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Abstract—Artificial Intelligence (AI) is a first class citizen
in the cities of the 21st century. In addition, trust, fairness,
accountability, transparency and ethical issues are considered
as hot topics regarding Al-based systems under the umbrella
of Explainable AI (XAI). In this paper we have conducted an
experimental study with 15 datasets to validate the feasibility
of using a pool of gray-box classifiers (i.e., decision trees and
fuzzy rule-based classifiers) to automatically explain a black-
box classifier (i.e., Random Forest). Reported results validate
our approach. They confirm the complementarity and diversity
among the gray-box classifiers under study, which are able to
provide users with plausible multi-modal explanations of the
considered black-box classifier for all given datasets.

Index Terms—Explainable Artificial Intelligence, Interpretable
Machine Learning, Classification, Open Source Software

I. INTRODUCTION

Applications of Artificial Intelligence (AI) based systems
are becoming popular and somehow essential in our daily
life. The performance of these applications has led to an
unseen growth due to the fact that Al is applicable to many
different problems and contexts, including medical diagnostic,
autonomous driving, and other decision-based tasks. One of
the reasons of this growth is the increasing computational
power available to be used by people, not only by institutions
or big companies. Associated to this growth, trust issues have
arisen within the professional community and people, who
now use Al-based technologies and applications as part of their
daily work and life. Many of these applications are considered
as black boxes, and indeed many of them are based on opaque
systems which do not provide any explanation about their
behavior. So, they can be deemed as hazardous, and people
are mistrustful about their use. For example, in fields like
medicine, where a patient’s life can be at stake, physicians
need to trust a diagnostic decision support system, before
applying its recommendations. Having Al-based systems op-
erating as black boxes is quite controversial, because those
systems might generate an unexpected side effect in society.

The European Commission (EC) identified Al as the most
strategic technology of the 21st century [1]. In addition, the
EC took a decision to guarantee the rights of the people
and issued the General Data Protection Regulation (GDPR)
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which takes into account Al-based systems [2]. In particular,
systems automatically generated with Machine Learning (ML)
techniques are trained using data which may contain patterns
that reflect prejudices towards certain people (e.g., because
of their gender or ethnicity). In the example provided in [3],
an Al-based system infers certain properties, like social status
from addresses, generating a bias for/against certain people
who live in a specific neighborhood.

Accordingly, there is an increasing attention to Al Fairness,
Accountability, Transparency and Ethics (FATE in short) [4]-
[7]. Within the research community there are events dedicated
to FATE such us ACM FAT* conference which main subject is
tackling the FATE in algorithms and ML. Also, the USA De-
fense Advanced Research Projects Agency (DARPA) promotes
research on FATE through the XAI DARPA challenge [8]
which has among main goals the generation of ML techniques
and human-computer interfaces expected to lead the future
development of XAI systems.

However, there is no agreement yet about how to build XAI
systems in practice. On the one hand, many researchers focus
on how to open black-box models [3] and this has become a
hot open problem in the XAI field. On the other hand, some
authors are for designing new XAI systems from scratch but
supported by interpretable models [9].

We opt for a hybrid XAI approach which combines both
black-box and gray-box models. In particular, we propose
to combine expert knowledge with knowledge automatically
extracted from data through ML techniques in a common
framework [10]. In our previous work, we showed how to
use our approach to build explainable classifiers for a real-
world problem related to classification of beer styles. Firstly,
we build an opaque Al system (based on Random Forest [11]
or Neural Networks [12]) which acts as an “oracle” ready
to identify the most plausible beer style. Secondly, we build
several interpretable Al systems which are endowed with good
interpretability-accuracy trade-offs but also with explanation
capabilities. Then, given an unknown test data instance, the
“oracle” identifies the output class and the related explanation
comes from the simplest interpretable system which points out
such class. Then, a multi-modal (i.e., a mixture of graphical



and textual representations of the embedded knowledge) ex-
planation is generated with the software ExpliClas [13].

In this work, we explore the chance of applying our hybrid
XAI approach to a wide range of classification problems.
Therefore, we have conducted an experimental study with the
aim of validating the feasibility of using interpretable gray-box
(i.e., decision tree and fuzzy rule-based) classifiers to automat-
ically generate explanations associated to classifications made
by a black-box “oracle”.

The rest of the manuscript is organized as follows. Sec-
tion II briefly introduces related work. Section III presents the
datasets and classifiers under study. Section IV goes in depth
with the experimental study and concludes with an illustrative
use case. Section V summarizes the main conclusions and
points out future work.

