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Abstract—Data-driven classification algorithms have proven
highly effective in a range of complex tasks. However, their
output is sometimes questioned, as the reasoning behind it may
remain unclear due to a high number of poorly interpretable
parameters used during training. Evidence-based (factual) ex-
planations for single classifications answer the question why a
particular class is selected in terms of the given observations. On
the contrary, counterfactual explanations pay attention to why
the rest of classes are not selected. Accordingly, we hypothesize
that providing classifiers with a combination of both factual
and counterfactual explanations is likely to make them more
trustworthy. In order to investigate how such explanations can
be produced, we introduce a new method to generate factual and
counterfactual explanations for the output of pretrained decision
trees and fuzzy rule-based classifiers. Experimental results show
that unification of factual and counterfactual explanations under
the paradigm of fuzzy inference systems proves promising for
explaining the reasoning of classification algorithms.

Index Terms—Explainable Artificial Intelligence, Counterfac-
tuals, Decision Trees, Fuzzy Inference Systems, Natural Language
Generation

I. INTRODUCTION

Intelligent systems tend to make a wide use of data-driven
classification algorithms to make automatic decisions. While
a number of such algorithms achieve outstanding results in
various complex tasks, their underlying reasoning is often
left unclear to end-users [1]. Despite a high degree of ac-
curacy, individual decisions may be questioned and therefore
require a satisfactory explanation, particularly in case of high-
stakes decisions. This is the main reason why the European
Commission pushes for increasing both public and private
resources to develop research on Artificial Intelligence (AI)
in agreement with the European values and fundamental
rights [2]. Accordingly, the “right to explanation”, which is
included in the General Data Protection Regulation (GDPR)
issued by the European Parliament [3], affects humans but also
AI techniques and systems.

Interpretable models can explain the output of a black-
box algorithm in terms of the feature values that led to a
given classification [4]. When the features are known and
their values can be observed, such “observation-based” (or

factual) explanations reflect the most critical characteristics of
the data instance that influenced the output of the algorithm.
For instance, a factual explanation retrieved from a decision
tree (DT) can be regarded as a set of feature-value pairs that
justifies the corresponding root-to-leaf decision path. However,
factual explanations do not necessarily offer an insight into
why alternative classification options were discarded. Instead
of really explaining a classifier’s outcome, a piece of factual
information on decisive feature values is argued to merely
summarize the statistics on an automatic prediction, which
may not be sufficient to ensure trust in the given classifica-
tion [5].

Indeed, findings from cognitive science testify that human
explanations are intrinsically contrastive [6]. Thus, to explain a
certain fact P means to answer the template question “Why P
rather than Q?” where Q is a set of hypothetical non-occurring
situations (or counterfactuals) that would have led to a differ-
ent state of affairs. A counterfactual explanation complements
its factual counterpart specifying minimal conditions for a
given data instance to be classified differently. In the context of
machine learning (ML)-based classification, a counterfactual
must satisfy two conditions: (1) It describes a set of feature-
value pairs that are minimally different from those inherent to
the original data point requiring explanation; and (2) changing
the feature values in accordance with the given explanation
makes the same model produce a different classification for
the same the data instance.

Being accurate and relatively easy to interpret [7], DTs
have deserved a wide use in industry [8]. However, the
explainability of structurally complex DTs turns out to be far
from a trivial issue. As the amount of nodes and branches in a
tree increases, its explanatory capacity reduces accordingly [9].
This is in agreement with the “Principle of Incompatibility”
postulated by Zadeh [10]: “... as the complexity of a system
increases our ability to make precise and yet significant
statements about its behavior diminishes until a threshold is
reached beyond which precision and significance (or rele-
vance) become almost mutually exclusive characteristics”.

In addition, ML-based explanations are expected to be
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multi-modal (i.e., a mix of text and graphs), natural, and
comparable to those given by humans [11]. Unfortunately,
explanations generated by crisp DTs are typically restricted to
representing the local semantics of the tree and lack the ability
to derive immediate explanations in natural language. Instead,
fuzzy rule-based systems are endowed with global semantics
thanks to the use of strong fuzzy partitions [12]. They are
therefore capable of explaining the reasoning of black-box ML
algorithms under uncertainty in natural language [13]–[15].

