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∗ Máster Universitario en Investigación en Inteligencia Artificial, Universidad Internacional Menéndez Pelayo

†Centro Singular de Investigación en Tecnoloxı́as Intelixentes (CiTIUS), Universidade de Santiago de Compostela
Emails: ∗carlos.heble@posgrado.uimp.es, † {andrea.cascallar.fuentes, alejandro.ramos, alberto.bugarin.diz}@usc.es

Abstract—In this work we present an experimental comparison
of six widely used quantification methods (Zadeh’s scalar and
fuzzy cardinality, Yager’s OWA, Delgado’s GD, Sugeno integral
and Vila’s VQ) when evaluating Type-1 and Type-2 linguistic
descriptions of data generated from meteorological data provided
by the Galician Meteorological Agency MeteoGalicia. The objec-
tive of this study is to evaluate if there are significant differences
among these models for the data considered. We ranked the
generated descriptions based on their degree of truth for each
quantification model and we analyzed those results calculating
the Pearson correlation coefficient. Results show that there are
not significant differences in the models when evaluating Type-1
descriptions. However, in Type-2 evaluation the methods can be
grouped in three clusters with a significantly different behavior
among them: i) Zadeh’s scalar cardinality, Delgado’s GD and
Zadeh’s fuzzy cardinality, ii) Yager’s method and iii) Vila’s VQ.

Index Terms—fuzzy quantification, linguistic descriptions of
data, natural language generation

I. INTRODUCTION

Nowadays, the analysis and interpretation of data is be-
coming an increasingly difficult task for humans due to its
exponential growth. Therefore, computational methods that
can perform these tasks are in high demand.

In the natural language generation field (NLG), many sys-
tems have been developed in order to generate comprehensible
texts with useful information from several data sources [1].

Besides, in the fuzzy logic field, several approaches were
proposed to generate data descriptions using linguistic terms.
Following Zadeh’s computing with words and perceptions
paradigms [2], [3], linguistic descriptions of data (LDD) [4]
summarize in a linguistic form one or more numerical vari-
ables and their values, using the general notion of protoform
[5]. These protoforms can follow several structure types (e.g
temporal or comparative [6], [7]), being Type-1 and Type-2
fuzzy quantified statements [8]–[10] with absolute or relative
quantifiers the most common in the literature (e.g. “In some
places the temperature is low”).

Type-1 descriptions have the following structure: “Q X are
A”, where Q is a linguistic quantifier, X is a linguistic variable
defined on a given referential and A is a fuzzy linguistic
value (property) of X. For instance, in “Most temperatures
are normal,” “Most” is the quantifier, “temperatures” is
the linguistic variable and “normal” is a linguistic value of
temperatures. Type-2 descriptions follow the structure “Q DX
are A” where an additional fuzzy property “D” is defined on

the same referential of X . For example, in Most temperatures
in the North are normal “North” is the additional fuzzy
property (D).

Relative quantifiers express the proportion of elements over
the total which fulfill a condition, e.g “half locations have low
temperature”. Absolute quantifiers express quantities over the
total of elements which fulfill a condition, e.g “15 locations
have low temperature”.

Evaluating a quantified sentence involves obtaining its truth
value (a value in the range [0, 1]) on a given data set. It is
obtained by calculating the compatibility between the number
of elements in the referential which fulfill the sentence (its
cardinality) and the quantifier in the sentence. Therefore, this
compatibility measure depends on the data, the quantifier
definition and the linguistic terms defined from the properties
in the referential. Besides, it also depends on the quantification
model used for evaluating the sentence. There exist several
quantification methods [11]–[16] in the literature that differ
from each other in the way they calculate the truth value.

The aim of this work is to experimentally compare six
widely used quantification methods for the evaluation of Type-
1 and Type-2 quantified descriptions, in order to assess their
empirical behavior when applied for the evaluation of fuzzy
quantified sentences. To generate these descriptions we use
meteorological data provided by the Galician (NW Spain)
Meteorological Agency (MeteoGalicia) [17].

