agent classes include attributes and methods im-
plementing the agent tasks. The attributes are device features
and data, such as Schedule: double[] that lists the positions
(x — y coordinates) of the areas to monitor, committed to a
plot agent. Methods implement specific functions, such as the
method askForVals(dev, type) that the plant agent calls to get
data of specified type (fype) from nearby fixed sensors (dev)
in the same area.

Agent

IdAgent: Integer
Status: String

getld()
getStatus()

Plant agents 1,1 1,1 Plot agents

DeviceType: String
Area: double[4] 0.*
AreaPos: double[2] -

acquireData(type)
process(type, val)
getDev(pos, r)
askForVals(dev, type) '
getLocalArea() k

DeviceType: String
0.. Schedule: double[0..*]

jagabzeiancht acquireData(type,pos)

process(type, val, meth)
getSchedule()

'| getPlotArea()
goToNextPlot(Schedule)

DeviceType: String

X dataSem(deyv, pos, t)

.| integration(dev, pos, t)
context(id, dom, t, pos)
setAction(dev, type, pos)
alert(dev, act)

Fig. 4: UML class diagram of the agent model.

IV. ONTOLOGY MODEL

Ontologies allow enriching semantically several heteroge-
neous data from different sensors, devices, using different
technologies and formats. They accomplish the loT data pro-
cessing and integration (middle tier in Figure 1) and Domain-
oriented context (upper tier in Figure 1). SSN Ontology has
been widely used to represent knowledge on sensors and
their measurements. This ontology supports the fusion of data
from heterogeneous sensors. Our approach employs SSN to
represent each IoT device, including UAVs, UGVs, barom-
eters, spectral images, etc., in the environment along with
the data they collected. Positions about the IoT devices and
the monitored areas are defined by GeoRSS ontology which
models geo-location information by representing coordinates
of geometrical points and areas.

The integration of the two ontologies SSN and GeoRSS
provides a semantically-enhanced description of data collected
by the agents. The ontology population is indeed composed of
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instances of IoT device agents, along with their collected data
and GPS data of the plot area, where the agents collected the
data.

At the Domain-oriented context tier, expert-designed do-
main ontologies are taken into consideration. AGROVOC
provides a general dictionary of agriculture concepts that helps
to provide a semantics to the data. Therefore, the integration
of AGROVOC with SSN and GeoRSS allows us to describe
and relate the vegetation indices and sensor scalar values
with high-level domain concepts. Additional ontologies can be
used along with SSN, GeoRSS, and AGROVOC ontologies to
include further specific concepts. For example, the agriculture
domain ontology Agriculture Ontology (AO) [13] models
knowledge on several aspects (object of labor, means of labor,
production process). This ontology integration provides a high-
level knowledge description of the data (vegetation indices,
sensor values), specific activities carried out on the application
domains (e.g., tomato crop yield).

Expert systems acquire knowledge from human experts and
allow computers to use it for accomplishing complex decision-
making tasks. Those systems may use fuzzy logic that allows
them to behave and express like humans do. In precision
agriculture, fuzzy-based expert systems give the chance to
answer to relevant questions, as well as explain the reasoning
process behind decisions, to interact with end users (e.g.,
farmers) by using a language that can be understood by them
(i.e., the natural language). In our approach, the collected
knowledge base supported by the ontological modeling can be
enriched by fuzzy rules to detect the plant vegetation status
(see Section II-C), to support decision in the management of
simple activities (i.e., seeding, irrigation management, etc.)
and complex applications (e.g., crop yield assessment).

V. AN ILLUSTRATIVE CASE STUDY

Let us introduce a simple case study in the potato crop
vegetation monitoring, showing the agent-based interaction
for the detection of an irrigation issue (e.g., mal-distribution
of water). A potato field map with sensors and agents in
action is shown in Figure 5 as two consecutive screenshots.
The simulation has been carried out by using CupCarbon?, a

Zhttp://cupcarbon.com/

simulator for IoT and sensing environments. The red points
on the map, in the figure, are the devices wrapped by the
plant agents. The green point is a big-sized drone wrapped
by a plot agent that flies over several fields. The red triangle
on the right of the figures is the analyzer agent in charge
of the higher-level tiers. The white lines among the agents
represent the communication among them. A snapshot of the
data acquisition and processing phase is shown in Figure 5-a,
this phase occurs in the lower tiers of the architecture, where
the plant agents collect data from sensors in the assigned area.
The plot agent moves along its cross-plot path, shown by the
dashed red line, and takes spectral images of the visited plots.
The data acquired by the plot and plant agents are stored on a
cloud and then processed. In details, the plot agent gets values
of the vegetation indices on the various plots, for example, in
the figure, the yellow circle on the right represents that data
in that sensing radius have been detected and collected; while
the plant agents get analog sensor data, such as the ground
humidity values (shown by the yellow circle on the left).
Then, the analyzer agent, solicited by the agents, puts data
in an ontology-compliant format (JSON-LD) to easily analyze
and process the data. Figure 5-a shows various data, including
the vegetation index NDVI, the soil salinity, soil temperature
and the weather, about an area provided by the plot and plant
agents. Due to large amount of data collected on each plot, in
each area, over the time, cloud computing is the strategy to
store and process environmental information. The analyzer is
able to analyze and interpret the results from cloud process
and generate reports on the overall system. Let us remark
that data are semantically described by domain ontology,
supported by fuzzy rule-based inference that helps analyzer to
interpret results. Thus, vegetation indices and humidity values,
assessed by the agents on the various plot areas, enrich the
potato cultivation domain ontology and support new semantic
deductions.

Data interpretation is shown in Figure 5-b: the analyzer
processes the sensor data by using expert-defined fuzzy rules.
Linguistic variables are associated with the data, for instance,
the soil temperature (¢) is described by three linguistic vari-
ables, defined by three fuzzy sets, shown in Figure 6. Then
the analyzer detects an irrigation deficit, because the following
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rule has been triggered: IF ndvi is low AND weather is sunny
AND soilTemperature is high AND SoilSalinity is low THEN
waterSupply is insufficient. The rule captures an insufficient
water supply due to various aspects, including vegetation
(NDVI index), salinity, temperature, etc. At this point, the
analyzer sends a warning to the other agents and humans on
the current threat, suggesting possible actions to be taken.

VI. CONCLUSION

The paper introduced a multi-agent model to map a generic
multi-tier architecture in the precision agriculture. In details,
the contribution of the approach is manifold, listed as follows:

[1]

[2]

[3]

A multi-tier architecture for intelligent monitoring.
Three architecture tiers are designed as reusable tem-
plates to deal with (a) IoT data acquisition, (b) IoT
data processing and integration and (c) a domain-oriented
contextualization.

A multi-agent implementation of the architecture. A
multi-agent-based interface supports the three architecture
tiers: data collection through specialized agents, data in-
tegration and contextualization through an analyzer agent
to alert humans if some issues occur.

Ontology-based IoT data integration. The integration
of several ontologies on sensors and GPS data on plots
and areas allows an improved knowledge on the crop,
by combining a global view (plot agent view) and a
local view (plant agent view) on the plot to better serve
different tasks (e.g., irrigation, weed management).
Domain-oriented context to support various appli-
cations. Multi-domain ontologies contextualize data to
support their interpretation in a specific domain (e.g.,
tomato monitoring, winemaking, etc.). The use of various
domain ontologies allows to support various precision
agriculture applications.
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