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Abstract—In this paper we propose methods that can help the
decision-makers to find a compromise between willingness to do
and ability to do by introducing the difficulty considerations in
the multiple criteria decision analysis problems. Two problems
are considered: ranking alternatives and improving existing
solution. Usually, in the classical approaches of multiple criteria
decision analysis, only the degree of satisfaction is considered
to compare alternatives. However, sometimes a good alternative
is difficult to implement by a decision-maker even if he spends
necessary cost for it. First we give the definition of the concept of
difficulty function, then we show how to introduce it in decision
problems using operators based on fuzzy measures. This allows us
to consider interactions between criteria under two aspects: 1) the
overall satisfaction resulting from the simultaneous satisfaction
or not of certain criteria; 2) the overall difficulty resulting from
the difficulty or not of satisfying certain criteria simultaneously.
After that, we present two examples of the difficulty function
assessment in the case of a non-linear model. Finally, we propose
an illustration concerning the problem of managing the students
effort when improving their scores on a set of subjects. This
illustration focus on the extension of the concept of worth index
which quantifies the gain of improvement related to a subset
of objectives when it is difficult to improve all the objectives
simultaneously.

Index Terms—multiple criteria decision analysis, fuzzy mea-
sure, Choquet integral, preference modelling, difficulty modelling.

I. INTRODUCTION

The aim of Multiple Criteria Decision Analysis (MCDA)
methods is to facilitate to the decision-maker (DM) the difficult
task of comparing a set of alternatives when several point of
view (criteria) should be tacking into account. In this work
we focus on the MCDA methods derived from Multi-Attribute
Value Theory (MAVT) that are based on a scoring procedure
using a value function representing the DM preferences.

More precisely, let us consider a set of alternatives A =
{a1, a2, . . . , am} and a set of attributes N . For each i ∈ N ,
the ith attribute measures the extend to which an objective
is satisfied and takes its values in a space Xi. Each alter-
native in A is associated with the vector of its evaluation
on the attributes of N . To simplify notations, we consider
A ⊆ X =

∏
i∈N

Xi. The DM has preferences over elements of

X but generally it is difficult to express them. Let us consider
that (X,�) represents the preferences of the DM over X
where � represents a binary relation such that for x, y ∈ X ,
x � y means that the DM prefers x to y. The aim of MAVT
[1] is to find a value function v : X → R+ that represents
these preferences such that:

∀x, y ∈ X, x � y ⇔ v(x) ≥ v(y). (1)

When the binary relation � is a weak order and respects the
weak preference independence of the attributes [2], the authors
of [3] state that:

∀x ∈ X, v(x) = F (v1(x1), ..., vn(xn)) (2)

where F : Rn → R increases in all its arguments and
vi : Xi → R+ is a value function that represents the
DM’s preferences on attribute i, i ∈ N . The weak preference
independence assumption simplifies the assessment of v by
assessing vi for a single attribute independently (the other
attributes are fixed at arbitrarily selected values) [2]. An
interesting candidate for the operator F is the Choquet integral
[4] related to a fuzzy measure [5] that allows modelling
interactions between attributes [6] [7] and is a generalisation of
numerous well-known operators such as the weighted average
operator, the ordered weighted average, etc.

When vi, i ∈ N and F are known, one can determine a
value v(a) for each alternative a ∈ A. Then, we can rank the
alternatives in A as follows:

v(aσ(1)) ≤ v(aσ(2)) ≤ . . . ≤ v(aσ(m))

aσ(1) � aσ(2) � . . . � aσ(m)

where σ is a permutation over the set {1, 2, . . . ,m}.
The value v(a) quantifies the extend to which the alternative

a satisfies all the objectives of the DM. When a has a higher
value v(a) than another alternative b this does not signify in all
situations that a is more attractive for the DM than b. Indeed,
for example, if the implementation of the solution a requires
to move from the actual solution a0 to a and this move is
economically or technically more difficult than the move from
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a0 to b, b could then be more attractive for the DM. Conse-
quently, we think that the pair constitutes by the satisfaction
of an alternative and its difficulty of implementation should
be simultaneously taken into account to rank the alternatives
of A.