Our objective in this work is to perform a comparison
among the selected fuzzy quantification models described in
Section II with the aim of analyze the correlation between
them when evaluating type-1 and type-2 quantified statements.
If differences between the methods behavior are detected, the
selection of a fuzzy quantification model for a specific case
should take this difference into consideration. Conversely, if
the results show a similar behavior between the models, the
selection of a fuzzy quantification model for an specific case
should follow another criteria (e.g., its theoretical properties
or computational cost).

This paper is structured as follows: in Section II we describe
the methods included in this experimentation. In Section III we
describe the used data set and the definition of the linguistic
variables for the quantified sentences generation. In Section IV
we describe the experiments we performed for comparing the
quantification methods behavior. Finally, Section V includes
some final remarks.
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II. FUZZY QUANTIFICATION METHODS

In this section, we present the set of quantification methods
empirically compared in this study. The selection of these
methods rely on their presence in the literature and their
different cardinalities, since this feature can have such a great
impact on the quantification methods performance.

The first approaches for fuzzy quantification were proposed
by Zadeh [11], who identified the need of extending the
concept of the quantifiers exist and all to other imprecise ones,
with more expressiveness.

Evaluating a quantified sentence involves calculating its
truth value. In this evaluation, two aspects have to be con-
sidered: i) the (fuzzy or scalar) cardinality, i.e., how many
elements in the referential fulfill belong to the fuzzy set
defined from a variable and ii) the compatibility between the
cardinality measure and the quantifier. Quantification models
differ in the type of cardinality and in how the compatibility
is evaluated.

Several studies [15], [16], [18]–[21] theoretically analyzed
quantification methods by checking the properties they fulfill.
These analysis show that, in general, quantifiers should be-
have (very) differently, although, for Type-1 descriptions and
coherent1 quantifiers, it was theoretically proved [14] that GD
[14] is a generalization of Yager’s method [12] and ZS [15]
is a generalization of the Sugeno integral base method [13].

Aiming to go beyond of these theoretical results, to the
best of our knowledge, there are no experimental analysis that
assess the behavior of quantification models from an empirical
point of view.

A. Type-1 models

As indicated in the previous sections, Type-1 descriptions
follow the “Q X are A” protoform.

1) Zadeh’s method: [11] is based on the scalar cardinality
“power” defined by Zadeh as P (A) =

∑n
i=1A(xi).

The evaluation of Type-1 sentences for relative quantifiers
is defined (for the t-norm minimum, the most popular operator
used in the literature) as:

ZQ(A) = Q

(
P (A)

|X|

)
(1)

2) Yager’s method based on OWA operators: [12] can only
be used with coherent and relative quantifiers. The evaluation
is:

YQ(A) =

n∑
i=1

A(wibi) (2)

where bi is the i-th higher value of the degree of truth to
the fuzzy set A and wi a coefficient obtained between the
quantifier and |X| to ensure that the evaluation is coherent.

1A quantifier Q is called coherent (or monotonically nondecreasing quan-
tifiers [12]) if Q(xi) ≤ Q(xi+1)∀xi < xi+1, Q(0) = 0, Q(1) = 1 [14]

3) Sugeno integral based method: [13] is another method
to evaluate quantified sentences which also requires coherent
quantifiers. In the relative quantifier case, the evaluation is:

SQ(A) = max
1≤i≤n

min

(
Q

(
P (A)

|X|

))
(3)

4) Delgado’s GD method: [14] uses a fuzzy cardinality
E.

The evaluation of a Type-1 description with relative quan-
tifiers is as follows:

GDQ(A) =

n∑
i=0

ED(A, i)×Q
(
i

n

)
(4)

where any t-norm and t-conorm can be used. In our eval-
uation, we selected the product t-norm and Łukasiewicz’s t-
conorm, which are the ones defined in [14].