II. RELATED WORK

XAI has become a hot topic within the Al research com-
munity, and over the last years, different algorithms have
addressed the problem of generating explanations associated to
black-box models [3]. Regarding post-hoc local explanations,
i.e., explanations associated to classification of single data
instances, it is assumed that around a data point the decision
boundary can be captured by an interpretable model, no matter
how complex is the global decision boundary for the problem
under consideration. The most popular approaches are:

o Local Interpretable Model-agnostic Explanations
(LIME) [14]. Firstly, a linear model is trained with data
around the input to be classified by the black-box model.
Then, local interpretations are provided in terms of such
linear model. More precisely, LIME defines simplified
inputs as interpretable inputs, and a mapping function
which converts a binary vector of interpretable inputs into
the original input space. In the text classification example
provided in [14], LIME provides a visual explanation
based on a bar chart with the relevance of each individual
feature for the given test data instance. The color of the
bars indicates which class the feature contributes to. No-
tice that LIME is model-agnostic, i.e., it does not depend
on the black-box ML model, but it is quite depending
on the underlying linear model used to generate the local
approximations as well as on the way how local training
samples are generated. In addition, the output of LIME is
not self-explanatory but it is the user who has to do the
final interpretation. Anyway, LIME has become one of the
most popular algorithms in the XAI community and some
authors have already developed variants and extensions to
it. For example, Forrest et al. generated explanations in
natural language as automatic interpretation of the output
given by LIME [15].

o Model-agnostic Explanations based on IF-THEN
Rules (ANCHOR) [16]. This approach can be seen as
an extension of LIME to produce high-precision model-
agnostic explanations. By construction, ANCHOR rules
are computed incrementally adding conditions until the
estimated precision is at least 95%. Thus, each rule

represents sufficient local conditions for the explanation
of the prediction inferred for a given data instance.

o Local Rule-based Explanation (LORE) [17] provides
users with a factual explanation of reasons why a decision
is made for a given test data instance, along with one
or more counterfactual explanations which hypothesize
what may have happened in case some features in the
given data instance were modified. LORE first applies a
genetic algorithm to learn synthetic data around the test
instance. Then, this synthetic training dataset is used to
grow a local decision tree classifier. Then, factual and
counterfactual explanations of the given test instance are
derived from the automatic interpretation of this decision
tree. In comparison with ANCHOR, LORE manages
naturally continuous features thanks to the capabilities
inherent to decision trees while ANCHOR requires the a
priori discretization of continuous features.

« Shapley Additive exPlanations (SHAP) [18] are similar
to LIME in the sense that they are also local explanations.
Nevertheless, each explanation is a linear function of
binary variables. The so-called SHAP values measure
the importance of each feature. They are computed by
removing each feature individually and analyzing the
variation produced on the output. Then, the aggregation
of all SHAP values yields an additive explanation.

e Growing Spheres [19]. This is a model agnostic ap-
proach based on non-linear inverse classification. Given
a test data instance, the challenge is to determine the
minimal changes needed to alter the current prediction,
i.e., the algorithm grows a sphere around the given data
point with the minimum radius until finding out a close
neighbor which is classified differently.

In addition to local explanations, it is also possible to gener-
ate global explanations. Let us briefly introduce two software
tools which manage both local and global explanations:

o iForest [20] is a tool for visual analytic of models

generated with the Random Forest (RF) [21] algorithm.
As explained in [22], RF is able to get high accuracy in
most classification problems. This is the reason why it has
become very popular in the ML community. However,
RF is considered as a black-box classifier because it
combines hundreds of local decision trees through an
ensemble mechanism, what makes hard to interpret the
global output.
This software addresses the challenge of automatically
interpreting RF models and provides users with graphical
representations (e.g., data overview, feature view and de-
cision path view) about how the output class is generated
for a given test data instance. It is worthy to note that
iForest assists users to understand how RF works but it
is not self-explanatory, i.e., given a data instance, the final
interpretation is done by a human in the light of the given
visualizations.

« ExpliClas [13] is a web service aimed to provide users
with multi-modal (textual + graphical) explanations as-



sociated to gray-box classifiers. The current version of
ExpliClas manages the following algorithms implemented
in the framework Weka [23]: three decision trees (J48,
REPTree, RandomTree) which are actually different im-
plementations of the C4.5 algorithm first introduced by
Quinlan [24]; and one fuzzy rule-based classifier (FU-
RIA [25]). All these four algorithms are characterized
by local semantics, i.e., the conditions in each node
of a tree as well as the fuzzy sets in each rule are
determined locally (without taking care of any global
semantics associated to the entire model), what jeopar-
dizes linguistic interpretability and makes hard automatic
generation of textual explanations. Thus, the only way to
provide users with textual explanations implies the need
to do linguistic approximations associated to the models
under consideration.