While the economic difficulty analysis decides whether or
not (”go” or ”no go” decision), the project objectives can
be achieved in the given time given the costs constraint, the
analysis of technical difficulty is less well defined. It tends to
prove that a solution can be developed taking into account
the available technology and the resources required. The
authors of [8], distinguish several meanings of the technical
difficulty analysis: the analysis of the acceptable or unac-
ceptable consequences of alternatives, the evaluation of the
viability of a solution under boundary conditions, the selection
among creative ideas of solutions satisfying the operational
conditions. In this paper, the meaning of difficulty is close to
latest meaning related to operational constraints. The difficulty
analysis considered in the paper concerns the quantification
of the extend to which it is difficult to move from the actual
solution a0 to an alternative a ∈ A. Few works address the
problem of ranking alternatives in a multiple criteria decision
analysis problems while integrating into the decision model
difficulty considerations. For example, the authors [9] consider
the difficulty to move between each pair of alternatives in A
which requires a large amount of information that may be
unavailable.

A more general problem is when the set of alternative
A is infinite. This is a multi-objective optimisation problem
that consists in finding the optimal improvement of a0, max-
imizing v, while respecting the difficulty constraints. Some
works dealing with this problem try to determine which sub-
objectives to improve first in order to guarantee the maximum
gain [10] [11] [12] [13] [14] [15]. In this works the difficulty
considered is related either to the cost of improvement or
probability/possibility of realisation of such an improvement.

In this paper we propose to introduce the assessment of the
alternatives’ difficulty in the previous MCDA problems: the
problem of ranking alternatives and the problem of improving
an actual solution. More, precisely, we propose to represent the
difficulty of implementing an alternative using a real function
that quantifies the difficulty to move from the actual solution
to it. Then we show how to build such a function based on a
fuzzy measure.

The paper is organised as follows. In the second section we
introduce the difficulty function. Then in the third section we
introduce the difficulty function in the ranking problem and in
the fourth section we introduce it in the improvement problem.
In section five we give an illustration of the proposed approach
concerning the problem of improving the results of a student.

II. DIFFICULTY FUNCTION

A. Introductory example

To explain the notion of difficulty introduced in this paper,
let us start with a simple example concerning a candidate
student who wants to improve his chances of being admitted

in a prestigious secondary school or university. The student’s
marks in the first half of the year are presented in Tab. I.
The student knows that he should obtain an average greater

TABLE I
STUDENT’S MARKS

Subject Mathematics Physics literature
test score xi 8 10 12

linear model coefficient ωi 3/8 3/8 2/8

or equal to 12, i.e.
3∑
i=1

ωi xi ≥ 12, in order to be accepted

by his preferred school. Indeed, his preferred school uses a
linear model to evaluate the students. Knowing that, what are
the subjects’ scores that the student must improve to reach this
total? To answer the question we need to know the capabilities
of the student to improve his mark in each course. If we know
that the student can improve his score in physics until 15, he
can improve his score in literature until 20 and whatever he
does he can not obtain more than 12 in mathematics, then the
strategy of the student is to undertake actions that focus on
the improvement of the score on physics and literature instead
of insisting to catch up in mathematics. Note that we treat the
courses separately because of the linear model used by the
school, i.e. no interactions are considered.

B. Single objective difficulty

Let us consider a set of alternatives A included in a space
X . Let also consider a starting point x0 ∈ X . In the same
way as for the preference binary relation �, we introduce the
binary relation Ex0

where for x, y ∈ A:

x Ex0
y means that x is more difficult to implement than y

starting from x0.

If Ex0
is a weak order over X , we can represent it using

a real function, called in this paper difficulty function, dx0
:

X → [0, 1] such that:

x Ex0
y iff dx0

(x) ≥ dx0
(y) (3)

Fig. 1 gives an example of a possible difficulty function that
could correspond to the previous example of student candidate.
The function shows that the student could obtain easily a score
in mathematics which is below 8 = x0; the difficulty increase
when he tries to obtain a score higher than 8 until 12; a score
above 12 is completely infeasible for him.

Note that the higher is the degree of difficulty of an
alternative the lower is the alternative attractive for the DM.

C. Multi-objective difficulty

Let us now consider the case of n objectives measured by
n attributes with N = {1, . . . , n}. For each i ∈ N , the ith

attribute takes its values in a space Xi and we denote X =∏
i∈N

Xi. Let us consider a vector start x0 = (x01, . . . , x
0
n) ∈ X .