On the other hand, ED(A, k) = bk − bk+1 with b0 = 1
and bn+1 = 0 is a particular case of the E cardinality, using
the minimum t-norm, Łukasiewicz’s t-norm, the maximum t-
conorm and the standard negation. Considering a set of α −
cuts of A plus ∅, the possibility that a Aα is a subset of A is
α and an integer k with 1 ≤ k ≤ n such that α = bk.

5) ZS method: This method [15] is based on Zadeh’s fuzzy
cardinality:

Z(A, k) =

{
0 if @α | |Aα| = k,
sup{α | |Aα| = k} otherwise

(5)

Its evaluation for relative quantifiers is:

ZSQ = max
k∈{0,...,n}

min

(
Z(A, k), Q

(
k

n

))
(6)

B. Type-2 models

As indicated in the previous sections, Type-2 descriptions
follow the “Q DX are A” protoform.

1) Zadeh’s method: [11] defined (as in Type-1, for the
minimum t-norm) as:

ZQ(A/D) = Q

(
P (A ∩D)

P (D)

)
(7)

where P (A ∩D) =
∑n
i=1A(xi) ∧D(xi).

2) Yager’s method based on OWA operators: [12] which
can only be generalized to Type-2 sentences using coherent
and relative quantifiers.

The evaluation is:

YQ(A/D) =

n∑
i=1

= wici (8)

where wi is a coefficient obtained between the quantifier
and |X| to ensure that the evaluation is coherent calculated as
follows:

wi = Q(Si)−Q(Si−1) i ∈ {1, ..., n} (9)

and S0 = 0 and ci is the i-th high value of the ¬D ∨ A
set’s truth value.



3) Vila, Cubero, Medina and Pons’ method: [16] uses
the “or” or “orness” degree defined for coherent quantifiers.
orness(∃) = 1 and orness(∀) = 0.

The evaluation for a Type-2 sentence is:

VQ(A/D) = oQ max
x∈X

(D(x) ∧A(x))

+(1− oQ) min
x∈X

(A(x) ∨ (1−D(x)))
(10)

where oQ is the orness degree. The definition on this method
uses the minimum as t-norm and the maximum as t-conorm
so we also selected this criteria in our evaluation.

4) Delgado’s GD method: The generalization of this
method [14] is defined as the compatibility between the ER
cardinality and the quantifier by means of te product and the
Łukasiewicz’s t-conorm, as follows:

GDQ(A/D) =
∑

c∈CR(A/D)

ER(A/D, c)×Q(c) (11)

where

CR(A/D) = { |(A ∩D)α|
|Dα|

with α ∈ M(A/D)} (12)

and

M(A/D) = M(A ∩D) ∪M(D), and

M(A) = {α ∈ (0, 1] |∃xi ∈ X with A(xi) = α}
(13)

5) ZS method: [15], [19] uses the fuzzy cardinality ES,
which consists in a max-min composition between such car-
dinality and the quantifier, and can be defined as:

ZSQ(A/D) = max
α∈M(A/D)

min(α,Q

(
|(A ∩D)α|
|Dα|

)
(14)

III. MATERIALS AND METHODS

A. Data set
As mentioned above, in this study we evaluate Type-1

and Type-2 quantified sentences from meteorological data. A
meteorological situation is calculated by complex numerical
models including a high number of variables and is usually
represented with maps, which are often not intuitive due to
the high amount of icons used for representing the different
weather situations.

In our case, we used data from a real-time observation
service for each Galician council provided by the Galician
Meteorology Agency (MeteoGalicia). This service provides
information for the following meteorological variables of
interest: sky state, wind and temperature. Figure 1 shows a
meteorological real example map for these three variables.
Both the sky and wind icons are the standard ones used in
MeteoGalicia whereas in the temperature maps the possible
values are: VL (very low), L (low), N (normal), H (high), VH
(very high). These are printed in different colors from red,
associated to high temperatures, to dark blue, associated to
low temperature values.

