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Abstract—Active learning plays an important role in low-
resource scenarios, i.e., when only a small amount of annotated
instances is available. However, one does not know what is the
best active learning strategy before actually testing a handful of
strategies on a labeled set, which might not be viable in a real
world low-resource scenario. Instead, it would be desirable to
dynamically obtain the results from the best strategy on a given
scenario, while using as little annotated resources as possible.

In this paper, we present a novel application of prediction with
expert advice to combine different query strategies as experts,
giving a greater weight to those which select the most useful
instances. We evaluated our approach in two Natural Language
Processing (NLP) tasks: Part-of-Speech tagging (for English) and
Named Entity Recognition (for Portuguese). Results show that
our solution keeps up with the results of the best strategy in each
scenario, nearly reaching fully supervised performance with only
half of the annotated data.

Index Terms—Natural Language Processing, Low-resource
learning, Active Learning, Online Learning, Prediction with
expert advice

I. INTRODUCTION

Recent approaches to several NLP tasks have been dominated
by the deep learning trend, which has one important drawback:
most models need to be trained with large amounts of labeled
data. Labeled datasets have become increasingly available,
enabling the success of deep approaches, but they are costly
to produce and remain unavailable for many languages.

Active Learning (AL) [1], [2] is one of the most popular
learning frameworks that aims to train models with limited
annotated resources. Under this framework, an instance (or a
small batch of instances) is iteratively selected from a pool
of unlabeled instances according to a certain criterion of
informativeness (often referred to as query strategy) to be
labeled by a human annotator and added to the training set.
Hence, a better performance can be achieved with a clever
selection of the instances to be annotated. Many query strategies
have been proposed to date; however, as shown by Lowell et
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al, the performance of these strategies may vary depending on
the setting (task, dataset, or model) [3]. This implies evaluating
which strategy is the most appropriate on a large enough
(annotated) test set, which goes against the very principle of
minimizing the need for annotated data that motivates AL. In
fact, in truly low-resource scenarios, finding the best strategy
in this fashion simply might not be possible.

To address this shortcoming, we design the problem of
dynamically converging to the best query strategy as a problem
of prediction with expert advice. We propose a novel application
of an online learning method that combines different AL query
strategies with the goal of converging to the best ones regardless
of the task in hand. Thus, unlike the traditional expert advice
scenarios, in which the experts are typically classifiers whose
goal is to predict labels or actions, our experts are the query
strategies, which are in charge of choosing a batch of unlabeled
instances for the human to annotate. The size of each expert’s
batch at each iteration varies according to its weight, which
is adjusted according to a metric of how “useful” was the
expert’s previous selection of instances. To this end, we build
on the well-known Exponentially Weighted Average Forecaster
(EWAF) algorithm, which learns incrementally how to select
the best expert. In our setting, the loss function for each expert
and forecaster is computed with a heuristic, because we do
not have access to the optimal outcome (which, in this case,
would be the optimal set of instances to select).

In this paper, we evaluate our solution on sequence labeling
tasks. In this family of tasks, the goal is to predict a label
for each token of a sentence, considering that these labels
might be dependent on each other and even reflect structural
relations within the sentence. We validate our proposal in two
distinct scenarios: Part-of-Speech tagging (using an English
dataset) and Named Entity Recognition (using a Portuguese
dataset). Specifically, we aim to address the following research
questions:

1) Does our expert-based solution converge to the best
individual query strategy?. In other words, can our
solution converge to the best query strategy with EWAF
when we compute the loss function with a heuristic?



2) If so, how soon does it start to pay off? In other words,
how many instances must be queried by our solution in
order to reach the performance of the best strategy?

The results for both tasks show that our expert-based solution
does converge to the best strategy in each scenario, while
using a heuristic to calculate the loss function within the
EWAF algorithm. Moreover, the results suggest our solution
is appropriate for a low-resource scenario: with an annotation
budget set to half of the unlabeled data pool, it nearly reaches
the performance of a version trained with the entire pool of
data.

