
Fuzzy Modeling Using LSTM Cells for Nonlinear
Systems

Francisco Vega
Departamento de Control Automatico

CINVESTAV-IPN
Mexico City, Mexico

Wen Yu
Departamento de Control Automatico

CINVESTAV-IPN
Mexico City, Mexico

yuw@ctrl.cinvestav.mx

Abstract—The data driven black-box and gray-box models, like
the neural networks and fuzzy systems, have some disadvantages,
such as the high and uncertain dimensions and complex learning
process. In this paper to affront these disadvantages, we use
the Takagi-Sugeno fuzzy model and LSTM cells to propose a
new fuzzy-network model. This novel model takes the advan-
tages of the interpretability of the fuzzy system and the good
approximation ability of the LSTM. We also propose a fast and
stable learning algorithm for this model. Comparisons with others
similar black-box and grey-box models are made, in order to
observe the advantages of the proposal.

Index Terms—LSTM, fuzzy neural networks, nonlinear system
identification.

I. INTRODUCTION

The model of a system is the representation of the structure
(properties) of the system. The choice in which a model is
developed depends on what is expected to be represented in
it. Obtaining models can be done in different ways, such
as through physical laws (mathematical modeling); it is the
most common form, but this type of technique needs knowing
exactly the environment in which the system operates, as well
as making the biggest amount of theoretical considerations as
possible. Another way to obtain models is to include measure-
ments of the aspects of interest, together with some equations
that describe the system behaviour, achieving high robustness
and adaptability generating a gray-box model. Neural networks
(NNs) and fuzzy systems are very common to use as black-
box models (gray-box models without equations) and gray-
box models, respectively. The use of NNs and fuzzy systems
can generate models with the aforementioned characteristics,
either for system modeling or adaptive control.

Among the simplest ways to adjust the parameters of
NNs are supervised learning algorithms, highlighting the back
propagation (BP) algorithm. The BP is one of the most
popular algorithms to train NNs because of its simplicity [1].
Recurrent NNs (RNNs) are the most used in automatic control,
because they can generate relatively fast system models [3].
Variations of the BP algorithm have been developed to be
able to adjust the parameters of RNNs efficiently, stand out
the back propagation through time algorithm (BPTT) [2].
By analysing the stability of RNNs, this networks can deal
with the problem of noise and disturbances [4]. This network
represents that conventional RNNs can be changed into more

complex structures in order to obtain better results as the case
may be.

Fuzzy systems use fuzzy rules of the IF-THEN type to
model systems. There are two main types of fuzzy systems,
Mamdani fuzzy systems and Takagi-Sugeno (TS) fuzzy sys-
tems, with several comparisons between them were made [13].
Fuzzy systems represents experts knowledge, but they can be
constructed in such a way that they emulate an expert through
learning processes (like a NN) resulting in an ANFIS (adaptive
network based fuzzy inference system) [14]. The ANFIS
systems are based on a TS fuzzy system and transform fuzzy
systems into something similar to NNs. If the consequences
(THEN parts) of a TS fuzzy system are taken as nonlinear
functions, it is possible to obtain better results in the general
performance [15], [16]. The inclusion of NNs of different
types in ANFIS systems was introduced and discussed in
many works, such as [17]–[19]. More recent works on this
topic propose RNNs to estimate the consequences in fuzzy
systems, for example the wavelet network (WN) is used [20].
In [22] different types of fuzzy systems are applied, which are
structured with RNNs and conventional representations.

Recently a deep learning model, named LSTM (long-short
term memory), has been developed [5]–[7], [21]. It has a
recurrent structure and is based on information management
through gates, these gates measure the suitability of the data
they receive as input data, the stored data by the LSTM and
the data generated by the LSTM as result. LSTM networks
overcome many disadvantages of RNNs and they converge
relatively faster [8]–[11]. Some training algorithms specifically
for LSTM networks have been proposed, to further improve
their performance [12]. But as a disadvantage, the internal
structure of a LSTM is more complex than the conventional
RNNs. The use of deep LSTM networks is still under devel-
opment, as well as their use with other intelligent systems like
the fuzzy systems [23]–[25].

In order to create a network that reacts faster and with a
better approximation, specially for applications in real time
related to the identification and control of systems, in this
paper the LSTM network is employed inside the structure of
a TS fuzzy system. The novel model is established by the
fuzzy system and benefited by the LSTM network estimation.
A learning process for this fuzzy-network is also proposed,
it performs in a short period of time and it is feasible,

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

computationally speaking. The stability of the proposed model
taking into account the training algorithm is proved.