1) Sky state: This variable describes the state of the sky
based on two variables: cloud coverage and rainfall. Meteo-
rologists labeled the values of this variable with 42 integer
codes used to describe the day (21 integer numbers in the
range [101, 121]) and the night situations (21 integer numbers
in the range [201, 221]). For example, 101 means “clear sky”
whereas 211 means “night with clear sky”.

2) Wind: This variable that comprises the wind direction
and speed, and is labeled with integer 34 codes in the range
[299, 332]. Meteorologists consider eight wind directions (N,
S, E, W, NW, NE, SE, SW) combined with four wind speed
values (weak, moderate, strong, very strong). Also the calm
and variable direction situations are considered. For instance,
305 code means ”South direction and weak speed”.

3) Temperature: Represents the temperature in degrees
Celsius.

B. Linguistic descriptions

In this section, we present the definition of the linguistic
variables we used in this study, based on the three meteoro-
logical variables previously described.

1) Sky: It is treated as a crisp variable, therefore the values
of the meteorological variable are the values of the resulting
linguistic variable. Each value in the meteorological variable
is defined as a singleton having an integer code as label and
a degree of truth in the set {0, 1}.

2) Wind: It is also a crisp variable, so the resulting lin-
guistic variable has values in the range [299, 332] defined as
singletons. Likewise, each value has a fulfillment degree in
the set {0, 1}.

3) Temperature: This numerical variable represents the
temperature in degrees Celsius. We modeled the linguistic
variable as a fuzzy variable with the following five labels:
{“very low”, “low”, “normal”, “high”, “very high”}, which
are defined as fuzzy sets.

In order to provide meaning and contextualization for these
labels, meteorologists define a reference temperature value.
This reference is taken from the average temperature, x̄, and
its standard deviation, σ, for the last twenty years, for each
location and each month of the year. These two values were
used to model the labels presented in Figure 2. For instance,
the label “normal” is defined with the trapezoid with support
[x̄ − σ, x̄ + σ] and core [x̄ − 0.5σ, x̄ + 0.5σ]. Thus, for a
specific location with, for instance, x̄ = 14.2 and σ = 4.8, its
“normal” label has support [9.4, 19] and core [11.8, 16.6].

4) Quantifiers: As we mentioned above, we generate quan-
tified sentences (e.g. “In most locations the wind has North
direction and moderate speed”). Therefore, quantifiers are
necessary to count the number of elements in the referential
that fulfills the condition.

We defined the five quantifiers (“at least 25%”, “at least
50%”, “at least 75%”, “most”, “all”), represented in Figure 3.
All of them are modeled as coherent (as defined in Section
II-A), since some quantification methods (Yager’s method,
Sugeno integral based method, and Vila et al. method) only
support quantifiers that fulfill this property.



(a) Sky state (b) Wind (c) Temperature

Fig. 1: Real Map representing the meteorological state for the three variables of interest
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Fig. 2: Linguistic variable temperature definition.
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Fig. 3: Quantifiers definition for the percentage of locations.

5) Geographical descriptors: for Type-2 sentences we
added a geographical qualifier. This allows us to describe
smaller regions instead of the whole territory, which happens
only in Type-1 descriptions. For instance, “In some locations
in the North the temperature is low.”

We defined nine linguistic geographical descriptors (N, S, E,
W, Center, NE, NW, SE and SW), using longitude and latitude
as reference as shown in Figure 4.

In the defined descriptors set, we can classify them into
two subsets: simple or composite. A geographical descriptor
is simple if only uses one dimension (latitude or longitude)
in its definition, for instance “North” uses the latitude. On
the contrary, a composite descriptor uses both dimensions, for
example, “SW” uses both longitude and latitude.

With these components, we generated the quantified state-
ments. In Type-1 descriptions (“Q X are A”) Q is the set of
defined quantifiers, X is the set of described points and A
is a combination of one or more of the linguistic variables
created from the meteorological variables. For instance, “In
some places the sky is clear and the temperature is high”.