Let us consider that (X,Ex0) represents the difficulty relation
over X for the DM. We can state the same equation as (1) to
define the difficulty function in the case of multi-objective
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Fig. 1. Example of a difficulty function.

decision problem. Indeed, the aim is to find a difficulty
function dx0 : X → [0, 1] that represents the difficulty of
implementing alternatives in X starting from x0 such that:

∀x, y ∈ X, x Ex0 y ⇔ dx0(x) ≥ dx0(y). (4)

When the binary relation Ex0 is a weak order and respects
the weak difficulty independence of the attributes, dx0 can be
stated as follows:

∀x ∈ X, dx0(x) = G(d01(x1), . . . , d
0
n(xn)) (5)

where G : Rn → R increases in all its arguments and
d0i : Xi → [0, 1] is the difficulty function related to attribute
i starting from x0i ∈ Xi, ∀i ∈ N . The weak difficulty
independence assumption can be stated in the same way as
weak preference independence and it simplifies the assessment
of dx0 by assessing d0i for a single attribute independently (the
other attributes are fixed at arbitrarily selected values). Here
also we can consider the Choquet integral as a candidate for
the operator G.

Finally, under the previous hypothesis, to determine dx0 one
has just to determine d0i , i ∈ N as in subsection II-B and
determine the operator G. In section IV, we give two methods
to determine dx0 .

III. INTRODUCING THE DIFFICULTY FUNCTION IN MCDA
PROBLEMS

Let us consider a set of attributes N . For each i ∈ N , the
ith attribute takes its values in a space Xi and we denote X =∏
i∈N

Xi. Let also consider a starting vector x0. Furthermore,

we consider that it exists two functions v : X → R+ and dx0 :
X → R+ verifying (1) and (4). In this section we consider
that v and dx0 take their values in the interval [0, 1].

A. Ranking alternatives

Let us consider a set of alternatives A = {a1, a2, . . . , am}
such that A ⊆ X . If one wants to rank the alternatives of A
regarding the two objectives v and dx0 , we are then faced to
a multi-objective problem where v has to be maximized and
dx0 has to be minimized. The interesting alternatives for the
DM are those belonging to the Pareto optimal set P∗ such
that:

P∗ = {a ∈ A : @b ∈ A such that b dominate a} (6)

where b dominate a means that v(b) ≥ v(a) and dx0(b) ≤
dx0(a) and at least one of the two inequalities is strict.
Obviously, alternatives that reach a high degree of satisfaction
require a high degree of difficulty. They are, perhaps, not the
best alternatives but they will be in the Pareto optimal set since
they are the best related to the first objective.

B. Improving existing solution

The difficulty function can be also introduced in the im-
provement problems. In particular, we consider the problem of
determining the subset of attributes/objectives that one could
focus the improvement on, to guarantee a minimal effort for
the overall improvement to the greatest extent possible. For
this aim works in [11] [10] [12] propose to associate to any
coalition of attributes an index named ”worth index” that
quantifies for any alternative, the average of all the possible
expected improvements starting from a fixed point. More
precisely, let consider a value function v as in (2): v(x) =
F (v1(x1), ..., vn(xn)), ∀x ∈ X where vi : Xi → [0, 1]. The
worth index for a subset of attributes I ⊆ N , F is considered
known, starting from x0 denoted by wF (x0, I) is defined by:

wF (x
0, I) =

1∫
0

[F ((1− τ)v0I + τ1I , v
0
N\I)− F (v

0)]

c(v0, (1− τ)v0I + τ1I , v0N\I)
dτ

(7)
where:
• the vector v0 = (v01 , . . . , v

0
n) denotes the vector of partial

value functions of the vector x0: v0i = vi(x
0
i ), ∀i ∈ N .

• for all I ⊆ N , 1I ∈ [0, 1]|I| is a vector with all
components are 1.

• for two vectors a, b ∈ [0, 1]n, (aI , bN\I) ∈ [0, 1]n denotes
the vector with the components of a on attributes in I ,
and the components of b on the other attributes.