To show the advantages of the novel fuzzy LSTM network,
comparisons between the proposal and other intelligent al-
gorithms are made by using the Mackey-Glass time series
and a nonlinear benchmark system. These comparatives are
made to show the difference in the performance between the
algorithms, the proposal offers fast convergence and it can
achieve easily the assigned task. The task is focussed in the
generation of a model for the systems that was mentioned and,
based on the results, in a future the proposed fuzzy-neural
network can be used for real world applications.

II. FUZZY MODELING USING LSTM CELLS

A system can be represented as a nonlinear function in
discrete time as follows:

y (k) = ϕ [Ur (k)] (1)

where ϕ (·) is an unknown nonlinear difference equation, also
the state vector Ur (k) is defined as:

Ur (k) = [y (k − 1) , · · · , y (k − ny) , u (k) , · · ·
· · · , u (k − nu)]T = [ur1 · · ·urm]

T (2)

with u (k) and y (k) as the input and the output signals for the
system, ny indicates the number of the delayed output signal,
nu indicates the number of the delayed input signal, and m
indicates the number of elements urm in Ur (k).

The representation shown in (1) and (2) is known as a
NARMA model. To model that system, we use fuzzy IF-THEN
rules similar to a conventional TS fuzzy system, then for the
p-th rule it has:

Rp : IF ur1 (k) IS A1p & ur2 (k) IS A2p & · · ·
· · · & urm (k) IS Ajp, THEN hp (k) = %p (k)

(3)

where hp (k) is an estimation to the function %p(k) that
represents the consequent part of each fuzzy rule. The sets
Ajp, with j = 1 . . . κ, are the fuzzy sets for the fuzzification
(using κ fuzzy sets) of each urm in (2).

The membership functions associate to each Ajp are de-
scribed as follows:

µAjp,urm
(k) = exp

(
− (urm (k)− ςjp)2

2νjp

)
(4)

In this Gaussian function, the center is ςjp ∈ R and the
width is νjp ∈ R+. For the final estimation of a system,
the contribution of each input element to the premise part
(IF part) of a fuzzy rule in (3) is obtained by the T-norm,

zp (k) =

κ∏
j=1

µAjp,urm
(k) (assuming j = m).

A more general representation of the value of each element
of (4) in each fuzzy set can be done in a vectorial way:

ζj = exp

[
(Ur (k)− χj)2 ⊗

(
−1

2
Υj

)]
(5)

with χj , Υj ∈ Rm as the center and width vectors for ζj ∈
Rm, respectively. The vector ζj represents the value of each

element of urm(k) in fuzzy set Aj , and ⊗ is the operator for
the element to element product in vectors. This representation
will be useful for the adjustment of the parameters of the
fuzzy-network.

The consequent part (THEN part) of one fuzzy rule in (3)
is represented by hp(k). The function hp(k) usually is defined
as a linear combination of the inputs signals (2) of the system
(1), but as was said in the introduction, better estimations are
achieve with the use of nonlinear functions (with the input
signals as arguments); this nonlinear functions can be easily
obtained by a NNs, and one of the best to do this is a LSTM
cell. However, when ny and nu in (2) are unknown, i.e.,
we do not known how long the current status depends on
their previous information, especially when the time series is
long, the information between the relevant and place becomes
smaller and smaller. So we need a model which can hands the
“long-term dependencies ”, and LSTM cells has this property.

The estimation of (1) is obtained by the defuzzification of
the fuzzy system (3) with p rules:

ŷ (k) =

∑p
n=1 znhn(k)∑p

n=1 zn
=

p∑
n=1

z̄nhn (k) (6)

where:
z̄p = zp/ (z1 + z2 + · · ·+ zn)

The premise can be represented in a vectorial way as ZF ∈ Rp,
where all the elements of this new vector are the organized
multiplications as was explained in (4). Also, each element
of ZF is normalized as in (6). For multiple estimations,
the elements of ZF can be organized in such a way that
the premise parts repeats for every estimation, hence the
consequent parts are the only ones that are different for several
estimation in a same system.

The concept of the fuzzy system using the LSTM cells is
shown in Fig. 1, and it is divided in 4 layers: in the first layer
the inputs of the network are organized, in the second layer
this inputs are fuzzificate, in the third layer the values of the
IF and THEN parts are calculated, and in the fourth layer the
estimation of the system is made according to (6).

1
y

ju

my

1y

1L S T M

2

l

11
A

lA
1

n lB

1nB

I II III IV
���� �

L S T M

L S T M

Fig. 1: Fuzzy model with LSTM cells

So, the LSTM cells in the consequent part is shown in Fig.2.
The cells process data using the “gate” technique to let useful

information pass through its structure. This cell is capable of
handling long-term and short-term data dependencies in more
efficient way than a conventional RNN. The cells can work
together, as a netwotwork and also can be organized as an
array.

Fig. 2: LSTM cell for the consequent part.