The contribution of this paper is twofold. First, we introduce
a novel method for factual and counterfactual explanation
generation associated to both crisp and fuzzy DTs. This
method is validated in a real-world multi-class beer-style
classification problem where we consider three crisp DTs, and
two fuzzy rule-based classifiers (i.e., a fuzzy DT before and
after running a linguistic simplification procedure). Second,
we develop a Natural Language Generation (NLG) module to
verbalize the generated explanations. In addition, we compare
the expressiveness of textual explanations derived from both
crisp and fuzzy DTs.

The rest of the manuscript is structured as follows. In
Section II, we review existing approaches tackling various
issues of explanation generation for decision trees. Section III
introduces our rule-based approach to generate comprehensive
factual and counterfactual explanations for tree-based classi-
fiers and provides the reader with implementation details of
the algorithm proposed. Section IV describes the experimental
setting and presents the results of the experiments carried out.
Finally, we outline directions for future work and conclude in
Section V.

II. RELATED WORK

Recent years have witnessed a substantial rise in attention
to the problem of counterfactual explanation generation from
AI researchers. Counterfactuals are becoming increasingly
commonplace in cognitive engineering [16], automatic plan-
ning [17], and text mining [18], among other applications.
Counterfactual explanations have been shown to be user-
friendly in a range of applications [19]. Nevertheless, gener-
ating counterfactual explanations (in particular, for tree-based
classifiers) still poses a number of challenges for researchers
and developers.

Several works argue that test points are best explained
counterfactually via the data instances of opposing classes
generated in the region closest to the test point to be explained.
For instance, the model-agnostic FoilTrees framework [20]
trains a decision tree on a subset of random points from the
original dataset centered around the test point in question to
ensure that the generated counterfactual is local. Indeed, the
data point of a contrast-class that is minimally distant from
the test instance may not be sufficiently explanatory, as the
corresponding branch in the tree may cover only a small
subset of data instances. A counterfactual explanation is then
argued to base on the nearest tree node where the paths to the
factual and counterfactual data points diverge. Despite several
heuristics proposed to identify the closest counterfactual data

point, the study is restricted to generating an explanation based
on a minimal difference in terms of the number of decision
nodes.

A similar approach is employed in the LOcal Rule-based
Explanations (LORE) framework [21]. An evolutionary al-
gorithm is used to generate a synthetic local neighbourhood
driven by the assumption that a black-box model’s behaviour
is best explained by means of a set of data points (including
those generated artificially) that share a maximal amount of
characteristics with the test data instance. Subsequently, a
factual explanation is complemented with a counterfactual one
based on a set of falsified conditions extracted from a decision
tree trained on the newly generated data.

The above works show a number of limitations. First, the
frameworks are designed to address only binary classification
problems. Second, no relevance measures for multiple coun-
terfactuals of the same opposed class are indicated. Thus, two
or more counterfactuals may be claimed equivalent despite
their different degrees of proximity to the test instance pre-
diction leaf. This might result in ignoring significant semantic
and structural differences between several counterfactuals and
therefore presenting less relevant explanation to the end-user.

As multiple counterfactuals are widely encountered in DTs,
the matter of evaluating the relevance of different counterfac-
tuals arises naturally. Thus, counterfactuals can be evaluated
in terms of the meta-features of the leaf node corresponding
to the test instance and the leaves leading to counterfactual
outcomes. In this case, a variant of the L1 distance metric is
proposed to determine such a counterfactual that the resulting
explanation is the shortest [22].

Conversely, counterfactual explanation generators are sug-
gested to be evaluated with respect to the diversity of the
generated explanations [23]. Thus, diversity constraints can
be imposed in the form of rule-based heuristics applied to
the newly generated counterfactuals sequentially to offer a
set of multiple coherent explanations. However, no empirical
evaluation of comprehension of such explanations is provided.
Alternatively, a quantitative measure of counterfactual diver-
sity is found to be defined as “the mean of the distances
between each pair of examples” [24].

Despite a rising interest towards counterfactual explanation
generation in explainable AI, as far as we know, there are no
works on counterfactual generation either for fuzzy decision
trees in particular or for fuzzy rule-based systems in a more
general sense.

III. METHOD

Our approach for generating factual and counterfactual
explanations is generalized to work with both crisp and fuzzy
tree-based classifiers. We focus on a multi-class classification
task setting, that is learning a mapping function f : X −→ Y
from a training dataset of n labeled instances X = {xi |
1 ≤ i ≤ n} to a discrete output variable (class) Y = {yj |
1 ≤ j ≤ m} where m is the number of classes. Every data
instance {xi = (Fi, cli) ∈ X | (1 ≤ i ≤ n)} is characterized
by an output class label cli ∈ Y and k features Fi = {(fj , vj)



| 1 ≤ j ≤ k}, where fj is the name of the j-th feature, vj
being the corresponding numeric value.