• the quantity
1∫
0

[F ((1 − τ)v0I + τ1I , v
0
N\I) − F (v0)] dτ

gives the mean value of the gain [F ((1 − τ)v0I +
τ1I , v

0
N\I)−F (v

0)] only for improvement vectors on the
segment from the current vector values v0I (for τ = 0) to
the best possible improvement in I , i.e. 1I (for τ = 1).

• c(v0, (1 − τ)v0I + τ1I , v
0
N\I) is the cost required for

going from vector v0 to vx
0,τ,I which correspond to the

cost required for going from alternative x0 to alternative
(1 − τ)v0I + τ1I , v

0
N\I . In [12] this cost is considered

as not necessary related to monetary considerations, but
related to factors they might actually be correlated with



risk appraisal, temporal requirements, resources availabil-
ity, etc. This definition is close to the notion of difficulty
introduced in this paper but modelled differently.

When replacing the cost function by the difficulty function,
we obtain:

wv(x
0, I) =

1∫
0

[F ((1− τ)v0I + τ1I , v
0
N\I)− F (v

0)]

dx0(v0, (1− τ)v0I + τ1I , v0N\I)
dτ

(8)
The worth index wv(x

0, I) in (8) is a weighted mean of
improvements on attributes of I starting from x0. To each
improvement [F ((1−τ)v0I+τ1I , v0N\I)−F (v

0)] is associated
a weight 1

dx0 (v
0,(1−τ)v0I+τ1I ,v0N\I)

.

The easy improvement will have a high weight then they
will contribute with a large gain.

IV. ASSESSING DIFFICULTY FUNCTION

Several techniques could be used to assess the difficulty
function in the same way as for the value function in the multi-
attribute value theory case [1] for additive and multiplicative
models. In this section, we present two examples for the
case of non-additive model through an aggregation procedure
using Choquet integral. The assessment in the first example
consists in aggregating partial difficulty functions assuming
their existence. Thus, only the fuzzy measure has to be iden-
tified. In the second example, we present the disaggregation
procedure applied to a non-linear model. In such case, both
the partial difficulty functions and the fuzzy measure have to
be identified.

In the following we recall the definitions of a fuzzy measure
and the Choquet integral.

A fuzzy measure [17] µ over N is a set function from 2N

to [0, 1] such that:

1) boundary conditions: µ(∅) = 0 and µ(N) = 1,
2) monotonicity conditions:

∀K,T ⊆ N, K ⊆ T =⇒ µ(K) ≤ µ(T )

Fuzzy measures are necessary to define fuzzy integrals. The
most known fuzzy integrals are Choquet integral and Sugeno
integral [18].

The discrete Choquet integral of an alternative y =
(y1, ..., yn) ∈ R+n w.r.t a capacity µ is defined as follows:

Cµ(y) =

n∑
i=1

(yσ(i) − yσ(i−1))µ({σ(i), σ(i+ 1), ..., σ(n)})

(9)
where 0 = yσ(0) ≤ yσ(1) ≤ yσ(2) ≤ ... ≤ yσ(n) (σ is a
permutation over N ).

In the case of difficulty function (9) becomes as follows:

∀x ∈ X, dx0(x) = Cµ(d
0
1(x1), . . . , d

0
n(xn))

A. Direct assessment of a fuzzy measure

Let us consider the introductory example of subsection II-A
where a student has the scores x0i obtained in a first test (see
Table II). Suppose that the student should improve his scores
to obtain the scores xi, the difficulty values associated are
presented in Table II.

TABLE II
STUDENT’S MARKS

Course Mathematics Physics literature
(m) (p) (l)

test score x0i 8 10 12
score to obtain xi 12 14 18
difficulty value d0i 0.9 0.6 0.2

linear model 3/8 3/8 2/8
coefficients ωi

Suppose that the student wants to use (5) to assess the

difficulty to obtain the score
3∑
i=1

ωi xi = 12 by improving

his first score from x0 = (8, 10, 12) to x = (12, 14, 18) in the
second test. Considering a Choquet integral for G in (5), we
get:

dx0(x) = Cµd(d
0
1(x1), . . . , d

0
n(xn))

where µd is a fuzzy measure over {m, p, l}.
Suppose that the student tells us that: (r1) it is somewhat

easy for him to make an effort that could improve his score in
literature, the effort becomes more difficult when it concerns
mathematics or physics; (r2) the difficulty change slightly
when he has to work only a scientific subject compared to
when he has to work literature and a scientific subject and;
(r3) the effort is more difficult when he has to work both
scientific subjects than only one. From this information, one
can deduce the following constraints concerning µd:

r1 : µd({m})� µd({l})

r1 : µd({p})� µd({l})

r2 : µd({m, l}) ∼ µd({m})

r2 : µd({p, l}) ∼ µd({p})

r3 : µd({m, p})� µd({m})

r3 : µd({m, p})� µd({p})