Besides, in Type-2 K is the set of geographical descriptors
previously defined. For example, “In most places in the North
the sky is covered”.

C. Experiments

The experimentation we performed in this study consisted
mainly in two steps: i) generating the linguistic descriptions
and ii) analyzing the quantification models behavior to evalu-
ate their similarity. Figure 5 describes the performed stages
in this experimentation and their corresponding inputs and
outputs.

1) Linguistic descriptions generation: in the first stage, we
generated all Type-1 and Type-2 descriptions from several real
meteorological situations.

Firstly, we collected data from 15 different days and times
of the day from 30th July 2019 to 30th August 2019. Thus, we
ensured having a wide variety of situations, all independent
from each other.

We generated all possible descriptions from this resulting
data set, obtaining for each meteorological situation 45,145
Type-1 descriptions and 406,305 Type-2 descriptions.

For each generated sentence, we assessed how descriptive it
was in terms of the meteorological situation described by the
data. Thus, at this stage, we evaluated the descriptions with
the selected quantification methods.

2) Quantification methods correlation comparison: We per-
formed correlation coefficient tests in order to determine
whether the quantification models have similar behaviors when
evaluating quantified descriptions.

Among the different correlation tests, we selected the Pear-
son test, which is applied over the degree of truth, giving
information about the similarity of quantification methods
results, instead of ranking the descriptions based on the
associated truth value. We performed this test in two stages:
i) the test was performed over the data set from 30th July
2019 and ii) test was performed for each description over the
average of evaluation result of the 15 data sets. Besides, in this
second stage we performed two separate tests: i) applying the
correlation coefficient test only to those quantified sentences
which described the temperature and ii) applying test to
quantified sentences which describe the three meteorological
variables (temperature, sky state and wind). Sky state and wind
values were filtered in order to only generate descriptions that
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(a) Latitude definition.
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Fig. 4: Geographical descriptors definition.

Fig. 5: Description of the experimentation stages with their inputs and outputs.

described actual situations in the data sets. So descriptions
were generated with 5 different sky states (101, 103, 104, 105
and 111) and with 18 different wind states (from 300 to 316
and 318).

IV. EXPERIMENTAL RESULTS

In this section, we present the obtained results applying the
Pearson correlation test to the different sets of descriptions for
Type-1 and Type-2 descriptions.

A. Type-1 descriptions

1) 30 July 2019 results: results of the Pearson correlation
coefficient with the 30 July 2019 data set (Table I) confirm
there is a very high correlation between the quantification
methods, with correlations higher than 0.9. A total correlation
is obtained between the pairs YQ - GDQ and SQ - ZSQ, which
is consistent with [14], where it is stated that these methods
coincide for coherent quantifiers.

ZQ YQ SQ GDQ ZSQ

ZQ 1 0.9995 0.9925 0.9995 0.9925
YQ 1 0.9945 1 0.9945
SQ 1 0.9945 1

GDQ 1 0.9945
ZSQ 1

TABLE I: Pearson correlation coefficient for quantification
methods evaluating Type-1 descriptions from 30 July 2019.

2) Average results describing only temperature: in Table II
we present the results of the Pearson test with the resulting
average data set describing only the temperature situation.

Also in this case, the correlation coefficient between all
quantification methods pairs is very high and the total cor-
relation between the pairs YQ - GDQ and SQ - ZSQ was also
obtained.

3) Average results including all meteorological variables:
table III shows the correlations in this experiment. This
experiment also confirms the conclusions of the previous
tests. Therefore, there are not significant differences between
the quantification methods when evaluating Type-1 quantified
descriptions.

Analyzing these three different tests results, we can con-
clude when evaluating Type-1 descriptions the compared meth-
ods do not show differences between their behaviors since

ZQ YQ SQ GDQ ZSQ

ZQ 1 0.9983 0.9987 0.9998 0.9987
YQ 1 0.9992 1 0.9992
SQ 1 0.9992 1

GDQ 1 0.9992
ZSQ 1

TABLE II: Pearson correlation coefficient for quantification
methods evaluating Type-1 descriptions from the average data
set describing temperature.