A. Preliminary notation

Let us formally introduce the main notions that we utilize
in this work. Thus, we operate on a finite set T = {Tc, Tf} of
pretrained crisp DTs Tc = {tci | 1 ≤ i ≤ |Tc|} and fuzzy DTs
or fuzzy rule-based classifiers Tf = {tfj | 1 ≤ j ≤ |Tf |}.

Following [25], we define a crisp DT tc ∈ Tc to be a labeled
data structure tc = 〈rc, Nc, Ec, Lc〉 with the root rc ∈ Nc

where Nc is a set of nodes, Ec ⊆ Nc ×Nc is a set of edges,
Lc is a labeling function over all edges in Ec. Thus, every
edge ec ∈ Ec in a crisp DT tc ∈ Tc is assigned a binary-
valued label following the mapping:

Lc : Ec → {0, 1}. (1)

The set of nodes Nc is composed of terminal (leaf) nodes
Term = {nct | nct ∈ Nc, 1 ≤ t ≤ |Nc|} and non-terminal
(non-leaf) nodes Nonterm = {ncnt | ncnt ∈ Nc \Term, 1 ≤
nt ≤ |Nc|− |Term|} so that Nc = Term∪Nonterm. Every
non-leaf node contains a condition c = {〈fi, operatori, vi〉
| 1 ≤ i ≤ k} specifying the label of the outcoming edge
where the components of a feature-value pair 〈fi, vi〉 of each
condition c ∈ C are related by means of one of (in-)equality
operators operatori = {<,6,=, >,>} (e.g., height 6 180).
Altogether, all the unique conditions across the tree form a set
of conditions C = {c1, c2, ..., c|C|}.

For a given crisp DT tc ∈ Tc, a set of root-to-leaf
decision paths P (tc) = {p1, ..., p|P |} represents a collection
of all possible classifications of that tree. Then, a root-to-leaf
decision path p ∈ P (tc) : p = {cvc | 1 ≤ vc ≤ |C|} is a set
of verified conditions that justifies a classification of the given
data instance x.

Hence, a factual explanation ef (x, tc) for the given data
instance x and tree tc ∈ Tc is defined as a tuple ef (x, tc) =
〈pf , yf 〉 where pf ∈ P (tc) and yf ∈ Y so that it constitutes a
decision path from the root node of the tree to a leaf node indi-
cating an output class as predicted by the classifier. Similarly, a
(single) counterfactual explanation ecf (x, tc, ycf ) = 〈pcf , ycf 〉
determines a decision path pcf ∈ {Pcf = {P (tc) \ pf}}
that classifies the data instance x to be of an alternative class
ycf ∈ {Ycf = {Y \ yf}}.

Every data instance x is assumed to have only one factual
explanation ef (x, tc) for a given crisp DT tc. Consequently,
there exist at most (m − 1) counterfactual explanations that
form a set Ecf (x, tc, Ycf ) = {ecfj (x, tc, ycf ) | 1 ≤ j ≤
(m − 1), ycf ∈ Ycf} of counterfactual explanations, each
of them matching one of the alternative classes. As multiple
counterfactuals can possibly be found for any predefined class,
we further generalize the existence of multiple counterfactual
explanations for each output class. Hence, the exhaustive set of
all potential counterfactual explanations for the data instance
x is further defined as a set of decision paths to all the
classifications of each alternative class:

Ecf (x, tc, Ycf ) = {〈Pcf , Ycf 〉} (2)

As follows from the formulation of the classification problem
above:

∀(pf ∈ P, pcf ∈ Pcf , yf ∈ Y, ycf ∈ Ycf ) : pf 6= pcf , yf 6= ycf
(3)

Being a generalization of a crisp DT [26], a fuzzy DT
tf ∈ Tf preserves the same structure as a crisp tree: tf =
〈rf , Nf , Ef , Lf 〉, with the root, nodes, and edges defined
analogously to those of a crisp tree. However, a fuzzy tree
operates on fuzzy sets in the universe of discourse U so that
the labeling is achieved by means of applying a membership
function µ(ef ∈ Ef ):