The LSTM network has several stages, which are describe
by:

F (k) = σ
(
W fUr (k) + V fH (k − 1)

)
(7)

I (k) = σ
(
W iUr (k) + V iH (k − 1)

)
(8)

S (k) = ψ (W sUr (k) + V sH (k − 1)) (9)
C (k) = F (k)⊗ C (k − 1) + I (k)⊗ S (k) (10)
O (k) = σ (W oUr (k) + V oH (k − 1)) (11)
H (k) = O (k)⊗ ψ (C (k)) (12)

where: F (k), I (k), S (k), C (k), O (k) and H (k) ∈ Rp are
sections of the network, they are: the fitness of the internal
state, the fitness of the internal input, the internal input, the
internal state, the fitness of the output, and he output of the
LSTM network, respectively. The synaptic weights are: W f ,
W i, W s and W o ∈ Rp×m; V f , V i, V s and V o ∈ Rp×p
as diagonal matrices or V f , V i, V s and V o ∈ Rp as
vectors, according to the need. The functions σ(·) and ψ(·)
are the sigmoid and hyperbolic tangent functions, respectively,
Ur (k) ∈ Rm is the input in (2).

From (6), the output of the fuzzy system is

ŷ (k) = ZFH (k) (13)

where H(k) = [h1 (k) · · ·hp (k)]
T corresponds to the THEN

parts, ZF ∈ Rn is the elements of the IF parts. The number of
LSTM cells, as well as the number of fuzzy rules, are defined
as p = κm for the case of 1 estimation, for several estimations
it has p = l(κm) where l is the number of estimations (thus
ŷ ∈ Rl), as was described for (6).

According to function approximation theories of fuzzy
systems [27], the identified nonlinear process (1) can be
represented as:

Y (k) = ZF (W ∗)H (W ∗) + µ (k) (14)

where W ∗ is the unknown weights which can minimize the
unmodeled dynamic µ (k). The identification error:

e (k) = ŷ (k)− y (k) (15)

can be represented by (13) and (14)

e (k) = ZF

(
W̃
)
H
(
W̃
)

+ µ (k) (16)

where

ZF

(
W̃
)
H
(
W̃
)

= ZF (W ∗)H (W ∗)− ZFH (k)

W̃ (k) = W (k) −W ∗. In this paper we are only interested
in open-loop identification, we assume that the plant (1) is
bounded-input and bounded-output stable, i.e., y(k) and Ur(k)
in (1) are bounded. By the bound of the membership function
(5), µ (k) in (14) is bounded.

III. TRAINING OF THE FUZZY SYSTEM

Once the structure of the fuzzy system has already been
defined, it is necessary to design a training algorithm to adjust
its parameters or weights. In this paper, a variation of the
BPTT algorithm is chosen to train the fuzzy system. We apply
a narrow “window” to apply the BPTT. This window only
considers the values generated by the fuzzy LSTM network
in the current iteration and its immediate past iteration. In
this training method the values generated by the fuzzy LSTM
network in the oldest iterations are forgotten, also this can be
easily applied for online training. The training algorithm is
defined by:

W (k + 1) = W (k) + ηW∆W (k) + αW∆W (k − 1) (17)

where W is any synaptic weight array of the fuzzy LSTM,
∆W is the weight adjustment, ηW ∈ (0, 1] is the learning rate,
αW ∈ (0, 1] is the momentum term for the training algorithm,
and ηW > αW .

In (17), ηW determines the amount that increases or de-
creases each weight, while αW helps to stabilize the modifica-
tion by considering the past weight adjustment. The modelling
error between the desired value and the fuzzy model is defined
as:

ξ (k) = 1
2e
T (k) e (k)

E (k) = 1
N

∑N
k=1 ξ (k)

(18)

where e (k) is the modeling error between the fuzzy model
ŷ (k) and the unknown plant y (k), ξ (k) is the instant error
energy, E (k) is the total energy during the whole processes,
and N is the total number of iterations.

The modeling objective of the fuzzy system is
minW (k) ξ (k). The adjustment of each element of ∆W
is defined as follows:

∆wij (k) =
∂ξ (k)

∂wij (k)
(19)

where ξ (k) is defined in (18).
The modification (19) can be obtained by the application

of the the chain rule, diagrammatic rules, and the signal flow
of the network and it can be organized into an array like in

(17). By the considerations made before, the adjustment of the
parameters of the fuzzy LSTM network described in (4)-(13)
can be easy to obtain. To illustrate this fact, for example, if
we consider m = 1, l = 1 and κ > 1 the gradient (19) for
each element of W i in the consequent part is:

