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Abstract—Fuzzy rule-based classifier is an effective 
classification algorithm. However, traditional fuzzy system is 
faced with the challenge of rule explosion and low training speed 
when dealing with big data problems. In this paper, an 
improved deep convolutional fuzzy system (DCFS) is proposed 
for big data classification problems. First, an improved Wang-
Mendel (WM) Method is put forward for the training of each 
sub-fuzzy system. Second, a hierarchical DCFS is constructed 
for big data classification problems. The system performance is 
demonstrated via simulation experiments on a couple of 
classification datasets of varying sizes.  
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I. INTRODUCTION  
Classification is categorizing a sample to one of some 

predefined classes according to its given feature information. 
Many supervised machine learning algorithms have been 
proposed to deal with classification problems [1, 2]. Fuzzy 
rule-based classifiers [3, 4] are a branch of machine learning 
technique, which have better interpretability because of its 
comprehensible IF-THEN rules. Therefore, various fuzzy 
classifiers are designed in different scenarios [5, 6]. 

Nowadays, abundant data are available for training fuzzy 
models. Both the number of features and the number of 
samples are large in big data [7]. These two significant 
features have reduced the effectiveness of traditional fuzzy 
classifiers. On one hand, high-dimensional features will 
inevitably lead to rule explosion, that is, the number of rules 
will increase exponentially as the number of features increase. 
Researchers have developed some feature reduction 
approaches applied before the training process to solve this 
problem [8]. On the other hand, previous fuzzy system 
training algorithms become particularly time-consuming 
when the number of training samples is large. This is because 
training algorithms like gradient decent [9,10] and genetic 
algorithm [11] operate on the whole dataset and the optimal 
solution is finally found through multiple iterations. 

As a hierarchical fuzzy system (FS) [12], deep 
convolutional fuzzy system (DCFS) [13] shows better 
performance than simple FS for big data classification 
problem due to its structure and training algorithm advantages. 
Its unique structure can overcome the deficiency of simple 
fuzzy system when facing high-dimensional data. It looks like 

a pyramid on the whole and is composed of many sub-fuzzy 
systems. The number of sub-FSs decreases as the layer goes 
up. The sub-FSs stacked layer-by-layer and the output of a 
lower layer serves as the input of the higher layer. When a 
highly dimensional dataset input into DCFS, it is split into 
several small datasets and delivered to each sub-FS in the first 
layer. As the data flow up, they are mapped to low-
dimensional data gradually through the one-by-one sub-FSs 
and finally become one output number. This operation manner 
of DCFS can effectively avoid rule explosion in big data 
classification problems. 

The core training algorithm of DCFS is Wang-Mendel 
(WM) Method [14, 15], which is a rule extraction approach 
from data. WM Method is originally designed for simple FSs. 
Therefore, it can be used to train the rule-base of each sub-FS 
in DCFS. The prominent advantage of WM Method is that 
parameters are determined as long as data enter the fuzzy 
system once. The WM Method no longer needs initiation and 
parameter fine-tuning. It can reduce the training time to a large 
extent compared with the iterative algorithms. 

However, the working scheme of WM Method can be 
improved to achieve better classification accuracy. When we 
apply the WM Method to construct the rule-base for fuzzy 
systems, the antecedent part is predefined, so it is training for 
the consequent part. In the WM Method, when one pair of data 
comes, it is allocated to the rule with the largest firing level 
and will participate to determine this rule's consequent. 
Considering the relationship between training process and 
forward fuzzy inference process [16], this one-data-one-rule 
strategy is not reasonable. In this paper, we improved the WM 
Method for training DCFS and applied the improved DCFS to 
big data classification problems. We also investigated how the 
number of rules in rule-base can influence classification 
accuracy. 

The rest of this paper is organized as follows. In section 2, 
we elaborate the improved WM Method and the DCFS 
classification algorithm. In section 3, the algorithm is tested 
on several classification datasets. Finally, section 4 draws 
some conclusions. 

II. IMPROVED DCFS FOR CLASSIFICATION PROBLEMS 
In this section, we will give details on how to apply a 

DCFS to deal with big data classification problems. First, 
steps of the improved WM Method are presented, which is the 
core training algorithm of DCFS. Next, we introduce the This work was supported by NSFC Foundation (No.61402260).
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construction and training process of the whole DCFS. Finally, 
we discussed the difference between the training of binary and 
multi-class classification problems. 