The remainder of this paper is organized as follows. In
Section II, we present some background regarding Active
Learning and Prediction with Expert Advice. In Section III,
we describe our proposal. Section IV details the experiments
that we have performed and Section V presents a discussion of
the major findings. In Section VI, we present the related works
and compare them to ours. Finally, in Section VII, we present
the main conclusions and point to future work directions.

II. BACKGROUND
A. Active Learning query strategies

The most common instantiation of AL is known as pool-
based AL: a model learns from an initially small labeled set
L, which is iteratively augmented with an instance (or a small
batch of instances) from a pool of unlabeled instances U,
chosen according to some heuristic of informativeness (query
strategy) [2]. Query strategies can be grouped into exploitation-
based strategies, exploration-based strategies, and strategies
that combine both exploitation and exploration.

Exploitation-based strategies ground their selection on the
model’s decisions regarding how to classify the unlabeled
instances. One of the most commonly used exploitation-based
strategies is known as Uncertainty Sampling (US) [4]. This
family of strategies selects the instances where the model is
most uncertain about the labeling decision. The most direct
uncertainty measure is known as Least Confidence (LC), and
consists of choosing the instance whose labeling has the lowest
posterior probability, as given by Eq.1 (where 6 represents the
parameters of the model).

argmax = 1 — Py(g|z) ()

Since this measure does not account for the distribution
of the remaining possible labelings, two other measures of
uncertainty were proposed: Margin Sampling, which considers
the difference between the probabilities of the most likely
labeling and the second most likely labeling [5], and Entropy,
which selects the instances with highest information entropy
[6] across every possible labeling (or across the n most likely
labelings). These measures are straightforward to apply and
efficient as long as one can access the probabilities computed
for each labeling in the prediction step.

Exploration-based strategies, on the other hand, focus on
the representativeness of the instances. An example of this
family is Exploration-Guided Active Learning (EGAL) [7],

which selects the instances which are the least similar to the
labeled set L (i.e., with greatest diversity from £) and sorts
them according to how similar they are to their neighbors in the
remaining unlabeled set ¢/ (i.e. according to their density). The
balance between diversity and density is given by a parameter
w that varies between 0 (only diversity is taken into account)
and 1 (only density is taken into account). One advantage of
this family of strategies is that it does not require retraining
the model, as long as one sets the strategy’s batch size as the
budget of instances to be sent to the human annotator.

Finally, a popular strategy that combines both exploitation
and exploration is Information Density (IDen) [8]. This strategy
selects the instances to query based on both how uncertain the
model is and how similar they are to the remaining instances
in U, as given by (2).

o(x) x den(x)B (2)

The first term of this product, ¢(z), is the instance’s
uncertainty according to one of the measures previously
described, and the second term, den(x), is the average of the
similarities between that instance and the remaining instances
in U, weighted by the exponent 3.

Other query strategies have been proposed, mostly based
on the model’s current outcome or its expected improvement,
but these are either less efficient than Uncertainty Sampling
and/or tend to perform worse in sequence labeling tasks
[8], [9]; henceforth, in this paper we will focus on one
representative strategy for each family of strategies: US as the
exploitation-based representative; EGAL as the Exploration-
based representative, and IDen to represent the combination
of exploration and exploitation.

B. Prediction with expert advice

Prediction problems with expert advice can be seen as an
iterative game between a forecaster and the environment, in
which the forecaster resorts to different sources (i.e., experts)
to provide the best forecast [10]. At each round ¢, the forecaster
F consults a set of weighted experts £ = {E1, ..., EFx} and
has access to the predictions ftEk in the decision space D made
by each expert E}, € £. Considering the experts’ predictions,
the forecaster makes its own prediction, p’} € D. At the same
time, the environment reveals an outcome y’ € ).

A popular online learning algorithm used in this scenario is
the EWAF, a generalization of the Weighted Majority algorithm
presented by Littlestone and Warmuth [11]. This algorithm
has well-established performance guarantees, which include a
bound on how fast it converges [10].