More precisely, the Explainer module in ExpliClas imple-
ments a linguistic layer on top of the gray-box classifiers.
As a result, ExpliClas is endowed with global seman-
tics what makes feasible not only to generate textual
explanations for each single model but also to compare
at linguistic level the classifications (and related expla-
nations) carried out by different classifiers. In the core
of the linguistic layer there are Strong Fuzzy Partitions
(SFPs) associated to each feature in a given dataset. By
default, a SFP is made up of three linguistic terms (Low,
Medium, High) which correspond to triangular fuzzy sets
uniformly distributed in the universe of discourse of the
given feature, but it is editable by the user. SFPs were first
introduced by Ruspini [26] and they satisfy all mathe-
matical properties (e.g., coverage, distinguishability, etc.)
required for designing fuzzy partitions endowed with
linguistic interpretability [27].

III. MATERIAL AND METHODS

In this section we describe the materials (datasets) and
methods (classifiers) used to develop the experimental study.

A. Datasets

Table I presents the 15 data sets under consideration. For
each dataset, we have reported the number of features, with
the specific number of numerical features given in brackets.
In addition, the table includes the number of instances and
classes for all datasets. It is worthy to note that for the sake
of generality in our experimental study we have selected a
wide range of datasets with varied structural complexity and
size. Namely, we have taken into account both variety and
diversity in the number of attributes, instances and classes but
also in the application domain. With the aim of highlighting
the huge difference among datasets, we give average, standard
deviation, minimum and maximum values for all datasets at
the bottom of the table. Notice that all these datasets are freely
available in the well-known UCI ML [28] and Weka [29]
repositories.

The Weka Framework [23] is open source and coded in Java.
It was initially developed as a collection of ML algorithms by

TABLE 1
DATASETS UNDER STUDY
[ Dataset | Features (Numerical) [ Instances | Classes |
AUDIOLOGY 69 (0) 226 24
AUTOS 25 (16) 205 7
BALANCE-SCALE 4 4) 625 3
BREAST-CANCER 9 (0) 286 2
COLIC 22 (7) 368 2
CREDIT-A 15 (6) 690 2
DIABETES 8 (8) 768 2
GLASS 9(9) 214 7
HEART-STATLOG 13 (13) 270 2
HYPOTHYROID 29 (7) 3772 4
IONOSPHERE 34 (34) 351 2
KR-VS-KP 36 (0) 3196 2
LETTER 16 (16) 20000 26
VEHICLE 18 (18) 846 4
‘WAVEFORM-5000 40 (40) 5000 3
Average 23.1 (11.9) 2401.5 6.1
Standard Deviation 16.8 (11.8) 5117.2 7.9
Minimum 4 (0) 205 2
Maximum 69 (40) 20000 26

researchers in the university of Waikato (New Zeland), but it
has been later extended with more algorithms and functionality
by researchers all around the world. Weka provides users with
a user-friendly environment which allows to explore, analyze,
and process datasets but also automatically learn (and evaluate)
ML classifiers from such datasets.

B. Classifiers

In the experimental study, we have considered one RF black-
box classifier [21]. This classifier is selected because of its
ability to generate very accurate classifiers [22]. In addition,
we already used RF as “oracle” in the proof of concept of the
hybrid XAI approach [10] whose generality is under validation
in this paper.

Regarding gray-box classifiers, we have considered the four
classifiers (J48, REPTree, RandomTree and FURIA) which are
already implemented in ExpliClas. This means that we can
use later the ExpliClas Explainer module to generate multi-
modal explanations associated to them. Moreover, decision
trees and fuzzy rule-based classifiers were also considered
in [10]. In short, the gray-box classifiers under consideration
are as follows:

o J48 is a pruned C4.5 classifier [24]. It is deemed as an
interpretable white box because it is possible to know the
threshold values of each internal node splitting condition.

o REPTree uses regression tree logic and creates multiple
C4.5 trees in different iterations. At the end, it selects
the best one among all the generated trees. Because of
the output of this model is just a simple decision tree
classifier, it is also considered as a white box.

o RandomTree applies bagging to produce a random set
of training data instances for the generation of several
C4.5 decision trees. At the end, similarly to REPTree, it
provides users with only one individual tree model, and
because of that it is also deemed as a white box.



o FURIA is the acronym of Fuzzy Unordered Rule In-
duction Algorithm [25]. It generates fuzzy IF-THEN
classification rules with fuzzy sets A% = {a},a?,a3,a}}
of trapezoidal shape in the antecedent of each rule. Notice
that only the most relevant features are considered in each
rule. For example, a rule with two antecedents may be:

R;: IF Al in [0.5, 3.7, 00, 00] AND A2 in [—00, —00,0.7, 10.8]
THEN class is C7 with CF=0.85
()

where CF is the certainty factor of rule R;. The rule
activation degree is computed as the multiplication of
the CF by the rule firing degree which results of ap-
plying the usual inference mechanism of Mamdani fuzzy
systems [30]. Given a test data instance, if there is no
rule with activation degree greater than zero then FURIA
offers to the user three options: 1) abstain (i.e., no output
class is given); 2) voting for the a priori most frequent
class in the dataset; and 3) rule stretching (i.e., a new
set of rules is dynamically created from the initial rule
base by removing antecedents in order one by one, rule
by rule, until the instance is covered). FURIA is deemed
as a gray-box classifier because it produces a set of rules
which can be interpreted (at certain degree) by users.