ZQ YQ VQ GDQ ZSQ

ZQ 1 0.9999 0.9976 0.9999 0.9976
YQ 1 0.9979 1 0.9979
SQ 1 0.9979 1

GDQ 1 0.9979
ZSQ 1

TABLE III: Pearson correlation coefficient for quantification
methods evaluating Type-1 descriptions from the average data
set including all meteorological variables.

their correlation coefficient is higher than 0.9 between all
models pairs. This is consistent with the analysis of properties
described in [19] for Type-1 evaluation. We compile in Table
IV a summary of the most relevant properties, where it can be
seen that all methods fulfill the six properties considered, with
the only exceptions of ZQ (which does not fulfill properties 4
and 6) and YQ, which does not fulfill property 7.

Furthermore, the method pairs GDQ - YQ and ZSQ - SQ
had a correlation coefficient of 1, which are consistent with
the theoretical previous work [14] when it is proved these pair
of methods are equivalent with coherent quantifiers.

B. Type-2 descriptions

1) 30 July 2019 results: Results of the Pearson correlation
coefficient (Table V) of the compared quantification models
when evaluating Type-2 quantified descriptions show a high
correlation between the methods ZQ, GDQ and ZSQ. How-
ever, the correlation between VQ with the others is lower than
0.85. Also YQ has low correlation coefficient when comparing
its behavior with the other four methods.

2) Average results describing only temperature: results pre-
sented in Table VI, show high correlation between ZQ, GDQ,
VQ and ZSQ. Also in this case, YQ have lower correlation with
the others methods than when evaluating Type-1 descriptions.



Property Description Encoding as in [19] ZQ YQ GDQ SQ VQ ZSQ

1 Absolute-relative transformation and correct generalization I.1 X X X X NA X
2 Quantifiers monotonicity I.3 X X X X NA X
3 Correct generalization II.1 X X X NA X X
4 Coherence with fuzzy logic I.2 X X X X NA X

II.6 (∃) NI X X NA X X
II.6 (∀) NI X X NA X X

5 Computational complexity I.4 O(n) O(n log n) O(n log n) O(n log n) NA O(n log n)
II.3 O(n) O(n log n) O(n log n) NA O(n) O(n log n)

6 Not too strict evaluation I.5 X X X X NA X
II.8 NI X X NA NI X

7 Valid for any quantifiers I.6 X X X X NA X
II.7 X NI X NA X X

8 Type-2 to Type-1 transformation II.2 NI NI X NA NI X
9 If D is a normal fuzzy set and D ⊆ A the evaluation is 1 II.4 X NI X NA NI X
10 If D ∩A = ∅, the evaluation is 0 II.5 X X X NA NI X

TABLE IV: Recompilation of the properties analyzed in [19] with the corresponding encoding for Type-1 (I.x) and Type-2
(II.x) evaluations (as in [19], NI means no information is available and NA means property does not apply).

ZQ YQ VQ GDQ ZSQ

ZQ 1 0.3899 0.7610 0.9862 0.9396
YQ 1 0.3330 0.3811 0.3825
VQ 1 0.7727 0.8338

GDQ 1 0.9595
ZSQ 1

TABLE V: Pearson correlation coefficient for quantification
methods evaluating Type-1 descriptions from the 30 July 2019
data set describing temperature.

ZQ YQ VQ GDQ ZSQ

ZQ 1 0.7716 0.9694 0.9870 0.9806
YQ 1 0.7711 0.7508 0.7514
VQ 1 0.9834 0.9850

GDQ 1 0.9935
ZSQ 1

TABLE VI: Pearson correlation coefficient for quantification
methods evaluating Type-2 descriptions from the average data
set describing temperature.

