
A Preliminary Approach to Allocate Categories of
Buildings into Lands based on Generative Design

Ignacio Pérez-Martı́nez
Dept. of Electr. and Computer Engineering

University of Córdoba, Spain
email: ep2pemai@uco.es

Marı́a Martı́nez-Rojas
Dept. of Economics

University of Málaga, Spain
email: mmrojas@uma.es

J.M. Soto-Hidalgo, Member, IEEE
Dept. Comput. Architecture & Comput. Technology

University of Granada, Spain
email: jmsoto@ugr.es

Abstract—In comparison to some other economic sectors, the
productivity of workers in the construction has not increased
much over the last 20 years. There are many approaches to tackle
this problem, and one of them is to rethink the design process
and introduce automation. In this paper, we propose a workflow
that allocates houses on a plot of land. This workflow starts
with GIS data and urban planning requirements and ends with
a BIM model on that property. A genetic algorithm tackles the
design process of allocation of houses by iterating and optimizing
a parametric model. In the end, a designer chooses the final
solution between the generated range. The degree of automation
achieved by the algorithm will be tested by comparing the results
of the algorithm with human-made designs.

Index Terms—Generative design, building architecture, visu-
alization software

I. INTRODUCTION

The McKinsey Global Institute (MGI’s) published a study
on the construction industry in February 2017 and found
that the construction industry has an unsolvable productivity
problem. While sectors such as retail and manufacturing have
reinvented themselves, the construction industry seems to be in
a time loop. Global labour productivity growth in construction
has averaged only 1% per year over the last two decades,
compared to 2.8% in the global economy as a whole and 3.6%
in manufacturing as shown in Fig. 1.

Fig. 1. MGI´s in Global productivity

There are many reasons for the continuation of such poor
performance, including strict regulations and dependence on

public sector demand, informality and sometimes corruption,
industry fragmentation and a mismatch in risk allocation and
reward. The construction sector should learn from successes in
other industries and disrupt the ongoing process of thinking,
working and building. In recent years, the rethinking of
processes and an increase of automation level has been the key
factor of increased productivity. Recently, digital technologies
- from 5D BIM (Building Information Modeling) to advanced
analysis techniques - have spread rapidly. However, studies
indicate that BIM, in particular, has not brought significant
productivity gains, although this technology has introduced
improvements in the design process.

The idea presented in this paper is to create a tool that
automates the assignment of houses on a property. This tool
should be useful for different reasons. On one side, it should
be useful for real estate to identify land purchase opportunities
with above-market returns, and on the other, for the planner
as a generative modelling tool that suggests many optimal
solutions on the property of the study.

This paper is structured as follows. Section II presents
some preliminary concepts related to generative design, while
Section III describes the proposal. A case study illustrating the
potential of this proposal is presented in Section IV. Finally,
Section V contains some concluding remarks.

II. PRELIMINARY CONCEPTS: GENERATIVE DESIGN

This section summarises some preliminary concepts. Sec-
tion II-A introduces Generative Design in Space Planning
with special focus on Multi-Objective Optimization NSGA-
II. Section II-B presents the concept of Computational Design
and its tool for Generative Design in Autodesk, “Refinery”.

A. Generative Design

In space planning, generative design refers to a method to
iterate our designs into optimal solutions [1], [2], [3], [4]. In
nature, a similar design process is based on natural selection
principles. These principles, applied to an algorithm, define a
genetic algorithm. Due to the complexity of architectural mod-
els, for this study, we will use the NSGA-II algorithm, which
is an algorithm based on genetic principles for multiobjective
optimization.

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

1) NSGA-II algorithm: Only four basic operators drive the
algorithm. [5] Generation: The algorithm begins by generating
a set of designs which form the initial ´´generation”.

Selection: Next the algorithm selects which of the initial
designs are going to be used to generate the next generation.

Crossover: This is similar to the idea of “breeding” in
natural evolution; it recombines the most suitable designs to
create a new population of designs.