For the sake of simplicity and generality of results, we
limit our study to classifiers implemented in Weka [23]. The
challenge here is to evaluate whether the considered gray-box
classifiers are suitable for generating explanations associated
to a black-box classifier.

IV. EXPERIMENTAL STUDY

In this section, we first introduce the experimental setting
(see Section IV-A) and then we present and discuss the
reported results (see Section IV-B).

A. Experimental setting

With the aim of evaluating the generality of the hybrid XAI
approach first introduced in [10] just as a proof of concept,
here the hypothesis to validate is as follows: Given a test
data instance, if we had a gray-box classifier which were
co-intensive with the black-box classifier that is considered
as “oracle” in the hybrid XAI approach, i.e., both classifiers
point out the same output class, then we may provide users
with an explanation of the current classification in terms of
the multi-modal explanation generated by ExpliClas for the
selected gray-box classifier.

It is worthy to note that thanks to the global semantics
imposed by the linguistic layer of the ExpliClas Explainer
module, no matter the selected gray-box classifier, the given
explanation is expected to be co-intensive with expert knowl-
edge and thus comprehensible by the user.

The concept of co-intension was coined by Prof. Zadeh [31]
and is in the core of the paradigm of Computing with Words
(CWW) [32], [33] which is highly relevant in the context
of providing humans with explanations in natural language.
In short, two different concepts are deemed as co-intensive

when they refer to the same entity at high degree. It is
worth noting that the semantic co-intension approach [34] has
been successfully applied to measure the interpretability of
fuzzy systems and it can be generalized to consider gray-box
classifiers such as decision trees and FURIA.

We assume that a given textual explanation is comprehen-
sible only if its explicit semantics is co-intensive with the
implicit semantics inferred by the user when reading such
explanation. Therefore, we can measure how much similarly
behave each gray-box classifier and the “oracle”, i.e., how
much co-intensive the two classifiers are, with the following
co-intension metric:

N
100 W;
COIN(A,B) = — {} € [0, 100] (2)
N i=1 Si

where IV is the number of folds in the experiment (N=10);
W, is the number of data instances classified with the same
output value by both classifiers A and B, in the fold ¢; and .5;
is the total number of data instances in the fold 7. Accordingly,
we count the number of data instances classified identically by
both classifiers, no matter if the classification is right or wrong.

The focus is on determining if we can (or cannot) validate
the hypothesis enunciated at the beginning of this section,
no matter the dataset under consideration. To do so, we first
train and test each individual classifier using a 10-fold cross-
validation with the 15 datasets listed in Table I. Then, we have
conducted the following three analyses:

e The Analysis 1 is aimed to evaluate how much co-
intensive each individual gray-box classifier is with the
black-box classifier. We computed the co-intension metric
(see Eq. 2) between each gray-box classifier and the
black-box classifier for each fold and reported the av-
eraged results.

o The Analysis 2 is aimed to evaluate the co-intensive
degree between the black-box classifier and the pool of
gray-box classifiers seen as one unique classifier, i.e., we
test if using a composition (but without applying any kind
of voting mechanism) of gray-box classifiers we can get
better results. Thus, this time we compared at once the
output of the black-box classifier versus the output given
by all individual gray-box classifiers. Then, we increased
W, in the Eq. 2 every time that at least one gray-box
classifier was able to match the output given by the black-
box classifier for the given test data instance, no matter
the classification output provided by the rest of classifiers.

o The Analysis 3 is aimed to evaluate the complementarity
and diversity among the pool of gray-box classifiers.
Accordingly, we computed the co-intension metric for all
pairs of gray-box classifiers.

The goodness of each classifier is evaluated under the 10-
fold cross-validation provided by Weka [23]. The following
quality metrics are reported (see Tables II and III):

o for Accuracy: the ratio of correctly classified instances
(RCCI), and the root mean square error (RMSE).



TABLE II
ACCURACY METRICS FOR THE DATASETS AND CLASSIFIERS UNDER STUDY. RCCI STANDS FOR RATIO OF CORRECTLY CLASSIFIED INSTANCES AND
RMSE IS THE ROOT MEAN SQUARE ERROR.