Lf : µ(ef ∈ Ef )→ [0, 1] (4)

determining how likely the data instance x to be of the class
specified in the leaf node. In our case, each feature {fj ∈ Fi |
1 ≤ i ≤ n, 1 ≤ j ≤ k} is defined by a set of linguistic terms
L(fj) = {Lf

j1
, ..., Lf

jk
}. Each input feature fj is associated

with a uniform strong fuzzy partition (SFP) that is defined in
U . It is worthy to note that SFPs satisfy all properties (e.g.,
coverage, distinguishability, etc.) demanded for interpretable
fuzzy partitions [12]. Regarding the output, each class is
associated with a weight that is represented by the related
branch of the tree. Note that the α-cut is used to keep the
verified conditions of a fuzzy DT consistent with those of
a crisp DT. The notions of a root-to-leaf path, factual and
counterfactual explanation are defined similarly to those for
crisp DTs.

Let us conclude the present section with a general remark
concerning all the tree-based classifiers considered. A path
p ∈ P (t) in an arbitrary (either crisp or fuzzy) tree t ∈ T can
be unrolled into a chain of conditions and thus transformed
into a conditional statement of the form

IF c1 AND c2 AND ... AND c|p| THEN x is of class clj (5)

where clj ∈ Y (1 ≤ j ≤ m). Thus, a path in a crisp tree can be
represented following the same formalism as a fuzzy DT (or a
fuzzy rule-based classifier) with an activation of 1. Therefore,
such a conditional statement is further complemented in a
fuzzy tree-based classifier with the corresponding activation
function value so that it is transformed to a fuzzy rule. The
textual representation of a factual explanation ef (x, t) and
a (minimal) set Ecf (x, t) of counterfactual explanations are
claimed to fully explain a particular classification. In order
to generate a corresponding textual (factual and/or counter-
factual) explanation, we further assume a set {c1, ..., c|p|} of
conditions in (5) to be an antecedent of the output explanation,
whereas the conclusive classification clj ∈ Y is referred to as
a consequent.

B. General framework

We generate a factual explanation for the given test instance
x = (F, clx) and a set of counterfactual explanations Ecf for
all the alternative classes {cl | cl ∈ {Y \ clx}}. Furthermore,
we distinguish multiple counterfactual explanations ranking



Fig. 1. Counterfactual explanation generation pipeline

them in accordance with their explanatory capacity with
respect to the test instance.

In addition to producing a logical representation for com-
puted counterfactuals, the output explanations are designed to
be user-friendly pieces of text that not only specify the clas-
sifier’s prediction but also offer a comprehensive explanation
justifying the classifier’s behaviour.

A factual explanation is composed of a set of conditions
constituting the decision path to the classifier’s prediction. As
it is trivially reconstructed by pruning the tree from root to
leaf following the verified conditions for the test instance, let
us instead focus on the method for obtaining counterfactual
explanations. The process of generating counterfactuals is
graphically depicted in Fig. 1.

Given an arbitrary tree-based classifier t ∈ T and a test
data instance in question x ∈ X , we subdivide the task of
counterfactual explanation generation into the following three
main phases which are applied iteratively:
• Collecting candidate counterfactual explanations. At

first, all the paths to the alternative class leaves in
the tree are collected. The preorder depth-first traversal
algorithm [27] is recursively applied to the input tree
in order to extract a set of paths to counterfactuals
Pcf ∈ P (t) : Pcf = {pcfi | 1 ≤ i < |P |)} that
lead to all the predictions counterfactual to the factual
classification. As the retrieved paths Pcf are not guaran-
teed to have the same number of conditions (nodes), we
set a path-condition matrix, that is an equivalent form
of their representation. In order to avoid inconsistency,
the set of paths Pcf are represented in form of a binary
matrix R|Pcf |×|C| where the i-th row corresponds to the
counterfactual path {pcfi ∈ Pcf | 1 ≤ i ≤ |Pcf |} and the
j-th column is a unique condition cj ∈ C (1 ≤ j ≤ |C|)

in the set of all the unique conditions in the tree. Each cell
Rij(1 ≤ i ≤ |Pcf |, 1 ≤ j ≤ |C|) of the path-condition
matrix is populated with binary values so that:

Rij =

{
1, if cj ∈ pcfi ,
0, otherwise

(6)