In EWAF, the prediction p’} made by the forecaster is given
by:
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At the end of each round, the forecaster and each of the

experts incur a non-negative loss, 6; and ¢} respectively, based
on the outcome y! revealed by the environment:
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Then, the weights wy,...,wk of each expert Ej, € £ are
updated according to the loss incurred by each expert as shown
in Eq. 5 (where 7 is a parameter of the algorithm).

t
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By setting 7 to:
V/8log €] /T (©)

it can be shown that:
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thus ensuring that the forecaster quickly reaches a performance
similar to that of the best expert [10].

In our setting, we assume that the forecaster does not have
access to the environment’s outcome, whereby the environment
would have to present the optimal set of instances to select for
the model. Hence, the forecaster learns its own loss and each
expert’s loss through a heuristic.

III. ACTIVE LEARNING AS A PROBLEM OF PREDICTION
WITH EXPERT ADVICE

How can we combine several AL query strategies as experts
in order to dynamically reach the performance of the best
strategy? First, we define our scenario as a problem of
prediction with expert advice: each expert corresponds to a
query strategy, and the decision space D corresponds to sets of
unlabeled instances that are selected from a pool of unlabeled
instances, U/ (note that in our sequence labeling scenario, each
instance is a sentence). Our goal is to iteratively award a
greater weight to an expert (i.e., a query strategy) that selects
the most useful instances to be labeled by a human annotator.
In particular, at each iteration ¢ of our algorithm (illustrated in
Alg. 1), each query strategy selects a small batch of the most
informative unlabeled instances (line 7). Then, our forecaster
selects a portion of each strategy’s selected batch of instances
which is proportional to that strategy’s weight wy (line 8).
The forecaster’s batch is then delivered to a human annotator
(line 9) and added to the labeled set £ for the next iteration
(lines 10, 15 and 16).

Here, in line with our low-resource motivation, we introduce
a change to the traditional AL setup. Inspired by previous works
such as [12], we attempt to reduce the annotation effort by
presenting the human annotator with the labels predicted by the
sequence labeling model for each selected instance. Thus, the
annotator only needs to change the labels that were incorrectly
predicted to the correct labels. Note that the annotator remains
unaware of which instances were selected by each strategy.

Before moving to the next iteration, each strategy’s weight
needs to be updated based on how good was the selection
decision of unlabeled instances. In this scenario, recall that we
do not know what would be the outcome of the environment,
i.e., the optimal set of instances to select for the human to

annotate. This fact actually suggests that we could define our
setting as a multi-armed bandit problem [10]. In this class
of problems, the environment’s outcome is also unknown at
each iteration, but the forecaster learns its own loss for a
selected action. In contrast with our setting, we assume that
the forecaster does not learn its own loss directly from the
environment but has to compute it through a heuristic. In
addition, we use the same heuristic to compute the loss of
every expert, which led us to use EWAF’s weight update rule,
as previously shown in (5). However, one could also slightly
change the previous setting to frame it as a multi-armed bandit
problem. In this new setting, the forecaster would only select
the prediction of one expert and use the heuristic to calculate
its own loss at each iteration. Then, only the weight of the
selected expert would be updated, using algorithms for multi-
armed bandit problems, such as the Exponential-weighting for
Exploration and Exploitation (EXP3).

So how should we compute the loss [}, for each expert in
our scenario, in the absence of the environment’s outcome?
To address this challenge, we propose to reward each query
strategy based on a heuristic of how useful the instances
selected should be. For each strategy, we define the EWAF
loss as ¢ = —rk, where rl is a reward that corresponds to
the ratio between the number of predicted labels edited by
the human annotator, num_edits;, and the total number of
tokens across all instances selected by that strategy within the
forecaster batch, total_num_tokensy (line 11). Our reasoning
is that, the greater the need for the human to edit the labels
predicted for a given instance, the more useful such instance
should be, i.e., our reward is a “proxy” of how these instances
are expected to improve the model’s performance. We then
update each strategy’s weights using the cumulative reward
R! (line 13).

IV. EXPERIMENTAL SETUP
A. Tasks and corpora

We validate our proposal in two distinct NLP tasks: Part of
Speech (PoS) tagging and Named Entity Recognition (NER).