Mutation: Mechanism to inject new information randomly
into the gene pool. Randomly changes the inputs of a random
number of children before they enter the next generation.

Plotting the designs relative to two goals define a line called
the Pareto optimal front. Fig. 2 illustrates this plotting. Notice
that all designs occurring on the boundary are optimal because
it is impossible to make any of them better in one goal without
making it worse in another one. Any designs found inside the
boundary are feasible but non-optimal.

In practice, this front is not always clear and continuous.
This model presents some discontinuity every time the con-
figuration of certain parameter changes [6]. It is important to
consider these discontinuities when optimizing a model to al-
low all possibilities to be explored within a given discontinuity,
i.e., by fixing the number of zone subdivisions on the plot of
land per optimization.

Fig. 2. Discontinuities on the pareto front

B. Computational Design

Visual Programing Language (VPL) is excellent because
it allows sequential workflows on a functional basis, and
due to the visual approach is more intuitive for designers to
develop their workflows. However, VPL provides only limited
support in embedding through custom components. It does
not provide support for recursion nor the one for object-
oriented programming. The solution is to integrate a Python
code into Dynamo, so we can use the advantages of the

Visual Programming and also avoid the limitations throughout
Python.

1) Autodesk Refinery vs Discover: Refinery is an Autodesk
beta product for a generative design that allows users to
quickly explore and optimize their Dynamo designs. Discover
is a similar tool developed by Danil Naggy and runs in
Grasshopper from Rhinoceros-McNeel.

After Refinery or Discover go through the generative pro-
cess, the results are displayed in geometric form and through
a series of diagrams or tables. Both are based on the NSGA-II
algorithm.

Although Refinery is an easy-to-use product, it allows you
to control only a few hyperparameters of the optimization:
Design per generation and Number of generations. Mutation
= 0.08 can not be modified. Refinery is well suited for the first
approach to optimization with NSGA-II in a prototypical way,
but not as a final workflow, as it is a ”black box” approach.

On the other hand, Discover allows you to control more
hyperparameters: Design per generation, Number of genera-
tions, Mutation, Elitism and Crossover. Input parameters can
be defined as categorical or continuous. Initially Mutation =
0.05 and Elites = 1.

The output of the optimized geometry was to be a BIM
model, so we initially used Refinery to remain native in a BIM
program, Revit. As the transition from Grasshopper to Revit
has become easier since early 2020 with Rhino-Inside, we will
continue to develop further in Grasshopper as it provides an
open-source environment and an open API. Nevertheless, in
this paper, we will present the results achieved in Refinery.

III. GENERATIVE DESIGN PROPOSAL

To develop a workflow that allows the allocation of build-
ings on plots, we need to consider the following points:
GIS data integration, Regulations, Module apartment types,
Urban planning, Goals and constraints, and Generative Design
workflow.

A. GIS data integration

GIS data download can be automated. OpenStreetMap al-
lows to process *.osm files (free to download from OSM
website) with a Python file and generate geometry within
Rhino or Revit. So far, the program only looks into the
building geometry (if available). However, the OSM data-
structure is not made to store 3D data. It is more a sliced
representation of the geometry. Therefore, you only can get
extrusions by height and construct the roof geometry based
on the given type.

B. Regulations

Deep Learning object detection allows reading zoning plan´s
information and converts it into constraints of a generative
model. Online availability of these regulations allows au-
tomation. Europe is nevertheless in a disadvantage against
USA or Australia due to its policies on Data Protection. In
Europe, unpublished data does not allow certain levels of
automation. In contrast, two Startup companies in New York

https://envelope.city/ and Australia https://archistar.ai/ show
that this workflow is doable.

C. Modularity
A catalogue of housing units is defined to ensure that

generated models meet all conditions and needs necessary
for the construction of a real project. Besides, these modules
are easy to parameterize and are cost-effective to optimize,
which simplifies a preliminary approach of assigning different
buildings to plots of land.