Similarly, the path pf ∈ P (t) leading to the fac-
tual prediction is encoded in form of a binary vector
test1×|C| = [test1, test2, ..., test|C|]. In order to ensure
the flexibility of the approach and the consistency of
further calculations, we distinguish two ways of popu-
lating the test vector test1×|C| depending on the nature
of the tree-based classifier. In the case of a crisp tree-
based classifier, populating the factual prediction vector
testj(1 ≤ j ≤ |C|) is considered a special case of
populating a path-condition matrix R1×|C|. Hence, its
values are calculated as in (6) for a single row of R. In the
case of a fuzzy tree-based classifier, the factual prediction
vector contains binarized membership function values as
a result of the α-cut,

testj =

{
1, if µ(cj) ≥ α
0, otherwise

(7)

• Counterfactual relevance determination. If there ex-
ists only one counterfactual prediction (|Pcf | = 1),
the only identified counterfactual constitutes the set
of counterfactual explanations Ecf = {pcf1}. Oth-
erwise, candidate counterfactual explanations Ecf =
{ecf1 , ecf2 , ..., ecf|Pcf |} are ranked to determine the most
relevant one in accordance with their distance to the
factual classification. Ranking counterfactuals allows us
to ensure that the test instance and the best counterfactual
data point are minimally different. To do so, we calculate
the bitwise XOR-based distance for each pair of vectors
〈test1×|C| : r1×|C|〉 for ∀ri ∈ R (1 ≤ i ≤ |Pcf |),
normalized over the number of conditions and thus trans-
formed into a scalar:

dist(test, r) =

|r|∑
i=1

1[testi = ri]

|r|
. (8)

All the obtained distance values are sorted to enable us
to find the minimally distant counterfactual ecf (x, t), so
that it is claimed to be the most relevant to complement
the factual classification. If multiple counterfactuals have
the same minimal distance, they are claimed equivalently
relevant, so the most optimal counterfactual is picked
randomly.
Given the consecutive root-to-leaf paths pf (t) to the
factual explanation and pcf (t) to the most optimal coun-
terfactual, they are browsed in the top-down fashion to
identify a critical condition, i.e., the node where the cor-
responding branches of the tree first diverge. Finally, the
remainders of the paths are inspected for differing feature



values constituting the antecedents of the counterfactual
explanations.

• NLG surface realization. All explanations are designed
to be two-sentence pieces of text where the first sentence
is a linguistic realization of a factual explanation ef (x, t)
whereas the second offers the best ranked counterfactual
explanation ecf (x, t, ycf ) ∈ Ecf . It is important to
note that crisp tree-based explanations are supported by
linguistic approximations. More precisely, each numerical
condition cj associated to feature fj is verbalized as
“fj is Lf

ja”, being Lf
ja the most similar linguistic term

in L(fj). Namely, we compute the similarity degree
S(A,Bl) between each pair of numerical intervals A and
Bl as follows:

S(A,Bl) =
A ∩Bl

A ∪Bl
∈ [0, 1], l ∈ [1, |L(fj)|] (9)

being S(A,Bl) = 1 in case A perfectly matches Bl,
and S(A,Bl) = 0 if both intervals are disjoint. A is the
numerical interval representing cj . Bl is the numerical
interval associated to each linguistic term in L(fj), i.e.,
it is the numerical interval associated to the j-th fuzzy set
in the SFP associated to feature fj , when such fuzzy set
is truncated in accordance with the selected α-cut. For
instance, given a feature fj ∈ U = [Umin, Umax], cj =
“fj ≤ a”, a ∈ U , A = [Umin, a]. In addition, if fj were
defined by a uniform SFP with two linguistic terms (Low,
High), α=0.5, BLow = [Umin,

Umin+Umax

2 ] and BHigh =
[Umin+Umax

2 , Umax]. Let’s suppose Umin = 10, Umax =
50, and a = 20. Then, A = [10, 20], BLow = [10, 30],
BHigh = [30, 50], S(A,BLow) = 0.5, S(A,BHigh) = 0.
Accordingly, we conclude that “fj is Low”.
Then, the linguistic realization module would construct
an explanation from the antecedent {ci = (fi, vi)} :
(1 ≤ i ≤ k) and the consequent of the corresponding
explanations (clx ∈ Y for a factual explanation and
ycf ∈ {Y \ clx} for the best counterfactual explanation).
The following template is used for all combinations of
such explanations:
The test instance is of class 〈clx〉 because f1 is v1 (and
f2 is v2 (and ... (and fk is vk))). It is not of class
〈ycf 〉 because ecf (x, t, ycf ). It is worth noting that the
counterfactual explanation can be paraphrased to point to
how the output decision can be changed as follows: “The
test instance would have been of class 〈ycf 〉 if it were the
case that ecf (x, t, ycf )”.