For PoS tagging, we used the Brown corpus [13]', anno-
tated with the Universal Tagset [14], which comprises 12
classes: ADJ (adjective), ADP (adposition), ADV (adverb),
CONJ (conjunction), DET (determiner), NOUN, NUM (numeral),
PRT (particle), VERB, . (punctuation) and x (words that do
not fall in any of the previous categories, such as misspelled
or abbreviated words). When pre-processing this corpus, we
discarded the tokens tagged with the labels . (corresponding to
punctuation) and x (corresponding to unknown words, such as
misspelled or foreign words), as well as tokens containing digits
and the special character & (often labeled as a conjunction).

As for NER, we used the Brazilian Portuguese corpus
Paramopama [15] mixed with the European Portuguese corpus
Second HAREM [16], whose tagset comprises five classes:
ORGANIZACAO (organization), PESSOA (person), TEMPO
(time), LOCAL (place), and O (for the remaining tokens). When

! Available under NLTK: http://www.nltk.org/nltk_data/



Algorithm 1 Active Learning with expert advice.

Input: labeled set £, unlabeled set U, model, experts £, expert weights w1, ..., wx expert batch size by, forecaster batch size

by, budget
I Wi, ..., Wi <1
2: for each t € budget do
3:  total_instances_to_add < ()
model.train(L)
model.predict(U)

instances_selectedy, < Ej.select_instances(U, L, by)
instances_to_asky < forecaster(instances_selectedy, wy,by)
: instances_to_addy, num_editsy, total_num_tokensy, < simulate_human(instances_to_asky,)
10: total_instances_to_add < total_instances_to_add U instances_to_add,

4
5:
6: for each E;, € £ do
7
8
9

. num_editsy
11 Tk < total_num_tokensy
12: Ry + Rp + 7
13: wzﬂ — Pk

14:  end for

15: L <« L Utotal_instances_to_add
16: U <+ U — total_instances_to_add
17: end for

pre-processing this corpus, we discarded the tokens containing
digits and special characters, such as punctuation.

B. Features

In line with the motivation that underlies our proposal, we
mostly extracted features that would be trivial to obtain in
a low-resource setting. Thus, for PoS tagging, we used the
following set of features:

o the token to be classified;

o its previous and next n tokens (n = 1, 2, 3);

« the token’s orthographic “suffix”, i.e., its last ¢ characters
(c=1, 2, 3), and its last p pronunciations, after applying
a Grapheme to Phoneme (G2P) system?” to the sentence
(p=1,2,3)

« the Named Entity tag to which the token belongs, after
tagging the sentence with Stanford’s NER system [17].

o the token length, represented by nominal categories:
small (under 3 characters), medium (between 3 and 5
characters), and 1large (6 or more characters);

« the token frequency in the current set, represented by the
quartile of the training/test set token distributions to which
the token belongs.

As for NER, we used a subset of the features above: the
token, the previous and next n tokens, and the orthographic
suffixes. We also used three binary features that signal whether
the current token, its previous token, and the next token start
with a capital letter.

C. Implementation details

As our main classifier, we use a discriminative model
estimated with linear-chain Conditional Random Fields (CRF),
a well-established model for sequence prediction, proposed by

Zhttps://github.com/Kyubyong/g2p

Lafferty et al [18]. This model is appropriate in combination
with potentially overlapping features, and the features do not
need to fully specify a state or observation, making it expectable
for a CRF model to be estimated from less training data. We
used the CRFSuite implementation [19] with the default trainer,
which learns using Gradient Descent and the Limited-memory
Broyden—Fletcher—Goldfarb—Shanno (L-BFGS) method. We
set the trainer to include transitions that are possible, but not
observed, and use the following parameters: coefficient for L1
penalty = 0.1; coefficient for L2 penalty = 0.01, and maximum
number of iterations = 200.