∆wip = ∂ξ(k)
∂e(k) ·

∂e(k)
∂ŷ(k) ·

∂ŷ(k)
∂hp(k) ·

∂hp(k)
∂ε1

· ∂ε1
∂cp(k) ·

∂cp
∂ip(k) ·

∂ip(k)
∂wi

p(k)

with ε1 = ψ (cp (k)). Then, the adjustment for the matrix W i

is:

∆W i (k) = (σ̇(W iUr (k) + V iH (k − 1))⊗Di)Ur (k)

Di = S (k)⊗ ψ̇ (C (k))⊗ ZTF e (k)⊗O (k)

A similar calculation is made for the adjustment of W f ,
W s, W o, V f , V i, V s and V o. In other hand, for the premise
part, for example, the adjustment of χj in the membership
functions of (5) are:

∆χj =
∂ξ (k)

∂e (k)
· ∂e (k)

∂ŷ (k)
· ∂ŷ (k)

∂zFj
· ∂zFj
∂ζj (k)

· ∂ζj (k)

∂χj
(20)

and in a vectorial form:

∆χj = (Ur (k)− χj)⊗Υj ⊗Dχ ⊗ e (k)H (k)

Dχ = exp
[
(Ur (k)− χj)2 ⊗

(
− 1

2Υj

)]
Also, something similar for Υj is done to compute its

adjustment. As it was said before, in this paper we are only
are interested in open-loop identification, we assume that the
plant (1) is bounded-input and bounded-output stable, i.e., y(k)
and Ur(k) in (1) are bounded. The following theorem gives a
stable gradient descent training algorithm for the fuzzy neural
model.

Theorem 1: If the learning rates in the training algorithm
(17) satisfy

ηWq (k) =
η

1 + ‖v (∆Wq (k))‖2

αWq (k) =
α

1 + ‖v (∆Wq (k − 1))‖2
(21)

where 1 ≥ η > 0 and η ≥ α > 0, Wq represents the weights
arrays W f , W i, W s, W o, V f , V i, V s, V o, χ1, . . . , χκ,
Υ1, . . . ,Υκ, then the normalized identification error,

eN (k) =
∑ρ
q=1

[
ηe(k)

1+max
k
‖v(∆Wq(k))‖2

+
αe (k)

1 + + max
k
‖v (∆Wq (k − 1))‖2

with ρ = 8 + 2κ, satisfies the following average performance

lim sup
T→∞

1

T

T∑
k=1

e2
N (k) ≤ (η + α) µ̄ (22)

where µ̄ = max
k

[
µ2 (k)

]
, the unmodeled dynamic µ (k) is

defined in (16).

Proof 1: To find the required stability conditions, the next
Lyapunov function is given:

L (k) =
∑ρ
q=1 Lq (k)

Lq (k) = tr
{
W̃T
q (k) W̃q (k)

} (23)

where the functions Lq (k) are associate with W f , W i, W s,
W o, V f , V i, V s, V o, χ1, . . . , χκ, Υ1, . . . ,Υκ, respectively.
W̃q (k) = W ∗q −Wi (k), “tr” is the denomination for the trace
of a matrix.

Each element in (23) works in an independent way, and
every element is defined in a similar manner. Here we only
show how to prove L1 (k)

L1 (k) = tr
{
W̃ fT (k) W̃ f (k)

}
where W̃ f (k) = W f∗ − W f (k) , W f∗ is the unknown
optimal value of W f . Using the trace properties: tr(A

T

B) =

tr(AB
T

) = tr(B
T

A) = tr(BA
T

) for any A, B ∈ Rm×n, also
considering (17),

∆L1 (k) = L1 (k + 1)− L1 (k)

= tr
{
W̃ fT (k + 1) W̃ f (k + 1)

}
−tr
{
W̃ fT (k) W̃ f (k)

}
= Lf + Lη

where by the training algorithm W f (k + 1) = W f (k) +
ηW f ∆W f (k) + αW f ∆W f (k − 1) ,

Lf = −2ηW f v
(
W f∗)T v

(
∆W f (k)

)
−2αW f v

(
W f∗)T v

(
∆W f (k − 1)

)
+2ηW f v

(
W f (k)

)T
v
(
∆W f (k)

)
+2αW f v

(
W f (k)

)T
v
(
∆W f (k − 1)

)
+2ηW fαW f v

(
∆W f (k)

)T
v
(
∆W f (k − 1)

)
+η2

W f v
(
∆W f (k)

)T
v
(
∆W f (k)

)
+α2

W f v
(
∆W f (k − 1)

)T
v
(
∆W f (k − 1)

)
and

Lη = −ηW f

∥∥v
(
W f∗)∥∥2 − αW f

∥∥v
(
W f∗)∥∥2

+ηW f

∥∥v
(
W f (k)