C. Illustrative example

In order to illustrate the use of the proposed method, let us
consider a set of two input DTs T = {Tc = {t1}, Tf = {t2}}
where tree t1 is generated by an arbitrary crisp tree-based
classifier and tree t2 – by an arbitrary fuzzy inference system.
The trees are known to have been trained on the BEER
dataset [28] where 8 beer styles (Blanche, Lager, Pilsner,
IPA, Stout, Barleywine, Porter, and Belgian Strong Ale) are

Fig. 2. A sample crisp tree t1. The decision path corresponding to the factual
explanation is colored in green (i.e., Color < 19.5 is False, Strength < 0.08
is False, Color < 25 is False, then output is 8). The decision paths to the leaf
nodes colored in red are potential counterfactuals. The node in yellow (i.e.,
Strength < 0.08) is the critical condition

classified in terms of the following 3 features (see further
details in Table II):

Color ∈ [0, 45]: Pale, Straw, Amber, Brown, Black.
Bitterness ∈ [8, 250]: Low, Low-medium, Medium-high,
High.
Strength ∈ [0.039, 0.136]: Session, Standard, High, Very
high.

Let us sample a test instance x with the following feature-
value pairs: 〈(Color,28),(Bitterness,39),(Strength,0.089)〉.

This test instance is assumed to be of class 8 (i.e.,
Belgian Strong Ale). The given set of feature-value pairs
corresponds to the following set of linguistic terms:
〈(Color,Brown),(Bitterness,Medium-high),(Strength,High)〉. A
fragment of the crisp DT t1 is shown in Fig. 2.

The fuzzy DT t2 can be reconstructed directly from the
inferred rule-base. Due to space limitations, let us restrict
ourselves to presenting the rules activated during the inference
process only (the corresponding firing degrees are indicated in
brackets):

RULE 15: (0.6) IF Color is Brown
AND Strength is High THEN Class is BelgianStrongAle

RULE 16: (0.4) IF Color is Brown
AND Strength is Very high THEN Class is BelgianStrongAle

For the sake of simplicity, assume that we apply the MIN-
MAX inference mechanism, then the rule with the maximal
firing degree (RULE 15) determines the fuzzy classification.

Then, the factual explanation ef (x, t1) retrieved from the
crisp tree corresponds to the path pf (t1) = {(Color ≥
19.5), (Strength ≥ 0.08), (Color ≥ 25)}. In addition, the
linguistically approximated explanation associated to the crisp
tree is represented in the form of the following linguistic terms:
pfapprox(t1) = {(Color = Black), (Strength = High)}.
Similarly, the factual explanation ef (x, t2) obtained from



the fuzzy DT constitutes the path pf (t2) = {(Color =
Brown), (Strength = High)}.

Due to space limitations, let us consider the process of coun-
terfactual explanation generation only for the crisp tree t1. For
illustrative purposes, let us indicate the set of potential coun-
terfactual explanations for the crisp tree for class 5 (i.e., Stout).
As can be inferred from Fig. 2, it contains (at least) four candi-
date explanations Ecf (x, t1, Ycf = {5}) = {ecf1 , ..., ecf4 , ...}.
Given a set of conditions C = {c1 = “Color ≥
19.5”, c2 = “Strength < 0.08”, c3 = “Strength <
0.05”, c4 = “Color ≥ 32.5” c5 = “Strength ≥ 0.05”, c6 =
“Strength < 0.06”, c7 = “Strength ≥ 0.06”, c8 =
“Bitterness < 23.5”, c9 = “Bitterness ≥ 23.5”, c10 =
“Color ≥ 26.5”, c11 = “Color ≥ 28.5”}, where {ci |
1 ≤ i ≤ |C|} ∈ C, the four candidate counterfactual
explanations are as follows:

ecf1 = {pcf1 = {c1, c2, c3, c4}, ycf1 = {5}}; (10)

ecf2 = {Pcf2 = {c1, c2, c5, c6, c8, c10}, ycf2 = {5}}; (11)

ecf3 = {Pcf3 = {c1, c2, c5, c6, c9, c11}, ycf3 = {5}}; (12)

ecf4 = {Pcf4 = {c1, c2, c7}, ycf4 = {5}}. (13)

Traversing the tree in the top-down manner, we find it
that the critical condition where the paths to the factual
prediction and all the counterfactual predictions (including the
minimally different) is “Strength < 0.08”. As we construct the
path-condition matrix and calculate the distances for all the
candidate counterfactuals to the test instance in accordance
with (8), we find that the optimal counterfactual explanation
for t1 is ecf4 (13).