The following example of µd (see TABLE III) satisfies the
constraints r1, r2 and r3.

TABLE III
FUZZY MEASURE µd

∅ {m} {p} {l}
µd 0 5/8 5/8 1/8

{m, p} {m, l} {p, l} {m, p, l}
µd 7.5/8 5.5/8 5.5/8 1

Thus, one can determine the difficulty to obtain the scores
(12, 14, 18) from the scores (8, 10, 12): dx0(12, 14, 18) = 6.1

8 .



The fact that the student decides to make the greatest improve-
ment in literature makes the global improvement feasible but
requiring a high effort.

B. Disaggregation procedure

A disaggregation procedure [19] is a procedure which is
close to techniques used in machine learning. It assumes a
model for the operator to determine, e.g. weighted average,
Choquet integral, and then based on information provided by
the DM it tries to identify the parameters of the model fitting
with this information.

We consider a disaggregation procedure based on MAC-
BETH procedure of questioning [16] and its extension to non-
additive model [4]. An important issue when aggregating value
from several attributes using Choquet integral is to ensure
commensurateness. For this aim, in the MACBETH procedure
it is assumed that the DM is able to identify for each attribute
i two reference levels:
• the reference level 1di in Xi considered as totally difficult

to implement starting from x0, even if more difficult
elements could exist: di(1di ) = 1.

• the reference level 0di in Xi considered as totally easy to
implement starting from x0, even if more easier elements
could exist: di(0di ) = 0.

Note that the exponent d in the notations 1di and 0di is
used to make distinction between difficulty and satisfaction.
If necessary, in case of satisfaction the notations are 1vi and
0vi .

Let us consider a set A of alternatives. Each alternative
a ∈ A has n partial scores on n attributes. To determine dx0(a)
as in (5), one need to determine µd and d0i (ai), i ∈ N .

To make as easier as possible the comparisons, the DM
could be asked to compare the difficulties of close alter-
natives. For instance, on one hand, to obtain µd, the DM
compares alternatives (1dI ,0

d
Ic) to (1dJ ,0

d
Jc), for I, J ⊂ N , i.e.

µd(I) = Cµd(1
d
I ,0

d
Ic). On the other hand, to obtain d0i (ai),

the DM compares alternatives (1d1, ...,1
d
i−1, ai,1

d
i+1, ...,1

d
n) to

(1d1, ...,1
d
i−1, bi,1

d
i+1, ...,1

d
n) for i ∈ N , a, b ∈ A. Note that to

facilitate comparisons, several attributes are fixed to the same
values in both comparisons.

From these comparisons two linear programs are obtained
as in MACBETH procedure where the decision variables are
the parameters to determine.

Note that in the case where a human decision-maker pro-
vides these preferences, one has to consider small numbers
of criteria and alternatives. More then 10 criteria requires
comparing at least 55 examples, i.e., alternatives, to expect
capturing interactions between criteria.

V. CASE STUDY

Let us consider an illustrative example where two enti-
ties play two different roles. On the one hand, the role of
candidates is played by different student profiles aiming to
integrate a high school. On the other hand, the role of DM is
played by two heads of two different high schools. To simplify,
we consider only three test scores concerning three different

subjects: Mathematics (m); Physics (p) and; Literature (l).
Each head of a high school has his own preferences concerning
the student profiles. The head of the first high school (HS1)
prefers the students with the best general average mark while
the head of the second high school (HS2) prefers students
with good scientific background but also with a homogeneous
profile, i.e., who have not neglected to work literature.