As for the query strategies, we implemented one strategy
from each family described in Section II-A:

o Uncertainty Sampling, using Least Confidence as the
uncertainty measure® (US-LC);

o Exploration-Guided Active Learning, following [7]. We
implemented this strategy with two different similarity
measures: the Jaccard similarity between sentences [20]
(EGAL-Jac), and the cosine distance of the contextual
embedding of the sentences — we use pre-trained BERT
embeddings* [21] as provided by “BERT as a service”
[22] (EGAL-BERT). We set the parameter that balances
diversity with density, w, to 0.5 (thus giving equal weight
to both);

o Information Density, following [8]. We used the same
uncertainty measure as US and the same similarity
measures and w as EGAL (IDen-Jac, IDen-BERT). The
density exponent 8 was set to 0.5.

3We did not use Margin Sampling nor Entropy due to their computational
cost. Since the CRF we are using is provided as a black-box, we would need
to compute the probabilities for all label permutations over the set of labels
and each sentence’s length instead of directly accessing the probabilities for
the best labelings.

4For Portuguese, we use the multilingual pretrained embeddings.



We also included a baseline strategy that randomly samples
the instances to ask the human (Random).

Finally, the human annotator was simulated using the gold
annotations provided in the corpora used.

V. EXPERIMENTAL RESULTS

In this section, we report and discuss the performance results
of our expert-based solution for each task, in comparison to
each query strategy in isolation.

To compute the results, we started by shuffling each corpus
and set aside 1000 sentences for the test set. We report
the average performance of 10 runs over 10 shuffles of the
remaining corpus (along with the confidence intervals for each
iteration, using p = 0.05), from which we obtained an initial
labeled set £ with 5 sentences and an initial unlabeled pool U/
with 500 sentences.

In each pair task-language, we report the performances of:

o Each individual strategy listed in Section IV-C, using a
batch size of 10 instances;

o Our expert-based solution, combining all the query strate-
gies listed in Section IV-C, using a batch size of 10
instances (Experts);

o A fully supervised version, trained on all the instances in
the unlabeled set, along with the labeled set (Supervised).

The performance of each version was measured at each
iteration using F-Score (£) (as computed by scikit-learn
[23]). The AL simulation lasted until a budget of up to 250
instances was reached.

Results for PoS tagging are shown in Fig. 1, and results for
NER are shown in Fig. 2. For improved readability, the F}
axis of each plot starts on 50%.

Does our expert-based solution converge to the best individual
query strategies?

Since our scenario does not provide the environment’s
outcome, from which the predictor learns the loss functions,
we do not know if EWAF’s convergence guarantees hold. Thus,
our first question is whether our solution is able to converge
to the best strategies nonetheless.

For both tasks, we can see that the performance of both
versions of our expert-based solution converges towards the
performance of the best individual strategies (which are US-
LC and IDen-BERT). Moreover, when the budget of instances
to ask the human annotator is depleted, the performance of
our experts’ system nearly reaches the performance of the
supervised system on the test set. For PoS tagging, our solution
reaches I} = 89.91%, versus the F; = 91.21% obtained by
the supervised version. As for NER, they perform even closer:
the expert-based solution reaches F; = 90.68%, versus the F
= 91.46% obtained by the supervised version, which contains
twice as many annotated instances than our annotation budget.

How soon does it start to pay off?

Our second question concerns our goal of performing low-
resource NLP: specifically, we want to know how many
instances do we need to query so that our solution reaches the

performance of the best strategies. In order for our solution to
be relevant in low-resource settings, it would be desirable to
reach the best performance in few iterations.

For PoS tagging, the curve for our expert-based solution
presents a similar evolution to that of the best individual
strategies, but it is only after querying 120 instances that the
difference between its F} and the best F} goes below 1%.

As for NER, most strategies exhibit a similar F; curve from
the start. Our expert-based solution performs very closely to
the best individual strategies, with the difference between its
F and the best F} starting below 1% and decreasing to 0.3%
in the last iteration.

VI. RELATED WORK

A. Learning the query from data

A recent line of work in AL that addresses the challenge
of adapting to different datasets consists of learning the query
strategy from the data (usually referred as Learning To Active
Learn (LTAL)). Instead of using a query heuristic like the ones
described in Section II-A, LTAL approaches define the problem
of finding which instances would be the best for the human
to annotate as a learning problem: in addition to the main
learner for the task at hand (e.g. the sequence labeler), there
is a second model that, given an unlabeled pool of instances,
outputs the instances that should be annotated.