)∥∥2
+ αW f

∥∥v
(
W f (k)

)∥∥2

+ηW fαW f

∥∥v
(
∆W f (k)

)∥∥2

+ηW fαW f

∥∥v
(
∆W f (k − 1)

)∥∥2

+η2
W f

∥∥v
(
∆W f (k)

)∥∥2

+α2
W f

∥∥v
(
∆W f (k − 1)

)∥∥2

(24)

here “v” is an operator that organize the elements of a matrix
into a vector. If the properties

X
T

X + Y TY ≥ 2XTY, X
T

X = ‖X‖2

with ∀X, Y ∈ Rn are considered, then (24) becomes

Lη = − (ηW f + αW f) γ

where

γ =
∥∥v
(
W f∗)∥∥2 −

∥∥v
(
W f (k)

)∥∥2

−ηW f

∥∥v
(
∆W f (k)

)∥∥2 − αW f

∥∥v
(
∆W f (k − 1)

)∥∥2

If we use (21),∥∥v
(
W f∗)∥∥2 ≥

∥∥v
(
W f (k)

)∥∥2
+ ηW f

∥∥v
(
∆W f (k)

)∥∥2

+αW f

∥∥v
(
∆W f (k − 1)

)∥∥2

so
∆L1 (k) = Lf + Lη
≤ −πW f e2 (k) + λW fµ2 (k)

(25)

where πW f and λW f are

πW f =
η

1 + ‖v (∆W f (k))‖2
+

α

1 + ‖v (∆W f (k − 1))‖2
λW f = (η + α)

because

nmin

[(
W̃ f

)2
]
≤ L1 ≤ nmax

[(
W̃ f

)2
]

where nmin

((
W̃ f

)2
)

and nmax

((
W̃ f

)2
)

are K∞-

functions, πW f e2 (k) is a K∞-function, λW fµ2 (k) is a K-
function.

So, L1 admits a ISS-Lyapunov function, the dynamic of
the identification error is input-to-state stable. Because L1 is
the function of e (k) and µ (k). The “INPUT” corresponds
to the second term of (25), i.e., the modeling error µ (k).
The “STATE” corresponds to the first term of (25), i.e.,
the identification error e (k) . Because the “INPUT” µ (k)
is bounded and the dynamic is ISS, the “STATE” e (k) is
bounded.

Continuing, (25) can be rewritten as

∆L1 ≤ ηe2(k)

1+max
k
‖v(∆W f (k−1))‖2

+ αe2(k)

+ max
k
‖v(∆W f (k))‖2 + (η + α) µ̄

(26)

Summarizing (26) from 1 up to T , and by using LT > 0 and
considering L1 as a constant, we obtain

L1(T)− L1(1) ≤ −
T∑
k=1

‖eN (k)‖2 + T (η + α)µ

so ∑T
k=1 ‖eN (k)‖2 ≤ L1(1)− L1(T) + T (η + α)µ

≤ L1(1) + T (η + α)µ

then (22) is established. �

IV. COMPARISONS

In this section, we talk about the performance of the
proposed fuzzy LSTM network, several simulations using the-
oretical examples were made to determinate if this algorithm is
useful for real world applications. Between the simulations, we
choose two examples that stand out and these were worked in
an online fashion. This chosen simulations consist in compare
the results offered by our method (our fuzzy system with
LSTM cells,“fuzzy LSTM”) with the results offered by others
establish intelligent algorithms. The other algorithms are: a
RNN together with a Kalman Filter (KFRNN) [4]; a deep
LSTM networks (LSTM) [9]; a zero order ANFIS system

(ANFIS 0) [19]; a first order ANFIS system (ANFIS 1) [18];
a fuzzy wavelet network (fuzzy WN) [20]; and a stable fuzzy-
neural network similar to the KFRNN (fuzzy KFRNN) [29].

A. Mackey-Glass time series

The first example consist on a model generation for the
Mackey-Glass (MG) time-delay system, also known as MG
time series:

ẋ (t) =
0.2x (t− τ)

1 + x10 (t− τ)
− 0.1x (t) (27)

with x (0) = 1.2, τ = 17, and (t) = 0 for t < 0.
This time series is chaotic with no clearly defined period.

The series does not converge or diverge, and the trajectory
is highly sensitive to initial conditions. So, (27) was solved
for 1, 200s, samples of the time series were taken with a
sampling period T = 1s, creating the vector y(k) with
k = 1, . . . , 1201. We use the values of y(k) to define
Ur(k) = [y(k − 3), y(−20)]T , that was used to made the
estimation ŷ(k). We employed the first 601 iterations to train
the intelligent algorithms, meanwhile the rest data were used
for testing these algorithms.