Thus, the generated factual explanation associated to the
given test instance x and t1 is therefore as follows: The
test instance is of class Belgian Strong Ale because color
is black and strength is high. The counterfactual explanation
for the class “Stout” is: It is not of class Stout because
strength is not standard. Alternatively, the counterfactual can
be paraphrased as follows: “It would have been Stout if
strength were standard”.

D. Implementation details

First, we used two ML open source tools for building the
AI-based systems under consideration:
• The crisp DTs were built with the ML tool WEKA [29].

We considered the following algorithms: J48, REPTree,
and RandomTree. All of them are variants of the well-
known C4.5 algorithm first introduced by Quinlan [30].

• The fuzzy modeling tool GUAJE [31] was used to build
the fuzzy rule-based classifiers and export them to the
JFML format [32]. We considered the implementation of
the fuzzy DT algorithm provided by GUAJE. Two fuzzy

TABLE I
SUMMARY OF CHARACTERISTICS OF THE PRETRAINED CLASSIFIERS

Leaves/rules TRLa RCCIb F-score
J48 9.8 23.4 95 0.9481

RandomTree 26.8 74.7 93.25 0.93
REPTree 8 18 95.25 0.9501

GUAJE-DT 23.3 51.6 93.42 0.935
GUAJE-DT-S 14.4 32.2 93.63 0.9381
aTotal rule length
bRatio of correctly classified instances

rule-based classifiers were generated, i.e., the original
pruned fuzzy tree (GUAJE-DT) and its simplified version
(GUAJE-DT-S) after running the linguistic simplification
procedure provided by GUAJE.

Then, we implemented the new factual and counterfactual
explanation generation method in Python 3.7. Notice that
the package Py4JFML [33] was used to deal with the fuzzy
classifiers in the JFML format in Python. It is worth noting
that FML stands for Fuzzy Markup Language and it complies
with the IEEE Std 1855-2016, i.e., the only standard that is
recognized world-wide for fuzzy modeling. In addition, the
package SimpleNLG [34] was used to implement the NLG
surface realization module. For the sake of reproducibility,
all the source code and complementary materials are made
available online [35].

IV. EVALUATION

A. Experimental settings

In order to assess the performance of our framework, we
performed a series of experiments on several pretrained deci-
sion trees and fuzzy rule-based classifiers. In our experiments,
we generated textual factual and counterfactual explanations
for single test instances for selected pretrained classifiers (as
specified in III-D). Table I summarizes the characteristics
of the classifiers under consideration. All of them exhibit a
good interpretability-accuracy trade-off, i.e., accuracy metrics
(RCCI and F-score) get high values while interpretability
metrics (Leaves/rules, and TRL) remain with small values.

In order to perform a comparative analysis of the generated
explanations, we produce the explanations for fuzzy classifiers
as well as for crisp trees. The fuzzy inference systems used
in the experiments made use of the Mamdani-style inference
with the MIN-MAX method. Default weights (i.e., 1.0) were
applied to each rule. The α-cut threshold was set to 0.5 in all
cases.

We ran the experiments on the BEER dataset [28], which
contains 400 data instances, each of them having three numeric
features: Color, Bitterness, and Strength. Each feature is char-
acterized by a SFP which was defined by an expert. Table II
shows the numerical intervals associated to linguistic terms
in the SFPs when considering the 0.5-cut. The classification
task consists of selecting one out of the following 8 beer
styles: Blanche, Lager, Pilsner, IPA, Stout, Barleywine, Porter,
Belgian Strong Ale.