In this paper, as example, the TUM München is considered
and graphically illustrated in Fig. 3. In this case, we can
see how different depths are possible, depending on the
maximum ceiling span usability (V1), maximum utilization
of the construction (V2) and better proportioned and more
flexible furnished rooms, which insure a lot of natural light
due to their shallowness (V3 and V4). The sizes of the floor
plans are based on the requirement´s catalogue criteria and
are coordinated with each other, which allows easy creation
of combination and building groups.

Fig. 3. Housing Units

Common typologies such as block type, external corridor
type, central corridor thin type and central corridor thick type
are possible in different compositions by packing the housing
modules within these four typologies. Fig. 4 shows different
building typologies.

Fig. 4. Building typologies

D. Urban planning
Decoding Spaces is a plugin for Grasshopper from Weimar´s

University. They synthesize spatial configurations for street

networks, parcels and building volumes. Principles of this
plugin [7] could be used to develop a similar workflow.
Nevertheless, the state of the workflow relays on the human as
a decision-maker for urban planning decisions. The designer
needs to define manually which streets, parks, squares, etc.
should be prolonged or complemented. Those manual inputs
will define constraints on the generative model.

Once the main urban decisions have been made, NSGA-II
will optimize further plot subdivision and typology allocation.
The generative model will be built using recursive subdivision
[6] to divide the plot into many zones. The allocation of
the typologies is random and is optimized by maximizing or
minimizing the objectives and fulfilling constraints.

E. Goals and constraints
Constraints dictate whether a design is a feasible option at

all. Plenty of design problems are defined by several different
goals, which may be related to each other in complex, non-
intuitive ways. Deciding which design is better than the other
is not always clear.

The genetic algorithm will achieve the best performance
results by setting some optimization goals. For example:
maximizing the built area and compactness, minimizing north-
facing apartments and setting a maximum building height
as a condition. To judge genetic algorithm design´s relative
performance compared to other is usually a balance between
visual aspects and best performance rate.

F. Generative Design Workflow
The Generative Design (GD) workflow is displayed in table

1. This table is divided into three sections: Pre-GD, GD and
Post-GD, and three columns: Topic, Task and Technique. In
the Technique column, the value ”Manual” means Architect,
Generative Design Specialist or Designer.

IV. CASE STUDY

A. Urban planning competition
The aim of the competition is to create an attractive urban

residential quarter [8] (approx. 250 residential units) with a
subordinate share of commercial use and high quality of open
space. In addition, intelligent, sustainable and flexible housing
offers are to be created that respond to different market needs.

B. GIS data
GIS data is downloaded from cadmapper.com and exported

to Revit.

C. Parametric Model
1) Urban Planing Concepts: In the book “A Pattern Lan-

guage”, Christopher Alexander describes patterns that create
cities worth living in. Even though he explained several of
them, in our code, we will use the most important ones and
bring them into our parametric model. They are: 1-Green
areas within five minutes walk from each house. 2-Uniform
distribution of streets, footpaths, sports fields and common
activities in the neighbourhood. 3-Central square or the green
area enclosed by buildings typologies while offering views to
outside.

TABLE I
GENERATIVE DESIGN WORKFLOW

Pre-GD

Input/data

Topic Task Technique

GIS data GIS into CAD software Automation

Zoning Plan Images or PDFs into Meta-
data

Manual / Deep
Learning

Design Decisions

Update
housing´s types

Encode requirements Manual

Urban planning
(parks, squares,
typologies...)