A. Improved WM Method for Training of Sub-FSs  
This part describes the training steps for each sub-FS in 

DCFS. In essence, it is the training of rule-base which consists  
of some  IF-THEN rules. Each rule in the rule-base takes the 
following form. 

  (1) 

 are input variables, which are called 
antecedents in FSs.  are fuzzy sets 
corresponding to each input variable.  is the output of rule 

, which is called consequent in FS. In TSK FS [17-19], the 
consequent is a linear combination of inputs  to . This 
distinguishes it from Zadeh fuzzy system whose consequents 
are fuzzy sets [20]. In this paper, the consequent is simplified 
to a constant . 

We have  input-output data pairs 
 in the training set. The number of variables 

in antecedent part equals to the number of input variables . 
Steps of the improved WM Method for training IF-THEN rule 
base are described as follows. 

Stage 1: Input space partition 

1)  Determine the number of fuzzy sets associated with 
input variable , denoted as . The simplest way is that 
all the variables have the same number of fuzzy sets. 

2) Obtain the minimum and maximum value of each 
input variable  from training data, denoted as  and 

, respectively. 
3) Uniformly distribute  fuzzy sets between  

and  as Fig.1 shows. 
4) Construct IF-THEN rule base. The rule base has 

 rules in the form of Eq.(1), where each rule is a 
combination of the fuzzy sets associated with each variable. 

The antecedent part of a rule-base is determined after the 
above four steps. 

Stage 2: Extract rule consequents from data 

···

1

Fig. 1. Distribution of fuzzy sets 

5) Calculate the firing level of each rule. When an input-
output data pair  comes, compute its 

firing level  to the rule . One rule’s firing level is equal 
to the product of all the membership grades on the antecedent 
fuzzy sets of this rule. 

6) Find and record the rules being activated and the firing 
level. We say rule  is activated by data pair 

 if its firing level  is not equal to zero. 
There will be  rules being activated when a 
pair of data comes if the antecedent fuzzy sets distribute like 
Fig. 1, where  is the number of fuzzy sets being 
activated under each input variable. Record the activated 
rules  firing level  and . 

For the  pairs of data, repeat the above two steps. 

7) After going through all the training examples, we can 
calculate the consequents of the “fired rules”. If a rule is 
activated by at least one pair of data, it is called “fired rule”. 
Suppose Rule  is a “fired rule”, its consequent  is 
calculated as follows. 

  (2) 

where  is the subscript of training samples that have fired 
Rule . There are in sum  training samples that 
have fired Rule . 

Stage 3: Determine consequents for “not fired rule” 

For rules that had not been activated by any data pair in 
Stage 2, their consequents are decided through extrapolation 
from their neighbors. The neighbors of a rule are the rules 
whose antecedent fuzzy sets are entirely same as this rule 
except for one variable. And the only different variable locates 
in two neighboring fuzzy sets. An example of two neighboring 
rules is as follows. Here  is the first fuzzy set of variable 

 and  is the second fuzzy set of variable . 

 

 (3) 

 

 (4) 

8) Select those rules that have most neighboring “fired 
rules” from the “not fired rules”. These rules are a batch of 
rules closest to the “fired rules” whose consequents have 
already been decided. 

9) The consequents of these selected “not fired rules” are 
computed as the arithmetic average of their neighboring 
rules’. 

After Step 9), this selected batch of rules’ consequents are 
decided and then they come into the group of “fired rules”. 
Repeat Steps 8) and 9) until all the rule consequents are 
obtained. 

Compared with the original WM Method, the 
improvement lies on Step 5) and 6). In the original WM 



Method, when entering a pair of data, only one rule with the 
biggest firing level is found and recorded. This means one pair 
of data is only used to calculate one rule consequent. While in 
our improved method, one pair of data goes to decide all the 
rule consequents it fires, as is shown in Fig. 2. Without loss of 
generality, let  and  represent two different rules, 
respectively. It can be seen obviously that the data points 
(represented by multiple crosses) fire both rules and they will 
participate to decide both these two rules’ consequents. 
Referring to the fuzzy inference process in TSK fuzzy system, 
our method is consistent with the forward inference that uses 
weighted average instead of maximum operator. Parameter 
training is an opposite process to fuzzy inference, hence 
weighted average is more reasonable to use here. 

 
Fig. 2. Working scheme of the improved WM Method.  