3) Average results including all meteorological variables:
these experiments, as the performed with the 30 July 2019
data set, show a high correlation between ZQ, GDQ and ZSQ
whereas VQ and YQ have lower correlation with the others.
Results are presented in Table VII.

ZQ YQ VQ GDQ ZSQ

ZQ 1 0.2686 0.8168 0.9926 0.9759
YQ 1 0.2875 0.2547 0.2754
VQ 1 0.8256 0.8703

GDQ 1 0.9831
ZSQ 1

TABLE VII: Pearson correlation coefficient for quantification
methods evaluating Type-2 descriptions from the average data
set including all meteorological variables.

The results of this tests set show lower correlation between
the analyzed models in comparison with the Type-1 case.
Besides, results show VQ and YQ have low correlations with
the compared methods whereas ZQ, GDQ and ZSQ have a
similar behavior. One possible explanation for the correlation
between ZQ and GDQ is their type, since both models are
sum-based methods. On the other hand, the correlated behavior

between GDQ and ZSQ can be explained by their cardinality
type, since both of them are based on fuzzy cardinalities.

Regarding the Type-2 properties described in Table IV, the
three fuzzy quantification models share properties 7, 9 and 10.
Besides, GDQ and ZSQ also fulfill properties 4 (∃) (ZSQ also
fulfills property 4 (∀)), 6 and 8 whereas ZQ and ZSQ share
property 3.

Regarding YQ, this model is the only one which does not
fulfill properties 4 (∃) and 10. This non-compliance could
explain the low correlation between this method and the other
four quantification methods.

On the other hand, VQ fulfills properties 3, 4 (∃), 4 (∀) and 7.
Therefore, the correlation between this method and ZQ, GDQ

and ZSQ could be explained by these shared properties.

V. CONCLUSIONS

In this paper, we presented an experimental study to com-
pare the behavior of six well-known quantification methods
when evaluating Type-1 and Type-2 quantified descriptions.

We performed our experiments using meteorological data
provided by the Galician Meteorology Agency. Three different
tests were performed both for Type-1 and Type-2 descriptions.

Test results show there are no significant differences be-
tween the behavior of the quantification models when evalu-
ating Type-1 descriptions. Besides, our results are consistent
with the theoretical results that state that GDQ [14] and [12]
methods, on one hand, and [15] and [13] methods, on the other,
coincide for coherent quantifiers, since for these two pairs we
obtained a correlation coefficient of 1.The results also prove
a very similar behavior between all pairs of methods, with a
correlation coefficient higher than 0.9 in all cases.

In the Type-2 scenario, correlation between the quantifica-
tion models is lower than for Type-1, but methods can be
clustered into three categories according to their correlation:
i) ZQ, GDQ and ZSQ, ii) VQ and iii) YQ.

As future work, we are extending our experimentation
in the Type-2 scenario in different ways: i) increasing the
number of data sets in order to confirm whether the correlation
between the quantification methods is independent of the data;
ii) considering other definitions or partitions of quantifiers
and other criteria if possible; and iii) extending the current



experimentation including new quantification methods and
extending the study of their properties and results to verify
if their similarities are by chance or not.

ACKNOWLEDGMENTS

This research was funded by the Spanish Ministry for
Science, Innovation and Universities (grants TIN2017-84796-
C2-1-R and TIN2017-90773-REDT) and the Galician Ministry
of Education, University and Professional Training (grants
ED431C 2018/29, ”accreditation 2016-2019, ED431G/08” and
ED431G2019/04). All grants were co-funded by the European
Regional Development Fund (ERDF/FEDER program).

