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Abstract—Atanassov’s intuitionistic fuzzy sets (A-IFSs) are
used to deal with that information, which is incomplete as well
as imprecise. In this paper, we defined a similarity measure by
using Sugeno integral and technique of (α, β)-cut. Hwang et al.
[Hwang, Chao-Ming, et al. ”A similarity measure of intuitionistic
fuzzy sets based on the Sugeno integral with its application
to pattern recognition.” Information Sciences 189 (2012): 93-
109.] defined Sugeno integral based similarity measure for the
first time. But, in Hwang et al.’s similarity measure, only α-cut
is utilized that neglected the contribution of non-membership
function. The non-membership function plays an equal role in the
A-IFS theory. Therefore, we proposed the Sugeno integral based
similarity measure concerning both the (α, β)-cuts. We added
one artificial constructed example to show that our proposal is
different than to similarity measure defined by Hwang et al.
Moreover, we added some more benchmark examples to show
the efficacy of the proposed similarity measure.

I. INTRODUCTION

Zadeh in [1], introduced the basic structure of fuzzy sets
(FSs) in 1965 to deal with that information, which involves
uncertainty. Henceforth, a variety of higher-order of FSs, for
example, Interval-valued fuzzy sets [5], Type-2 fuzzy sets
[1], Atanassov intuitionistic fuzzy sets [2], Vague sets [6] etc.
have been proposed by the different researcher to generalized
the conventional FSs. Atanassov intuitionistic fuzzy sets
(A-IFSs); initially has been extended by Atanassov [2] in
1986, which is a popular extension of the FS theory, used to
describe objective reality more realistically and precisely.

(α)-cut helps to make a crisp set from the universe of
discourse X in such a way that each element of the crisp set
has membership value less than or equal to α (see Fig. 1).
Thus, (α)-cut has been used by the researchers to relate the
FS and the classical sets. Every A-IFSs depends upon two
independent components membership and non-membership.
Therefore, to carry foreword this cut technique from FS to its
more generalized and accurate extension A-IFS, Li and Zou
[7], [8] discussed the concept of upper cut and lower cut or
(α, β)-cuts of A-IFSs and discussed the decomposition and
representation theorem concerning (α, β)-cut (see definition-
2.4, 2.5 and Fig. 2). Omer and Bayeq [28], applied (α, β)-cut
technique to solve initial value problem in differential
equation. Moreover, by using (α, β)-cut Liu et al. [29],
proposed a model to make decision in A-IFS. (α, β)-cut also
have been used by the researchers to construct similarity

Fig. 1. Geometrical of α-cut.

measures [4] for solving real world problems.

Eventually, as a successor of the proposal of A-IFSs,
many researchers studied it in different aspects practically
and theoretically that transformed it into a burning area of
research. In the development of A-IFS, similarity/distance
measure is one of the essential theories studied under A-
IFS. Similarity/distance measure, also known as information
measure, is an explicit function used to differentiate two
objects based on the given information. The similarity and
distance measure both are interrelated concepts under the A-
IFS theory, which is used to characterize the information by
evaluating the degree of belongingness. Due to mathematical
properties such as reflexive, symmetry and transitivity; simi-
larity measure has high potential to separate information, and
therefore, it received a huge amount of attention of the research
community and used it in various applications, e.g., Decision
making ([21],[22]), Pattern recognition, ([9],[10], [19], [18]),
Cluster analysis ([11], [20], [16],[17]), Biology ([14]) and so
on. For the space constraint, we refer to our previous papers
[20] in which we did a detailed survey about the systematic
development of the similarity/distance measure (please see the
introduction section and table I in [20]).

In 1974, Sugeno integral [23] was first proposed by M. Sugeno
in his doctoral thesis. Sugeno integral uses the maximum
and minimum operations that make it a handy tool to induce
similarity/dissimilarity measures, which are utilized in statis-
tics as well in other fields [15], [13]. Hwang et al. [4], in
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Fig. 2. Geometry of (α, β)-cut over A-IFS

their research, utilized the Sugeno integral to define similarity
measures to measure the degree of similarity between two
A-IFSs. As in A-IFSs, every element has two independent
components. Thus, both the components have opposite nature’s
cut on them (see Fig. 2). Hwang et al., in [4], proposed their
similarity measure between two A-IFSs by only utilizing the
α-cut. However, the proper cut on any A-IFS is (α, β)-cut
that uses both the independent components functions µ and
ν. The main aim of this paper is to redefine Sugeno integral
based intuitionistic fuzzy similarity measure by utilizing the
cuts on both the independent components, membership, and
non-membership.