The student who wants to maximize his chance of success
to integrate the HS1, will have an interest in working hard on
the subjects with the highest coefficients in order to get the
best average score. In the contrast, the student who wishes to
integrate HS2 will have an interest in working on the subjects
where he is weak otherwise a bad score, for example 4/20, in
literature is not compensable regarding the preferences of this
school.

These two examples of preferences illustrate the idea that,
depending on the strategy in place, the improvement decision
will not be the same (the optimum will not be the same).
Improvement only becomes meaningful when the objectives
and priorities are made explicit through a preferences model.

In this case study we propose to help a student to decide
which subjects he should improve to guaranty a large gain
considering the school that he wants to integrate and his
difficulties to improve his scores.

A. Preferences representation

We express the preferences model of HS1 using an additive
model considering that mathematics and physics have the same
weight and they are more important than literature (see TABLE
IV). Concerning HS2, we consider two rules to express its

TABLE IV
PREFERENCES MODEL OF HS1

m p l
ωi 3/8 3/8 2/8

preferences model. (rp1) the difference between the preference
given to a good student in mathematics and physics and the
preference given to a good one only in mathematics or in
physics is very small; (rp2) preference is given to students
who are both good in science and in literature. An example
µv of fuzzy measure respecting these rules is given in TABLE
V.

TABLE V
PREFERENCES MODEL OF HS2

∅ {ma} {p} {l}
µv 0 3/8 3/8 2/8

{m, p} {m, l} {p, l} {m, p, l}
µv 4/8 6/8 6/8 1

B. Difficulty representation

Let us now consider that the students did a first test in
the middle of the year and they have the second half of the
year to improve their bad results. In this case the difficulty of



improvement has to be taken into account. Indeed, a student
will necessarily considers his ability to do better (or not) in a
subject that he has already missed in the first test. Not every
improvement represents the same effort for him. If having
obtained 08/20 in mathematics is already lucky for a student,
he probably has no interest in betting on an improvement in
his score in mathematics.

Moreover, if the grade to be raised is 02/20 or 08/20 in a
subject that the student knows not to master completely, the
challenge is not the same in two different situations: 1) the
score 02/20 could appear as a severe sanction which would
not reflect his real level and gaining ten points would seem
like an accessible objective. 2) the score 08/20 is the true
value of the student in the subject throughout the year, it is
unlikely that the second test in this subject will allow to gain
a lot of points. Thus, the difficulty of the task, the ability to do
better, the probability of success, the ratio of profit to effort,
also come into play in the choice of what subjects to improve.

Suppose that the scores of the first test are x0 = (8, 10, 12),
an example of the three difficulty functions on each attribute
are given in Fig. 2. These functions are Gaussian functions
with:

d0i (xi) =


0 if xi ≤ x0i
exp(− (xi−xei )

2

20 ) if x0i < xi ≤ xei
1 if xi > xei

where xe1 = 12, xe2 = 15 and xe3 = 20 which means that d0i
increases between x0i and xei and reaches 1, i.e. total difficulty,
when the score is 12 in mathematics, 14 in physics and 20 in
literature. We consider the fuzzy measure µd given in TABLE
III to aggregate these difficulty functions.

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mathematics

score

di
ffi

cu
lty

 d
eg

re
e

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Physics

score

di
ffi

cu
lty

 d
eg

re
e

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Literature

score

di
ffi

cu
lty

 d
eg

re
e

Fig. 2. Difficulty function of the three subjects.

C. The worth index

In this subsection we use the worth index defined in the
subsection III-B to determine the subjects that the student

should improve first to get the best overall improvement taking
into account his difficulties.

Considering the preference model
of HS1, we have for I = {m}:

wv(x
0, {m}) = [ω1.(20− x01)]

1∫
0

τ dτ
dx0 (x

x0,τ,I)

= 4.5
1∫
0

τ dτ
C
µd

(d01(8.(1−τ)+20.τ),d02(10),d
0
3(12))

= 4.5
µd({m}) [

1/3∫
0

τ dτ
exp(−7.2 (τ− 1

3 )
2)

+ 4
9 ]

= 7.2
1/3∫
0

τ dτ
exp(−7.2 (τ− 1

3 )
2)