RF J48 REPTree RandomTree FURIA
Dataset RCCI [ RMSE | RCCI [ RMSE | RCCI [ RMSE | RCCI [ RMSE | RCCI [ RMSE
AUDIOLOGY 72.36 0.13 | 74.87 0.13 | 67.84 0.14 | 56.78 0.18 | 72.86 0.13
AUTOS 83.90 0.20 | 83.41 0.20 | 62.44 0.28 | 76.58 0.25 | 77.07 0.23
BALANCE-SCALE | 80.96 0.29 | 76.96 0.36 | 78.72 0.33 80.00 0.36 | 82.88 0.30
BREAST-CANCER 68.75 0.47 | 74.63 0.44 | 68.38 0.48 | 62.87 0.60 | 73.53 0.50
COLIC 84.87 0.35 | 85.43 0.36 84.03 0.37 | 77.03 0.43 82.63 0.39
CREDIT-A 86.23 0.33 | 85.80 0.34 | 84.78 0.35 75.65 0.48 | 86.67 0.35
DIABETES 76.43 0.40 | 7591 0.43 74.22 0.43 71.09 0.54 | 75.39 0.48
GLASS 79.81 0.21 | 70.89 0.27 | 72.77 0.25 67.14 0.31 70.89 0.27
HEART-STATLOG 83.33 0.35 80.37 0.42 | 74.81 0.43 | 74.81 0.50 | 82.96 0.40
HYPOTHYROID 99.41 0.06 | 99.49 0.05 | 99.46 0.05 | 97.17 0.12 | 99.46 0.05
IONOSPHERE 93.71 0.22 | 91.14 0.29 88.57 0.31 87.71 0.35 89.43 0.29
KR-VS-KP 99.31 0.10 | 99.22 0.09 | 98.84 0.10 | 95.53 0.21 99.47 0.06
LETTER 96.22 0.06 | 87.00 0.09 83.24 0.10 | 85.03 0.11 90.48 0.07
VEHICLE 75.41 0.27 | 72.34 0.34 | 70.57 0.32 | 69.03 0.39 | 70.69 0.33
WAVEFORM-5000 85.80 0.28 | 75.72 0.39 | 76.66 0.34 | 72.96 0.42 | 82.36 0.32
Average 84.43 0.25 82.21 0.28 | 79.02 0.29 | 76.63 0.35 82.45 0.28
Standard Deviation 9.44 0.12 9.12 0.13 10.85 0.13 11.22 0.15 9.38 0.14
Minimum 68.75 0.06 | 70.89 0.05 | 62.44 0.05 | 56.78 0.11 70.69 0.05
Maximum 99.41 0.47 | 99.49 0.44 | 99.46 0.48 | 97.17 0.60 | 99.47 0.50
TABLE III

INTERPRETABILITY METRICS FOR THE DATASETS AND CLASSIFIERS UNDER STUDY. NR IS THE NUMBER OF LEAVES (IN DECISION TREES) AND THE
NUMBER OF RULES (IN FURIA). TRL STANDS FOR TOTAL RULE LENGTH.

J48 REPTree RandomTree FURIA
Dataset NR | TRL NR [ TRL NR ] TRL NR [ TRL
AUDIOLOGY 28.0 128.0 194 67.9 185.0 1439.6 21.6 24.0
AUTOS 45.0 160.6 33.9 56.3 168.0 737.0 19.5 24.3
BALANCE-SCALE 42.4 166.2 21.2 80.8 152.8 609.7 23.8 26.4
BREAST-CANCER 6.6 12.6 18.5 333 376.7 1723.6 3.6 3.8
COLIC 6.2 15.8 8.9 23.5 288.4 1702.6 7.9 9.1
CREDIT-A 22.4 101.6 17.0 56.0 276.1 1572.8 7.5 10.0
DIABETES 21.0 83.3 14.9 61.2 136.0 762.6 7.7 8.9
GLASS 24.4 116.3 9.8 31.8 47.2 226.6 14.9 15.7
HEART-STATLOG 17.2 71.3 6.7 21.4 54.6 322.0 7.2 8.3
HYPOTHYROID 14.7 70.3 9.8 41.3 182.5 1503.3 14.2 20.9
IONOSPHERE 14.6 75.8 5.5 16.4 29.8 180.2 10.8 18.0
KR-VS-KP 28.2 219.1 28.3 198.7 319.9 4213.7 28.2 66.7
LETTER 1189.5 | 10991.6 | 613.2 | 46522 | 2667.2 | 25239.7 | 660.7 | 815.2
VEHICLE 70.2 478.6 27.1 149.8 155.9 1237.0 24.7 29.0
WAVEFORM-5000 287.3 2539.2 82.5 560.3 612.1 5942.6 94.0 | 115.0
Average 121.2 1015.8 61.1 403.4 376.8 3160.9 63.1 79.7
Standard Deviation 303.5 2830.7 | 153.9 | 1183.3 650.8 6302.7 | 166.7 | 205.5
Minimum 6.2 12.6 5.5 16.4 29.8 180.2 3.6 3.8
Maximum 1189.5 | 10991.6 | 613.2 | 46522 | 2667.2 | 25239.7 | 660.7 | 815.2

o for Interpretability: the number of leaves in a tree or
rules in a FURIA classifier (NR) and the total rule length
(TRL). In the case of decision trees, TRL counts the
number of non-leaf nodes in all the branches of the tree.
In the case of FURIA classifiers, TRL counts the total
number of conditions A; in all the rules (e.g., TRL=2 in
Eq. D).