B. Construction of the Complete DCFS 
1) Moving window [13] 
Moving window is a tool to construct the overall structure 

of DCFS, which is shown in Fig. 3. The bottom rectangles 
show how the moving window works. The DCFS is a layer-
by-layer hierarchical system and the number of sub-FSs 
decreases as the layer goes up. Moving window is used to 
determine the number of sub-FSs in each layer and the number 
of input variables in every sub-FS.  

Moving window has two elements: moving window size   
and moving scheme. Moving scheme refers to the number of 
variables moving window moves every time. Fig. 3 is a one-
variable-a-time moving window and the moving window size 
is three. The number of input variables in every sub-fuzzy 
system equals to moving window size. Once the moving 
window size and the moving scheme are determined, the 
number of layers and the number of FSs in each layer can be 
obtained. 

2) Training process of the whole DCFS 
In this part, we will discuss how to train the whole DCFS 

in a layer-by-layer fashion with the improved WM Method. In 
the training process, the improved WM Method is 
accompanied by forward fuzzy inference [16, 21, 22]. 

Assume that the moving window size is three. The whole 
dataset is divided into  (the number of  

 

 
Fig. 3. Overall structure of DCFS.  

FSs in the first layer) sub-datasets 

by moving window and sent to the first layer of DCFS, as 
shown in Fig. 3. Each sub-FS is trained separately by the 
improved WM Method and the consequents of each sub-FS 
are obtained. The first layer’s training is completed and 
parameters are fixed. Then we input the feature part of raw 
data  into 
each sub-FS in the first layer, by which we can get first layer’s 
output  through fuzzy inference. The 
fuzzy inference process of each sub-FS is similar, here we take 
the first sub-FS as an example to explain the process. When 

 is input to the first sub-FS in the first layer, we 
should first calculate the membership grade of the input 

 on the antecedent fuzzy sets of each rule. Then 
multiply the membership grades and get the firing level of 
each rule. The final output is aggregation of each rule’s 
consequents with the firing levels as weights. Now we get the 
output of the first layer. 

The first layer’s output serves as the input of the second 
layer. The second layer’s parameters are trained by the 
improved WM Method in the same way. Then the output of 
the second layer enters the third layer. The parameters are 
trained layer-by-layer until the top layer. 

C. Binary Classifications and Multi-class Classifications 
Classification problems are divided into binary and multi-

class classification according to the number of classes. For 
binary classification problem, we set the output of positive 
class as one and the other class as zero. If the DCFS model 
gives an output that is bigger than 0.5, the sample is classified 
to the positive class. If the output is less than 0.5, the sample 
will be classified to the negative class. For multiple 
classification problems, the one-vs-all strategy is adopted, 
which means we train a classification model for each class. 
The certain class is set to one and all the other classes are set 
to zero when we train classification model for this class. 



Finally, samples will be classified to the class whose model 
gives the biggest output. 

III. SIMULATION EXPERIMENTS 
In this section, the performance of the DCFS will be 

illustrated via simulation experiments on some big data sets. 
First, we will introduce the datasets and some preprocessing 
operations. Then the improved WM Method is tested on a 
simple dataset. Finally, comprehensive comparison results of 
DCFSs with the improved WM Method and the original WM 
Method are given.  

A. Datasets 
The six classification datasets we used are summarized in 

Table Ⅰ. They are all from the UCI Machine Learning 
Repository. The Iris dataset, which has only 150 examples and 
four features, is used to compare the improved WM Method 
with original WM Method in a simple fuzzy system. The 
DCFS is applied to the other five datasets, using the two 
training algorithms, respectively. 

Seventy percent of each dataset was randomly selected as 
training set and the remaining thirty percent as test set except 
dataset “Satellite”. The training set and test set of “Satellite” 
are provided separately, so we did not mix and re-divide it. 
Experiments were repeated ten times for the other five 
datasets and the average value was taken as the final result to 
eliminate the effect of dataset’s division on final classification 
results. All features are numerical and were z-normalized 
before training. 

TABLE I.  CLASSIFICATION DATASETS 

Dataset No. of 
samples 

No. of 
features 

No. of classes

Irisa 150 4 3
Waveformb 5000 21 3

Steelc 1941 27 7
Yeastd 1484 8 10
Clavee 10800 16 4

Satellitef 6435 36 6
a.  https://archive.ics.uci.edu/ml/datasets/Iris 

b. https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+(Version+1) 
c. https://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults 

d. https://archive.ics.uci.edu/ml/datasets/Yeast 
e. https://archive.ics.uci.edu/ml/datasets/Firm-Teacher_Clave-Direction_Classification 

f. https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite) 

B. Experimental Results 
1) Performance of the improved WM Method in simple 

fuzzy system 
Dataset “Iris” has only 150 instances and four features. 