+ 3.2

= 3.66
In the case of the preference model of HS2, we have:

wv(x
0, {m}) =

1∫
0

[Cµv (8.(1−τ)+20.τ,10,12)−Cµv (8,10,12)]
C
µd

(d01(8.(1−τ)+20.τ),d02(10),d
0
3(12))

dτ

=
1/6∫
0

3.τ dτ
µd({m}) exp(−7.2 (τ− 1

3 )
2)

+
1/3∫
1/6

[6.τ−0.5] dτ
µd({m}) exp(−7.2 (τ− 1

3 )
2)

+
1∫

1/3

4.5.τ dτ
µd({m})

= 3.58
This result shows that the student who is in this situation

has more interest to improve his score in mathematics when he
wants to integrate HS1 than when he wants to integrate HS2.
The following tables VI and VII give the worth index of all
subsets of N for the two preferences models. As we can see in
these two tables, the student obtains the same and large added
worth with both preference models if he improves his score in
Literature. With the preference model of HS1, the student has
a possibility to obtain a better added worth when improving
literature than when improving all the subjects. While with
the second model of HS2, he has two other possibilities:
improving Mathematics and Literature or improving Physics
and Literature.

TABLE VI
THE WORTH INDEX WITH THE PREFERENCES MODEL OF HS1

∅ {m} {p} {l}
wv(x0, .) 0 3.66 3.2 17.87

{m, p} {m, l} {p, l} {m, p, l}
wv(x0, .) 4.53 4.96 4.61 5.4

TABLE VII
THE WORTH INDEX WITH THE PREFERENCES MODEL OF HS2

∅ {m} {p} {l}
wv(x0, .) 0 3.58 3.62 17.87

{m, p} {m, l} {p, l} {m, p, l}
wv(x0, .) 3.61 5.37 5.62 5.26

The idea of this illustrative example, is to show that the
student who has great difficulties in mathematics will not



necessarily choose this subject to catch up the bad score of
the first test even if the weight of Mathematics is very high.

VI. CONCLUSION

Concerning theoretical aspect, this paper proposes a mathe-
matical models allowing the DM to assess alternatives not only
by quantifying their degrees of satisfaction but also by quanti-
fying the degree of difficulty to implement these alternatives.
The illustration shows that the student who obtained bad scores
in a first test, tends often to work hard on the subjects that he
missed. However, depending on the high school that he desires
to integrate, his improvement actions should not be the same.
Spending a lot of time and money to improve his scores on the
subjects that are very hard for him is not always the winning
strategy. When a student is aware of his difficulties and of
the preferences model that is used to aggregate his scores, the
worth index aggregating difficulty functions could help him
to decide which subjects guarantee a large gain considering
his own difficulties. In the future works, risk and uncertainty
considerations can also be taken into account when assessing
a difficulty function.

REFERENCES

[1] R. L. Keeney and H. Raiffa, Decisions with multiple objectives: prefer-
ences and value trade-offs. Cambridge university press, 1993.

[2] J. S. Dyer, “Multiattribute utility theory (maut),” in Multiple Criteria
Decision Analysis. Springer, 2016, pp. 285–314.

[3] D. Krantz, D. Luce, P. Suppes, and A. Tversky, Foundations of mea-
surement, Vol. I: Additive and polynomial representations, 1971.

[4] C. Labreuche and M. Grabisch, “The choquet integral for the aggregation
of interval scales in multicriteria decision making,” Fuzzy Sets and
Systems, vol. 137, no. 1, pp. 11–26, 2003.

[5] T. Murofushi and M. Sugeno, “An interpretation of fuzzy measures and
the choquet integral as an integral with respect to a fuzzy measure,”
Fuzzy sets and Systems, vol. 29, no. 2, pp. 201–227, 1989.

[6] J.-L. Marichal, “An axiomatic approach of the discrete choquet integral
as a tool to aggregate interacting criteria,” IEEE Transactions on Fuzzy
Systems, vol. 8, no. 6, pp. 800–807, 2000.

[7] J.-L. Marichal and M. Roubens, “Determination of weights of interacting
criteria from a reference set,” European journal of operational Research,
vol. 124, no. 3, pp. 641–650, 2000.

[8] K. Bause, A. Radimersky, M. Iwanicki, and A. Albers, “Feasibility
studies in the product development process,” Procedia CIRP, vol. 21,
pp. 473–478, 2014.
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