REFERENCES

[1] A. Gatt and E. Krahmer, “Survey of the State of the Art in Natural
Language Generation: Core tasks, applications and evaluation,” Journal
of Artificial Intelligence Research, vol. 61, pp. 65–170, 2018. [Online].
Available: https://doi.org/10.1613%2Fjair.5477

[2] L. A. Zadeh, “Fuzzy logic = computing with words,” IEEE Transactions
on fuzzy systems, vol. 4, no. 2, pp. 103–111, 1996. [Online]. Available:
https://doi.org/10.1109%2F91.493904

[3] ——, “A new direction in AI: Toward a computational theory of
perceptions,” AI magazine, vol. 22, no. 1, p. 73, 2001. [Online].
Available: https://doi.org/10.1609/aimag.v22i1.1545

[4] J. Kacprzyk and R. R. Yager, “Linguistic summaries of data using fuzzy
logic,” International Journal of General System, vol. 30, no. 2, pp. 133–
154, 2001.

[5] L. A. Zadeh, “A prototype-centered approach to adding deduction
capability to search engines-the concept of protoform,” in
Intelligent Systems, 2002. Proceedings. 2002 First International
IEEE Symposium, vol. 1. IEEE, 2002, pp. 2–3. [Online]. Available:
https://doi.org/10.1109%2Fis.2002.1044219

[6] R. Castillo-Ortega, N. Marı́n, and D. Sánchez, “Time series comparison
using linguistic fuzzy techniques,” in IPMU, ser. Lecture Notes in
Computer Science, vol. 6178. Springer, 2010, pp. 330–339.

[7] A. Wilbik and U. Kaymak, “Gradual linguistic summaries,” in IPMU
(2), ser. Communications in Computer and Information Science, vol.
443. Springer, 2014, pp. 405–413.

[8] J. Kacprzyk and S. Zadrozny, “Computing with words is an
implementable paradigm: fuzzy queries, linguistic data summaries,
and natural-language generation,” IEEE Transactions on Fuzzy
Systems, vol. 18, no. 3, pp. 461–472, 2010. [Online]. Available:
https://doi.org/10.1109%2Ftfuzz.2010.2040480

[9] N. Marı́n and D. Sánchez, “On generating linguistic descriptions of
time series,” Fuzzy Sets and Systems, vol. 285, pp. 6–30, 2016.
[Online]. Available: https://doi.org/10.1016%2Fj.fss.2015.04.014

[10] A. Alvarez-Alvarez and G. Trivino, “Linguistic description of
the human gait quality,” Engineering Applications of Artificial
Intelligence, vol. 26, no. 1, pp. 13–23, 2013. [Online]. Available:
https://doi.org/10.1016%2Fj.engappai.2012.01.022

[11] L. A. Zadeh, “A computational approach to fuzzy quantifiers in natural
languages,” in Computational linguistics. Elsevier, 1983, pp. 149–184.

[12] R. R. Yager, “On ordered weighted averaging aggregation operators
in multicriteria decisionmaking,” IEEE Trans. Systems, Man, and
Cybernetics, vol. 18, no. 1, pp. 183–190, 1988. [Online]. Available:
https://doi.org/10.1109/21.87068

[13] P. Bosc and L. Lietard, “Monotonic quantified statements and
fuzzy integrals,” in NAFIPS/IFIS/NASA’94. Proceedings of the First
International Joint Conference of The North American Fuzzy
Information Processing Society Biannual Conference. The Industrial
Fuzzy Control and Intellige. IEEE, 1994, pp. 8–12. [Online]. Available:
https://doi.org/10.1109/IJCF.1994.375159

[14] M. Delgado, D. Sánchez, and M. A. V. Miranda, “Fuzzy
cardinality based evaluation of quantified sentences,” Int. J. Approx.
Reasoning, vol. 23, no. 1, pp. 23–66, 2000. [Online]. Available:
https://doi.org/10.1016/S0888-613X(99)00031-6

[15] M. D. Calvo-Flores, D. Sánchez, and M. A. Vila, “Un método para la
evaluación de sentencias con cuantificadores lingüı́sticos,” in Actas del
VIII Congreso Español sobre Tecnologı́as y Lógica Fuzzy: Pamplona,
8-10 de septiembre de 1998. Departamento de Automática y Com-
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