In Tables II and III, we have highlighted in bold the best
reported values for each quality metric and dataset. It is easy
to appreciate how RF usually turns up as the most accurate
classifier (see Table II), as expected, that is the reason why it
is considered as the “oracle” in our hybrid XAI approach.

Anyway, in some cases, J48 or FURIA are not far from
RF from the accuracy point of view. Moreover, sometimes
J48 or FURIA are even more accurate than RF. This is in
agreement with the no free lunch theorem [35], i.e., there is no
classification algorithm to produce always the best classifier.
Someone may argue that keeping RF as “oracle” in those
cases is not the best choice. However, it is out of the scope
of this paper to look for the most accurate “oracle”. On the
other hand, regarding interpretability (see Table IIT), REPTree
is usually the best for NR while FURIA is the winner with
respect to TRL. Again, it is out of the scope of this paper
to look for the optimal interpretability-accuracy trade-off. Of



TABLE IV
RESULTS FOR ANALYSES 1 AND 2. THE FIRST COLUMNS SHOW THE CO-INTENSION METRIC (COIN) BETWEEN EACH GRAY-BOX CLASSIFIER (J48,
REPTREE, RANDOMTREE, FURIA) AND THE BLACK-BOX CLASSIFIER (RF). THE SIXTH COLUMN SHOWS THE COIN BETWEEN THE POOL OF GRAY-BOX
CLASSIFIERS (ALL=J48+REPTREE+RANDOMTREE+FURIA) AND RF. GAIN = COIN(ALL,RF) - MAXCOIN, wiTH MAXCOIN BEING THE
MAXIMUM COIN FOR SINGLE CLASSIFIERS (I.E., THE NUMBER IN BOLD IN EACH ROW).

COIN COIN COIN COIN COIN
Dataset ‘ (J48,RF) ‘ (REPTree,RF) (RandomTree,RF) ‘ (FURIA,RF) ‘ (ALL,RF) ‘ GAIN ‘
AUDIOLOGY 76.38 74.87 61.81 75.38 88.44 | +12.06
AUTOS 82.44 70.24 82.93 77.07 96.59 +13.66
BALANCE-SCALE 86.88 81.28 93.28 83.04 99.20 +5.92
BREAST-CANCER 85.29 82.72 83.82 83.46 97.43 +12.14
COLIC 96.64 95.80 84.31 92.72 99.44 +2.80
CREDIT-A 92.61 92.17 81.01 91.16 99.42 +6.81
DIABETES 85.16 84.77 78.52 86.72 98.05 +11.33
GLASS 84.51 77.00 73.71 80.75 99.06 | +14.55
HEART-STATLOG 88.89 81.11 79.63 90.00 97.78 +7.78
HYPOTYROID 99.43 99.49 97.39 99.41 99.81 +0.32
IONOSPHERE 94.57 91.43 91.14 94.00 99.71 +5.14
KR-VS-KP 99.41 99.09 95.71 99.41 99.91 +0.50
LETTER 87.70 84.33 85.68 91.01 98.41 +7.40
VEHICLE 77.66 76.48 76.36 79.79 98.11 +18.32
WAVEFORM-5000 80.84 82.50 76.20 89.16 98.98 +9.82
Average 87.89 84.88 82.76 87.54 98.02 8.57
Standard Deviation 7.34 8.93 9.30 7.49 2.82 5.22
Minimum 76.38 70.24 61.81 75.38 88.44 0.32
Maximum 99.43 99.49 97.39 99.41 99.91 18.32

course, the diversity among the datasets under study (see
Table I) produces a difference in the inherent complexity of
the different classifiers.

For the sake of transparency, fairness and reproducibility of
the experiments, both Java source code and complementary
material are available online [36].