Hence simple TSK fuzzy system is enough to serve as a 
classifier. The number of antecedent variables equals to the 
number of features. The numbers of fuzzy sets of each 

variable are equal and changed from two to twenty. The first 
subplot in Fig. 4 titled “Iris” shows the classification result of 
the improved WM Method and original WM Method. We can 
see from the figure that after  is larger than ten, the 
classification accuracy of the improved WM Method keeps 
better than that of the original WM Method. The best 
classification accuracy rate of the original WM Method is 
0.8660 while the best result of the improved WM Method is 
0.8740. Both of them are achieved when  is equal to 20. 

2) Performance of the improved WM Method in DCFS 
on big data problems 

Five datasets are used to illustrate the performance of 
DCFSs with the improved WM Method and the original WM 
Method. For the sake of comparison, the same structure 
parameters are taken for the two DCFSs. The parameters of 
each datasets are given in Table Ⅱ. For example, the moving 
window size for dataset “Waveform” is 3. The moving 
window moves through 3 variables one time in the first layer 
and 1 variable in the other layers. There are 4 layers in total, 
each of them has 7, 5, 3, 1 FSs, respectively. Number of layers 
and number of fuzzy sets in each layer are determined by 
moving window size, moving scheme and number of features 
of each dataset. The structure is designed manually 
considering convenience of implementation. The 
classification results are shown in Fig. 4, and Table Ⅲ shows 
the best classification accuracy rate of the two algorithms 
when  changes. 

TABLE II.  PARAMETERS OF THE DCFS 

Dataset Moving 
window 

size 

Number of 
variables moved 

through each 
time 

No. of 
layers

No. of 
FSs in 
each 
layer 

Waveform 3 1st layer: 3 
Others: 1 

4 7-5-3-1 

Steel  3 1st layer: 3 
Others: 1 

5 9-7-5-3-1

Yeast 3 1 4 6-4-2-1
Clave 1st layer: 4 

Others: 3
1st layer: 2 
Others: 1 

4 7-5-3-1 

Satellite 1st layer: 4 
Others: 3 1st layer: 4 

Others: 1 
5 9-7-5-3-1

 

TABLE III.  THE BEST CLASSIFICATION ACCURACY RATE OF THE TWO 
ALGORITHMS 

Datasets Waveform Faults Yeast Clave Satellite
Original WM 

Method
0.8461 0.7203 0.5733 0.7604 0.8775

Improved WM 
Method

0.8511 0.7266 0.5751 0.7622 0.8790

 

 



 
Fig. 4. Classification results with the improved WM Method and the original WM Method.

 

Exploring the results of Fig. 4 and Table Ⅲ, We can see 
that: 

a) On dataset “Waveform”, DCFS with the improved 
WM Method always performs better than DCFS with original 
WM Method, no matter what  is. 

b) As for the other four datasets, the improved WM 
Method exceeds the original WM Method eventually as  
increases. 

c) From Table Ⅲ we can see that the best classification 
accuracy rate of improved WM Method is always better than 
that of original WM Method. 

d) In general, as  increases, both improved and 
original WM Method performs better. This is in accordance 
with our expectation because the input space is partitioned 
more finely as  increases [23]. There is one exception 
that classification accuracy increases at first and then 
decreases when  continues increasing on the dataset 
“Waveform”.  

IV. CONCLUSIONS 

The traditional fuzzy system has the shortcomings of rule 
explosion and time-consuming when dealing with big data 
classification problems. In order to solve these drawbacks, an 
improved deep convolutional fuzzy system (DCFS) is 
introduced based on the WM Method. In the improved WM 
Method, a pair of data can fire multiple fuzzy rules and then 
participates in determining the rules’ consequents. 
Construction steps of the overall DCFS are given in detail. 
Simulation experiments are carried out on several 
representative datasets. Comprehensive results of 

comparative analysis show the effectiveness and advantages 
of our method.  

In the near future, we will continue to study the impact of 
system structure on classification accuracy. Without doubt, 
how to obtain the DCFS’s structure automatically is another 
valuable research problem. 
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