Design decision into adja-
cency list

Manual / Ma-
chine Learning

GD

Run Optimization

Hyperparameters Set goals and weights and
NSGA-II hyperparameters

Manual

Optimization Run Generative
Design

Choose option

Re-run optimiza-
tion

Readjust hyperparameters
and run the optimization
again until we do not get
better results, then manually
select the best option

Manual

Post-GD

Refine

To BIM Optimized option to a more
detailed BIM model

Automation

Further
refinements

Adapt chosen design to fur-
ther requirements

Manual

2) Subdivision Algorithms: The plot is divided into sub-
plots by recursion. The structure of the algorithm is a binary
tree and to control the subdivision we have 4 main variables:
var_n (number of sub-plots), var_directions (to
determine whether the subdivision is parallel or perpendicular
to the longest side of the sub-plot), var_splits (to define
which sub-plot is further subdivided) and var_areas (target
area of each sub-plot).
var_n = n
var_directions[n-1][0,1]
var_splits[n-2][0,1]
var_areas[perm(n)]

3) Typology placement: The know-how of the city planner
flows into the algorithm via the adjacency list. This list
contains restrictions and requirements per building typology.
During the generative design loop, a particular typology is
placed in a specific location with its surroundings (existing
buildings, streets, paths, green spaces, topography, orientation,

etc.) in a particular way that best meets the requirements
specified in the adjacency list.

D. Fitness objectives

Six fitness objectives have been set, each with a design
intention:

1. Living space factor; the ratio of living space to the built
area -maximize. This parameter reduces the building costs to
the same living space.

2. The ratio of total built area to land area -maximize. Real
estate usually wants to maximize the built area on a property
up to a certain value.

3. Compactness (ratio of facade area to building volume)
minimize. The facade is usually an expensive part; reducing
its area reduces the costs.

4. Sub-plot area (the difference between target and sub-plot
area) -minimize.

5. Sub-plot proportions (deviation of the side zone length
from the average side length of the same zone) -Minimize.
Similarities in the sub-plots proportion are proven to generate
a more cohesive neighbourhood.

6. Variability (number of different typologies on the plot)
-maximize. To stimulate a more diverse and livable environ-
ment.

E. Evolve

We run the optimization in Refinery three times:
Design per generation = 32
Number of generations = 10
Number of zones = 3,4,5
The time required by Refinery is about 15 minutes per model.
Fig. 5 shows this case study where 3, 4 and 5 zones are
considered.

Fig. 5. Case Study: 5, 4 and 3 zones

F. Termination Criteria

Refinery provides a dashboard interface with the hundreds
or thousands of generated options and their parameters. By
manually filtering the values of the fitness criteria in the
dashboard, the user gets a small set of customized solutions.
Finally, the user chooses the most appropriate solution by
selecting from this set a solution that looks more attractive
and easier to build. In this way, the user’s subjectivity and
expertise are incorporated into the process.

G. Generative Design vs competition´s results

Competition´s awards always show an urban planning con-
cept that rounds off the whole urban solution. In comparison,
the results of the GD algorithm look a bit banal, because they
may be right concerning the optimized parameters. Still, they
do not follow any intention and do not react accordingly to
their surroundings. This lack of conceptual understanding of
the GD algorithm makes complete automation of the urban
design process unrealistic [9]. We can see this development as
a design assistant for the designer. An algorithm that explores
the plot by proposing many suitable solutions to the designer.

Fig. 6. Competition result

V. CONCLUSIONS

The conclusions of both the proposal and the case study
show that the lack of conceptual understanding of the genera-
tive model optimization does not allow a fully automated pro-
cess. On this basis, we propose a workflow between humans
and algorithms to achieve at least a semi-automated process,
and we also reflect on our initial decision to use modules to
describe living areas.

A. Singularity vs Modularity

Modular models need fewer parameters to be described,
and at the same time, more constraints reduce the number of
model possibilities. Therefore, the calculation and optimiza-
tion of these models are computationally cheaper, and at first,
the computational design easily generates modular buildable
architectures [10].

However, uniqueness is a significant advantage in archi-
tecture: local regulations, GIS data, builders’ requirements,
budget and other parameters define particular needs that are
not always adequately met when the basis is a fully modular
design. Besides, modularity has not so far proven to be an
advantage on the construction site by reducing costs, and
therefore uniqueness is still required by real estates.