B. Experimental analysis

Table IV summarizes the experimental results to be dis-
cussed as part of the analyses 1 and 2:

o Analysis 1. Regarding columns 2 - 5 in Table IV, we
observe that even though J48 turns up as the most co-
intensive classifier with RF in many cases, none of the
individual classifiers is able to perfectly match with RF.
Notice that the best COIN value in columns 2 - 5, for
each dataset, is highlighted in bold. In addition, only in
8 out of 15 datasets, the maximum COIN value (regarding
all individual gray-box classifiers) is greater than 90.
Moreover, RandomTree only gets COIN greater or equal
than 90 for 4 datasets. We count 5 datasets in the case
of J48 and REPTree, and 7 for FURIA. In the light of
the reported results, we conclude that it seems not to be
a good idea just to select one single gray-box classifier
to generate all explanations associated to the “oracle”.

o Analysis 2. If we pay attention to columns 6 and 7
in Table IV, we observe that COIN(ALL,RF) is always
greater than the maximum COIN value regarding only
one single classifier (which is highlighted in bold for each
dataset). In addition, the gain is up to +18.32 in the best
case (VEHICLE) and it is about +8.5 in average for all
datasets. Moreover, the average COIN(ALL,RF) is about
98 what means that only about 2% of unknown test data
instances remain without any associated explanation. This

seems an acceptable rate because even human experts are
not able to explain their decisions sometimes.

After Analysis 1 and Analysis 2, we can conclude the
experimental study validates the feasibility of using a pool
of gray-box classifiers to automatically generate explanations
associated to classifications made by a black-box “oracle”.
In practice, given a test data instance, we will select the
most suitable gray-box classifier (among all available ones) to
generate the required explanation. However, the selection of
the right classifier for each single instance remains a challenge
out of the scope of this work.

Table V shows the reported results for the Analysis 3. They
confirm the complementarity and diversity among gray-box
classifiers under study, which are able to cover jointly most of
the input space for a given dataset, as deduced from Table IV.
Nevertheless, the average COIN values in Table V are always
below 90 no matter the pair of classifiers under consideration.
This means overlapping of classifiers in the input space is
acceptable.

C. Illustrative Use Case

This section is aimed to show how to use the ExpliClas soft-
ware [13] for generating multi-modal explanations associated
to the classifiers built in the previous section.

We have selected the VEHICLE dataset because it exhibited
the biggest gain value in the Analysis 2 (see the last column
in Table IV). The classification task consists of identifying
one out of four types of vehicles (i.e., Opel, Saab, Bus, Van)
in terms of 18 numerical features (e.g., compactness, circu-
larity, etc.) extracted from the silhouette of the vehicle, with
data instances corresponding to vehicles that may be viewed
from one of many different angles. The dataset includes 846
instances (see Table I). Each instance is labeled as one of the



TABLE V
RESULTS FOR ANALYSIS 3, SHOWING THE CO-INTENSION METRIC (COIN) BETWEEN EACH PAIR OF GRAY-BOX CLASSIFIERS.

COIN COIN COIN COIN COIN COIN
Dataset (J48,REPTree) | (J48,RandomTree) | (J48,FURIA) | (REPTree,RandomTree) | (REPTree,FURIA) | (RandomTree,FURIA)
AUDIOLOGY 82.41 60.30 81.41 59.30 75.38 53.77
AUTOS 63.90 77.07 77.56 68.29 60.98 73.17
BALANCE-SCALE 84.32 85.92 81.44 78.88 82.08 81.12
BREAST-CANCER 87.87 77.94 95.22 77.57 85.29 76.84
COLIC 96.92 84.31 93.28 83.47 93.00 83.75
CREDIT-A 91.16 79.42 92.46 77.54 92.61 78.26
DIABETES 85.29 78.26 83.59 75.00 83.98 76.17
GLASS 73.71 69.01 73.24 65.26 68.08 68.54
HEART-STATLOG 82.59 76.67 90.00 75.56 86.67 78.52
HYPOTYROID 99.76 97.22 99.76 97.22 99.68 97.25
IONOSPHERE 90.00 87.43 91.43 87.71 91.71 86.29
KR-VS-KP 99.37 95.68 99.44 95.37 99.12 95.49
LETTER 79.51 79.97 84.20 78.07 81.43 82.30
VEHICLE 74.47 72.46 71.04 71.39 72.34 69.27
WAVEFORM-5000 76.80 70.86 78.64 70.80 80.94 73.92
Average 84.54 79.50 86.18 77.43 83.55 78.31
Standard Deviation 10.10 9.72 9.09 10.38 11.04 10.69
Minimum 63.90 60.30 71.04 59.30 60.98 53.77
Maximum 99.76 97.22 99.76 97.22 99.68 97.25

four classes which are quite well balanced: 212 instances are
Opel, 217 Saab, 218 Bus, and 199 Van.