We established p = 9 fuzzy rules for the fuzzy systems
(m = 2, κ = 3, l = 1), the dimensions of the NNs were
defined from several tests with different sizes and choosing the
smallest NNs that offers a good performance. The comparison
results are shown in the Table I. Here the modeling error E (k)
at the end of each phase is defined like in (18) and it represents
the performance of the algorithms, a low value indicates a
better performance. This table shows that all algorithms have
similar performances in average, but our algorithm has little
advantages than the others.

The Fig. 3 gives the modeling process of the “LSTM”,
the “fuzzy WN” and the “fuzzy LSTM”. We can see that
only our method is able to generated an acceptable model
for the MG time series. Also, we only show three algorithms,
because the performance of the “KFRNN” was very similar
to the “LSTM”, and the others fuzzy systems performance
were similar with the “fuzzy WN”. This example is important
because we can watch the capabilities of the algorithms
to generated models when we do not have access to the
immediate past information of a process and when the data
to construct a model are not close between them, for which
the proposal overcomes the others algorithms.

TABLE I: Modeling errors of MG time series estimation
(×10−2)

System Training Testing
KFRNN 3.62 3.26
LSTM 1.09 1.53

ANFIS 0 1.70 1.16
ANFIS 1 0.98 0.82

Fuzzy KFRNN 3.47 2.15
Fuzzy WN 1.07 1.35

Fuzzy LSTM 1.41 1.03

200 400 600 800 1000 1200

Time [s]

0

0.5

1

O
u
tp

u
t

A

B

(a)

200 400 600 800 1000 1200

Time [s]

0

0.5

1

O
u
tp

u
t

A

B

(b)

200 400 600 800 1000 1200

Time [s]

0

0.5

1

O
u
tp

u
t

A

B

(c)

Fig. 3: Modeling of MG time series. The subfigures: (a)
LSTM, (b) fuzzy WN, and (c) fuzzy LSTM. “A” is the time
series response and “B” is the network response.

B. Nonlinear system

We selected the benchmark problem proposed in [28] and
[26] as the second example, this problem corresponds to a
MIMO (multi-input-multi-output) nonlinear system in discrete
time. As in the first example, a model generation for this
system is required.

So, the system is defined as:

y1 (k + 1) =
0.5y1 (k)

1 + y2
2 (k) + u1 (k)

y2 (k + 1) =
0.5y1 (k) y2 (k)

1 + y2
2 (k) + u2 (k)

y (k) = [y1 (k) , y2 (k)]
T

(28)

We used different input signals for the training and the
testing of (28). The training signals were:

u1 (k) = 24.7 sin
(

2πkT
10

)
+ 0.5 cos (2πkT)

u2 (k) = 24.5 sin
(
πkT
10

)
+ 0.5 sin (πkT)

(29)

and the testing signals were:

u1 (k) =

If 0 < kT ≤ 50,
u1 = 3.3 sin

(
2πkT

10

)
+ 0.1 cos (2πkT)

If 50 + nu1 < kT ≤ 55 + nu1 ,
u1 = 3.5
If 55 + nu1

< kT ≤ 60 + nu1
,

u1 = −3.5
If 100 < kT,
u1 = 3.6 cos

(
2πkT

10

)

u2 (k) =

If 0 < kT ≤ 50,
u2 = 3.5 sin

(
πkT
10

)
+ 0.3 sin (πkT)

If 50 + nu2
< kT ≤ 55 + nu2

,
u2 = −3.5
If 55 + nu2

< kT ≤ 60 + nu2
,

u2 = 3.5
If 100 < kT,
u2 = 3.6 cos

(
2πkT

10

)

(30)

with nu1 = nu2 = 10, 20, 30, 40.
Similar to the past example, the vector y(k) =

[y1(k), y2(k)]T was constructed by taking samples of the
system with a sample period T = 0.01s, the input vector was
defined as Ur(k) = [u1(k), u2(k)]. To simulate perturbations,
random values in [−0.5, 0.5] were added to Ur and y(k) in the
training phase and random values in [−0.2, 0.2] were added
to Ur and y(k) in the testing phase of the algorithms. While
the. In this example, we used p = 18 fuzzy rules for the
fuzzy systems (m = 2, κ = 3, l = 2), the dimensions of the
NNs were defined from several tests with different sizes and
choosing the smallest NNs that offers a good performance.

We simulated the system in the following way: we train
the algorithms to learn the system (28) with (29) during 180s,
obtaining 18, 001 iterations for the training process, a testing is
made immediately after the training with the same input signal
during 60s (6,001 iterations). Also, a testing with a different
input from the training (30) was made during 180s, obtaining
18, 001 iterations for this process.