Future development in these fields should include graph
matching algorithms, [11], [12], machine learning algorithms
[13], [14], etc. [15], [16], [17] which provide methods for more
flexible and complex models that will eventually generate
unique and buildable architectures.

B. Human vs Algorithm

There are three types of parameters to describe a model:
Hard parameters: constructed area, heights, compactness, the
number of units, etc. These parameters are defined by numbers
and are easy to deduct and optimize, either by humans or by
algorithms.

Simulation parameters such as energy consumption, sun-
light, thermal comfort, paths, etc. must first be simulated
and then optimized. They are optimized more efficiently by
machines.

Soft parameters: beauty, art concepts, sensations, urban
planning decisions or design concepts are parameters that
cannot be defined by numbers. Even today, computers can
hardly approach these topics and are therefore fields set by
humans.

C. Algorithm´s evaluation

To evaluate the algorithm, we will show the results to a
group of urban planners and architects. The advantages and
disadvantages of the GD workflow should be compared to a
common architectural process to ensure that the process adds
value.

REFERENCES

[1] D. Nagy, D. Lau, J. Locke, J. Stoddart, L. Villaggi, R. Wang, D. Zhao,
and D. Benjamin, “Project discover: An application of generative design
for architectural space planning,” in Proceedings of the Symposium on
Simulation for Architecture and Urban Design. Society for Computer
Simulation International, 2017, p. 7.

[2] E. Rodrigues, “Automated floor plan design: generation, simulation, and
optimization,” Ph.D. dissertation, 2014.

[3] D. Benjamin and D. Nagy, “Generative design for architecture,” May 17
2018, uS Patent App. 15/812,885.

[4] V. Singh and N. Gu, “Towards an integrated generative design frame-
work,” Design Studies, vol. 33, no. 2, pp. 185–207, 2012.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[6] D. Nagy, L. Villaggi, D. Zhao, and D. Benjamin, “Beyond heuristics: a
novel design space model for generative space planning in architecture,”
2017.

[7] R. Schaffranek and M. Vasku, “Space syntax for generative design:
On the application of,” in Proceedings of the ninth international space
syntax symposium, 2013.

[8] C. Alexander, A pattern language: towns, buildings, construction. Ox-
ford university press, 1977.

[9] D. Lobos and D. Donath, “The problem of space layout in architecture:
A survey and reflections,” arquiteturarevista, vol. 6, no. 2, pp. 136–161,
2010.

[10] M. Mirahmadi and A. Shami, “A novel algorithm for real-time procedu-
ral generation of building floor plans,” arXiv preprint arXiv:1211.5842,
2012.

[11] R. Schaffranek, “Parallel planning: An experimental study in spectral
graph matching,” in Proceedings of the 10th International Space Syntax
Symposium, 2015.

[12] D. Nagy, L. Villaggi, J. Stoddart, and D. Benjamin, “The buzz metric: A
graph-based method for quantifying productive congestion in generative
space planning for architecture,” Technology— Architecture+ Design,
vol. 1, no. 2, pp. 186–195, 2017.

[13] D. Newton, “Generative deep learning in architectural design,” Technol-
ogy— Architecture+ Design, vol. 3, no. 2, pp. 176–189, 2019.

[14] P. Merrell, E. Schkufza, and V. Koltun, “Computer-generated residential
building layouts,” in ACM SIGGRAPH Asia 2010 papers, 2010, pp. 1–
12.

[15] D. Camozzato et al., “A method for growth-based procedural floor plan
generation,” 2015.

[16] C. M. Herr and R. C. Ford, “Adapting cellular automata as architectural
design tools,” 2015.

[17] Z. A. A. A. Baki, H. A. Abdulbaqi, and Y. M. Mohialden, “A novel
interior space planning design based on mdb-fa method.”