This approach has been followed by several recent works in
different NLP tasks (including sequence labeling) [24]-[27].
Wang et al propose the use of a query model in order to
address the challenge of performing AL when using black-
box models (for which it might not be possible to obtain
information such as the model’s confidence, which is crucial to
Uncertainty Sampling strategies). They apply their proposal to
the task of Semantic Role Labeling, evaluating it with different
models [24]. Fang et al define the problem of learning the
query as a reinforcement learning problem, and applied their
approach to NER, outperforming a Uncertainty Sampling query
[25]. Liu et al define the problem of learning the query as an
imitation learning problem, and applied their approach to text
classification and NER, outperforming [25] in the first task
[26]. Vu et al build on the approach proposed by [26], but
instead of learning the query from a higher-resource dataset,
they learn it from the predictions of the main learner, using the
high-resource dataset only for the initialization of the query
model. This version outperformed both heuristic queries and
previous LTAL approaches in text classification and NER (
[25], [26]) [27].

At best, LTAL approaches assume that an appropriate transfer
language, domain or task is available to initialize the model that
is responsible for learning the query, which might not always
be the case in low-resource scenario. Moreover, it requires the
computational overhead of training a second model for the
purpose of learning the query. Thus, instead of building on
this approach, we hypothesized that the approach of combining
the best choices of each strategy would be more aligned with
our goal of performing NLP tasks in a low-resource setting.
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However, it should be noted that LTAL could take part in our
approach as one of the query strategies available.

B. Active Learning and expert advice

The combination of AL and prediction with expert advice
has previously been applied in other works [28], [29], although
only for binary classification problems.

Baram et al present an approach that, on the surface, is
similar to the one we propose in this paper, as the environment’s
outcome is also unknown to the forecaster. However, their
work displays some key differences. First, they defined their
scenario as a multi-armed bandit problem, thus using the
algorithms EXP3 and Exponential-weighting for Exploration
and Exploitation with Experts (EXP4). When using EXP3, only
one query strategy is chosen at each iteration, while, when
using EXP4, the query strategies are combined, but they output
their ratings of informativeness for each unlabeled instance
instead of directly selecting instances. Second, their work only
combines three query strategies, all of them highly tied to
the Support Vector Machine classifier. Third, the approach

is only applied and tested in a binary classification problem.

Finally, another key difference is that they compute the loss
for each expert using Classification Entropy Maximization. In
the reported results, their combination of query strategies as
experts kept up with the results of the best strategy on each
problem [28].

Zhao et al combine AL with prediction with expert advice in
order to avoid having to consult the environment’s outcome in
every iteration. They show, both formally and through empirical
experiments on nine datasets, that their adaptation of two
online learning algorithms with experts (EWAF and Greedy
Forecaster) does not compromise the convergence guarantees of
the original algorithms [29]. This work is significantly different
from our approach because (i) the experts are linear classifiers
that learn a binary classification task, and (ii) active learning is
used only to reduce the number of requests to the environment
to obtain the outcome.

Hence, to the best of our knowledge, this is the first work to
apply prediction with expert advice for NLP problems, whereby
the experts are AL strategies, and the experts’ loss is computed
in a heuristic manner.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we focused on the problem of performing

NLP tasks in low-resource settings, using Active Learning.

We addressed one important shortcoming of previous Active
Learning approaches: the inconsistent performance of different
query strategies across different settings. To this end, we
presented a novel application of an algorithm for prediction
with expert advice, EWAF, to dynamically combine different
query strategies to select the unlabeled instances to be labeled
by a human annotator. Even though we are working under
different assumptions than EWAF, our expert-based solution
managed to converge towards the performance of the best
individual strategies in two different tasks and languages.

For future work, we intend to compare our approach with
that of multi-armed bandits algorithms, EXP3 and EXP4; we
also aim to include a LTAL strategy among our experts, and
validate our proposal under a broader range of settings, such
as different models.
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