TABLE II
EXPERT NUMERICAL INTERVALS ASSOCIATED TO THE INPUT FUZZY SETS

Feature Linguistic term Range of values

Color

Pale 0 ... 3
Straw 3 ... 7.5
Aber 7.5 ... 19

Brown 19 ... 29
Black 29 ... 45

Bitterness
Low 7 ... 21

Low-medium 21 ... 32.5
Medium-high 32.5 ... 47.5

High 47.5 ... 250

Strength

Session 0.035 ... 0.0525
Standard 0.0525 ... 0.0675

High 0.0675 ... 0.09
Very high 0.09 ... 0.136

TABLE III
EVALUATION RESULTS

NumCF BestMinDist FactLength CFLength
J48 8.8 0.1157 2.315 1.3497

RandomTree 25.8 0.0472 2.64 1.8702
REPTree 7 0.1429 2.25 1.2629

GUAJE-DT 20.3575 0.0769 2.065 2.1139
GUAJE-DT-S 12.6781 0.081 2.0821 2.1446

We applied 10-fold cross-validation to evaluate the gener-
ated explanations. The following evaluation criteria were used
to assess the quality of the generated factual and counterfactual
explanations:
• Number of counterfactuals (NumCF): the average num-

ber of candidate counterfactuals;
• Best minimal distance (BestMinDist): the averaged

minimal distance to the best counterfactual as defined
above;

• Length of a factual explanation (FactLength): the num-
ber of conditions in the generated factual explanation;

• Length of the best counterfactual explanation
(CFLength): the number of conditions in the generated
best ranked counterfactual explanation.

B. Analysis of results

Table III summarizes the quality metrics associated to the
explanations generated in our experiments. In the light of the
reported results, we can make a number of important remarks.

First, the generated factual and counterfactual explanations
provide a concise representation of the most critical features
of the given test data instance. Altogether, they do not only
summarize the known characteristics of the test instance but
also complement them with relevant hypothetical scenarios of
other most likely outcomes.

Second, the resulting explanations remain short and com-
prehensive irrespective of the overall number of candidate
counterfactuals. Given a greater number of counterfactuals for
both fuzzy classifiers, the average length of their factual and
counterfactual explanations remains close to each other. This
is hypothesized to be due to the effectiveness of the pruning

method applied to the set of potential candidate counterfac-
tuals. Furthermore, such compact and balanced explanations
are believed to be an effective means of explaining classifier’s
predictions in the most user-friendly manner.

Third, fuzzy classifiers show better general performance in
comparison to crisp tree algorithms with respect to generating
minimally distant counterfactuals. Indeed, the fuzzy classifiers
enhanced with linguistically approximated explanations appear
to infer more relevant conditions. The empirical results show
that it is only due to a much more complex tree structure
how the RandomTree algorithm generates counterfactuals of
a higher degree of proximity to the test instance. On average,
the other crisp tree algorithms show worse performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a new method for factual
and counterfactual explanation generation. This method is
applicable to both crisp and fuzzy decision trees. Moreover, it
has also been used with fuzzy rule-based classifiers.

The initial results open broad perspectives on further devel-
opment of the designed framework and evaluation of subse-
quent results. From the algorithmic point of view, integrating
more complex tree representations could enhance the trustwor-
thiness of the system. For instance, one of algorithmic features
to be investigated in future is measuring the impact of weights
(weighted edges in crisp decision trees and weighted fuzzy
rules in fuzzy inference systems) in terms of explainability.

In addition, it seems promising to make use of combined
predictions generated for the same test instances simultane-
ously. While the classifiers employed in this work present
relatively accurate predictions, it seems particularly important
to test whether user trust increases in case of ambiguous test
points where the data instance to be explained lies near the
decision boundary between two or more classes. Providing
a user with a fair explanation for an uncertain classification
may result in decreased trust to the system, in general. As
counterfactual explanations are assumed to be capable of pro-
viding a deeper insight in reasoning mechanisms, investigating
ways of explaining uncertain classifications in terms of other
reliable predictions might soften doubtfulness about system’s
performance.

Human evaluation of the designed framework is among the
next immediate steps reserved for future work. It is a com-
parative analysis of several types of explanations for various
classifiers that could shed some light on further effectiveness
of pairing factual and counterfactual explanations. In addition,
the practical value of the designed framework is planned to be
enhanced by a series of experiments on datasets from domains
where high-stakes decisions are widely found, e.g., the health-
care domain.

Finally, the original method could be used among the main
modules of a cognitive framework that interacts with the
end-user in a dialog to better explain a classifier’s decisions.
For instance, designing an argumentation-based framework for
generating (counter-)factual explanations appears a prospective
line of research in human-machine interaction.
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