For the sake of simplicity, we have just taken one of the
folds of the 10-fold cross validation, with the dataset divided
into 90% of instances for training and 10% for test. Then, we
have used Weka to build the RF classifier with the training
dataset. Then, we have uploaded to ExpliClas both training
and test datasets. Then, we have built the four gray-box
classifiers with ExpliClas. Then, we have picked up a couple
of unknown test instances and gone deeper about: i) how each
test instance is classified by the “oracle” RF; and ii) how this
classification is explained by ExpliClas regarding each single
gray-box classifier. With that aim, we have defined uniform
SFPs with three linguistic terms (Low, Medium, and High) for
each feature in the ExpliClas linguistic layer.

o Casel:

— Test instance 6: {Compactness, 96}; {Circularity, 47};
{Distance-circularity, 103}; {Radius-ratio, 215}; {Pr.axis-
Aspect-ratio, 69}; {Max-length-aspect-ratio, 10}; {Scatter-ratio,
200}; {Elongatedness, 33}; {Pr.axis-rectangularity, 23};
{Max-length-rectangularity, = 147};  {Scaled-variance-major,
220}; {Scaled-variance-minor, 598}; {Scaled-radius-of-gyration,
200}; {Skewness-about-major, 73}; {Skewness-about-minor,
6}; {Kurtosis-about-major, 6}; {Kurtosis-about-minor, 187};
{Hollows-ratio, 194}; {Class, Opel};

— “Oracle” RF Classification: Opel

— Gray-box Classification: Opel
In this case, all the classifiers agree with the “oracle” output class.
Therefore, we obtain four plausible explanations:

“The vehicle is Opel because...”

J48 : “... compactness, elongatedness, scaled-variance-minor and

hollows-ratio are low and max-length-aspect-ratio is medium.

However, Saab is also possible due to the proximity of hollows-

ratio with the related split value (196.0)”.

: “... elongatedness and hollows-ratio are low and max-length-

aspect-ratio is medium. However, Saab is also possible due

to the proximity of hollows-ratio with the related split value

(195.5)”.

RandomTree : “... circularity and hollows-ratio are low and compactness,
max-length-aspect-ratio, elongatedness and scaled-variance-

REPTree

minor are medium. However, Saab is also possible due to the
proximity of hollows-ratio with the related split value (195.5)”.

FURIA : “.. elongatedness is low and skewness-about-minor is
medium”.

«

In this example, elongatedness seems to be the most informative
feature as it is present in all plausible explanations.

o Case2:

— Test instance 27: {Compactness, 108}; {Circularity, 54};
{Distance-circularity, 105}; {Radius-ratio, 203}; {Pr.axis-
Aspect-ratio, 62}; {Max-length-aspect-ratio, 11}; {Scatter-ratio,
202}; {Elongatedness, 33}; {Praxis-rectangularity, 23};
{Max-length-rectangularity, ~ 164};  {Scaled-variance-major,
216}; {Scaled-variance-minor, 608}; {Scaled-radius-of-gyration,
235}; {Skewness-about-major, 68}; {Skewness-about-minor,
12}; {Kurtosis-about-major, 3}; {Kurtosis-about-minor, 190};
{Hollows-ratio, 200}; {Class, Saab};

— “Oracle” RF Classification: Saab

— Gray-box Classification: Saab (J48), Saab (REPTree), Opel (Ran-
domTree), and Saab (FURIA)

In this case, three out of the four classifiers agree with the
“oracle”. Therefore, we obtain three plausible explanations (the
explanation provided by RandomTree is discarded):

“The vehicle is Saab because...”

J48 : .. compactness and hollows-ratio are high, elongated-
ness, scaled-variance-minor and scaled-radius-of-gyration are
low and max-length-aspect-ratio and skewness-about-major are
medium. However, Opel is also possible due to the proximity
of skewness-about-major with the split value (67.0)”.

: “... hollows-ratio is high, elongatedness and scaled-variance-
minor are low and max-length-aspect-ratio is medium. How-
ever, Opel is also possilbe possible due to the proximity of
hollows-ratio with the split value (195.5)”.

: “... kurtosis-about-minor is low and scaled-variance-major is
medium”.

REPTree

FURIA

ExpliClas provides users with multi-modal explanations. In
addition to the textual explanations given above, users are also
provided with graphical visualizations of trees and rules, which
are not included here for the sake of space. In addition, let us
remind that assessing the naturalness and effectiveness of such
explanations is a task in progress out of the scope of this paper.



V. CONCLUSIONS AND FUTURE WORK

We have carried out an exhaustive experimental study
with 15 datasets. As main conclusion, we have validated the
generality of a previous proof of concept which only took into
account one dataset. Accordingly, in the light of the experi-
mental analysis in this paper, we can state that we are able to
automatically generate multi-modal explanations associated to
black-box classifiers in terms of gray-box classifiers, at least
for the wide range of datasets under study.

Notice that explanations of gray-box classifiers are gener-
ated by the ExpliClas software and assessing their goodness
and effectiveness is an ongoing work. In addition, we plan
to enhance ExpliClas with our hybrid XAI approach for
explaining black-box classifiers. This implies the definition
and validation of a new procedure for generating one unique
explanation instead of the pool of plausible explanations
currently provided. As future work, we will also extend our
analysis to more datasets and we will consider other black-box
classifiers such as deep learning neural networks.
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