In the Table II are shown the modeling errors, according
to (18), obtained for each intelligent algorithm at the end of
the training and testing phases. In this table, the NNs seem
to have a better performance than the fuzzy systems, in the
sense that this algorithms converges fast and offers a lower
modeling error. Only our proposal has a similar (even slightly
better) performance that the NNs.

TABLE II: Modeling errors of the nonlinear system estimation
(×10−2)

Model Training Testing
After training Other input

KFRNN 52.56 57.95 17.95
LSTM 48.21 58.53 16.94

ANFIS 0 303.21 315.14 127.88
ANFIS 1 102.80 104.38 59.86

Fuzzy KFRNN 182.69 223.30 22.93
Fuzzy WN 1,382.32 1,070.40 48.20

Fuzzy LSTM 43.69 42.06 8.04

The Fig. 4 and Fig.5 give the modeling processes of the
“fuzzy WN” and the “fuzzy LSTM”. We show the “fuzzy WN”
and the “fuzzy LSTM” because for this example all the other
fuzzy systems had a similar performance that the “fuzzy WN”,
and the other neural model ahad a similar performance the
“fuzzy LSTM”. So, our proposal can generate an acceptable
model for nonlinear systems with fast convergence, like a NN
but offering a more complete approach, a gray box model
instead of a black box model.

As shown in above figures and tables, the proposal model
offers very good modelling results for the time series and the
nonlinear system. Also it has better robustness and adaptabil-
ity. It has been shown that our method has better testing results
for multi-step prediction, or when some recent data are not
available.

V. CONCLUSIONS

In this paper, a novel fuzzy-neural network is proposed, this
based on the LSTM networks. Also, it can be interpreted as a
more complete LSTM network, because the data with which
the network is fed are subjected to a better analysis due to the
characteristics of the fuzzy systems and LSTM networks. We
design a fast training method for this fuzzy LSTM network,
the stability of the proposed training method is also given.
We use two examples to compare our model with the other
intelligent algorithms, the results show that the new model is
faster and has better performance that the other algorithms for
nonlinear system identification. With this, our proposal can be
use for real world applications in the future.

REFERENCES

[1] R. Chaudhary, H. Patel, and M. Scholar, A survey on backpropagation
algorithm for neural networks,Int. J. Technol. Res. Eng, vol.2, no. 7,
2015.

[2] H. Jaeger, Tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the echo state network approach. GMD-
Forschungszentrum Informationstechnik Bonn, 2002, vol. 5.

[3] Z. C. Lipton, J. Berkowitz, and C. Elkan, A critical review of
recurrent neural networks for sequence learning , arXiv preprint
arXiv:1506.00019, 2015.

[4] Wen Yu, Nonlinear system identification using discrete-time recurrent
neural networks with stable learning algorithms, Information Sciences,
Vol.158, No.1, 131-147, 2004.

[5] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical evaluation of
gated recurrent neural networks on sequence modeling , arXiv preprint
arXiv:1412.3555, 2014.

[6] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, Recent ad-
vances in recurrent neural networks , arXiv preprint arXiv:1801.01078,
2017.

[7] S. Hochreiter and J. Schmidhuber, Long short-term memory , Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[8] O. Ogunmolu, X. Gu, S. Jiang, and N. Gans, Nonlinear systems
identification using deep dynamic neural networks , arXiv preprint
arXiv:1610.01439, 2016.

[9] Y. Wang, A new concept using lstm neural networks for dynamic system
identification , in 2017 American Control Conference (ACC). IEEE,
2017, pp. 5324 -5329.

[10] F. Nicola, Y. Fujimoto, and R. Oboe, A lstm neural network applied
to mobile robots path planning , in 2018 IEEE 16th International
Conference on Industrial Informatics (INDIN). IEEE, 2018, pp.349 -
354.

[11] Y. Liu, Y. Zhou, and X. Li, Attitude estimation of unmanned aerial
vehicle based on lstm neural network , in 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2018, pp. 1-6.

0 50 100 150 200

Time [s]

-10

-5

0

5

10

O
u
tp

u
t

1

A

B

(a)

0 50 100 150 200

Time [s]

-10

-5

0

5

10

O
u
tp

u
t

2

A

B

(b)

0 50 100 150

Time [s]

-2

0

2

O
u
tp

u
t

1

A

B

(c)

0 50 100 150

Time [s]

-2

0

2

O
u
tp

u
t

2

A

B

(d)

Fig. 4: Nonlinear system modeling with “fuzzy WN”. The
subfigures: (a) y1(k) in the training, (b) y2(k) in the training,
(c) y1(k) in the testing, (d) y2(k) in the testing. “A” is the
system response and “B” is the model response.

0 50 100 150 200

Time [s]

-10

-5

0

5

10

O
u
tp

u
t

1

A

B

(a)

0 50 100 150 200

Time [s]

-10

-5

0

5

10

O
u
tp

u
t

2

A

B

(b)

0 50 100 150

Time [s]

-2

0

2

O
u
tp

u
t

1

A

B

(c)

0 50 100 150

Time [s]

-2

-1

0

1

2

O
u
tp

u
t

2

A

B

(d)

Fig. 5: Nonlinear system modeling with “fuzzy LSTM”. The
subfigures: (a) y1(k) in the training, (b) y2(k) in the training,
(c) y1(k) in the testing, (d) y2(k) in the testing. “A” is the
system response and “B” is the model response.

[12] T. Ergen and S. S. Kozat, Effcient online learning algorithms based
on lstm neural networks , IEEE transactions on neural networks and
learning systems, vol. 29, no. 8, pp. 3772-3783, 2017.

[13] M. Blej and M. Azizi, Comparison of mamdani-type and sugeno-type
fuzzy inference systems for fuzzy real time scheduling , International
Journal of Applied Engineering Research, vol. 11, no. 22, pp. 11071
-11075, 2016.

[14] J.-S. Jang, Anfis: adaptive-network-based fuzzy inference system , IEEE
transactions on systems, man, and cybernetics, vol. 23, no. 3, pp. 665
-685, 1993.

[15] J. Dong, Y. Wang, and G.-H. Yang, Output feedback fuzzy controller
design with local nonlinear feedback laws for discrete-time nonlinear
systems , IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 40, no. 6, pp. 144-41459, 2010.

[16] J. Kabzi ski and J. Kacerka, Tsk fuzzy modeling with nonlinear
consequences , in IFIP International Conference on Artificial Intelligence
Applications and Innovations. Springer, 2014, pp. 498 -507.

[17] J. M. BenÃ-tez, J. L. Castro, and I. Requena, Are artificial neural
networks black boxes?, IEEE Transactions on neural networks, vol. 8,
no. 5, pp. 1156 -1164, 1997.

[18] R. Babu ka and H. Verbruggen, Neuro-fuzzy methods for nonlinear
system identification , Annual reviews in control, vol. 27, no. 1, pp.
73 -85, 2003.

[19] Y. Jin and B. Sendhoff, Extracting interpretable fuzzy rules from rbf
networks , Neural Processing Letters, vol. 17, no. 2, pp. 149 -164, 2003.

[20] S. Ganjefar and M. Tofighi, Single-hidden-layer fuzzy recurrent wavelet
neural network: Applications to function approximation and system
identification , Information Sciences, vol. 294, pp. 269 -285, 2015.

[21] Wen Yu, Jose de Jesus Rubio, Recurrent neural networks training
with stable bounding ellipsoid algorithm, IEEE Transactions on Neural
Networks, Vol.20, No.6, 983-991,2009

[22] K. Shihabudheen and G. Pillai, Recent advances in neuro-fuzzy system:
A survey , Knowledge Based Systems, vol. 152, pp. 136 -162, 2018.

[23] A. I. Aviles, S. M. Alsaleh, E. Montseny, P. Sobrevilla, and A. Casals,
A deep-neuro-fuzzy approach for estimating the interaction forces in
robotic surgery , in 2016 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE). IEEE, 2016, pp. 1113 -1119.

[24] H. Sang, C. Yang, F. Liu, J. Yun, and G. Jin, A fuzzy neural network
sliding mode controller for vibration suppression in robotically assisted
minimally invasive surgery , The International Journal of Medical
Robotics and Computer Assisted Surgery, vol. 12, no. 4, pp. 670-679,
2016.

[25] H. M. Sri, P. Rao, P. K. Kammardi, S. S. Shekar, S. Kathavate, and
K. Gowranga, A smart adaptive lstm technique for electrical load
forecasting at source , in 2017 2nd IEEE International Conference on
Recent Trends in Electronics, Information & Communication Technol-
ogy (RTEICT). IEEE, 2017, pp. 1717 - 1721.

[26] P. Sastry, G. Santharam, and K. Unnikrishnan, Memory neuron networks
for identification and control of dynamical systems , IEEE transactions
on neural networks, vol. 5, no. 2, pp. 306-319, 1994.

[27] L.X.Wang, Adaptive Fuzzy Systems and Control, Englewood Cliffs NJ:
Prentice-Hall, 1994.

[28] K.S.Narendra and S.Mukhopadhyay, Adaptive Control Using Neural
Networks and Approximate Models, IEEE Trans. Neural Networks,
Vol.8, No.3, 475-485, 1997.

[29] Wen Yu, Xiaoou Li, Fuzzy identification using fuzzy neural networks
with stable learning algorithms, IEEE Transactions on Fuzzy Systems,
Vol.12, No.3, 411-420, 2004.