Further paper is as follows; In section II, we discuss some
basic definitions related to our study. In section III, by using
(α, β)-cut, we proposed the Sugeno integral based similarity
measure and studied its mathematical properties. In section IV,
we compare the proposed similarity with the other well-known
similarity measures. Finally, we conclude in section V.

II. PRELIMINARIES

In this section, let us discuss some fundamental definitions
associated with further study of this paper.

Definition 2.1: Atanassov intuitionistic fuzzy set (A-IFS)
([2]): Let X be an universe of discourse. Then, the Atanassov’s
intuitionistic fuzzy set (A-IFS) A is defined as an object of
the form:

A = {(x, µA(x), νA(x)) |x ∈ X}
where, µA : X → [0, 1] is membership function,
νA : X → [0, 1] is non-membership function, for each
x ∈ X , 0 ≤ µA(x) + νA(x) ≤ 1. Moreover, the function
πA(x) = 1− µA(x)− νA(x) is degree of hesitancy.

Definition 2.2: Fuzzy Measure ([4]): A function m defined
on sigma algebra Γ of X is called fuzzy measure if it satisfies
the following conditions:
(1) m(φ) = 0.
(2) E,F ∈ Γ and E ⊂ F imply m(E ≤ m(F ).
(3) {En} ∈ Γ;E1 ⊂ E2 ⊂ · · · , and

⋃∞
n=1En ∈ Γ imply

limnm(En) = m(
⋃∞
n=1En).

(4) {En} ∈ Γ;E1 ⊃ E2 ⊃ · · · ,m(E1) < ∞ and⋂∞
n=1En ∈ Γ imply limnm(En) = m(

⋂∞
n=1En).

Definition 2.3: Sugeno integral ([4]): For a finite set X , we
denote the value of function f at point xi in X by fi. If the
values of the function f satisfy f1 < f2 < ... < fn, then
the sugeno integral of f with respect to fuzzy measure m is
defined as: ∫

f dm = ∨ni=1(fi ∧m(Ai))

, where Ai = xi, xi+1, ..., xn, i = 1, ..., n and An+1 = φ.
Definition 2.4: (α, β)-cuts ([7], [8]): Let A be an A-IFS,

then, its (α, β)-cuts is defined as:

Aα,β = {(x, µA(x), νA(x)) |x ∈ X,µA(x) ≥ α, νA(x) ≤ β}

where, α, β ∈ [0, 1] with condition α+ β ≤ 1
Definition 2.5: Resolution identity ([7], [8]): Let A be an A-

IFS with membership function ξA, non-membership function
ηA and Aα,β = {x : ξA(x) ≥ α, ηA ≤ β}. Then

ξA(x) = sup
0≤α≤1

α1Aα(x); ηA(x) = inf
0≤β≤1

β 1Aβ (x)

where, Aα and Aβ are the α and β level sets of the A-IFS
corresponding to the membership and non-membership
functions, respectively. Also, 1Aα and 1Aβ are the called the
Resolution identity and defined as follows:

1Aα(r) =

{
α, if r ∈ Aα
0, if r /∈ Aα

; 1Aβ (t) =

{
β, if t ∈ Aβ
1, if t /∈ Aβ

Definition 2.6: Similarity measure ([20]): For any
A1, A2, A3 ∈ A-IFS, a similarity measure, S: A-IFS× A-
IFS→ [0, 1] is a mapping between A-IFSs with the following
properties:
(1) 0 ≤ S(A1, A2) ≤ 1.
(2) S(A1, A2) = 0 ⇔ A1 = A2.
(3) S(A1, A2) = S(A2, A1).
(4) A1 ⊆ A2 ⊆ A3 then S(A1, A3) ≤ S(A1, A2)

and S(A1, A3) ≤ S(A2, A3).
The relationship between the distance measure and similarity
measure is defined as S(A1, A2) = 1−D(A1, A2).

III. SUGENO INTEGRAL AS A SIMILARITY MEASURE
BETWEEN A-IFSS

Sugeno integral is a useful operator to generate similarity
measure. Similarity measures is utilized in many fields of



applied mathematics and computer sciences. In this paper,
we proposed a similarity measure for the intuitionistic fuzzy
set by utilizing (α, β)-cuts. Moreover, as Sugeno integral
uses maximum and minimum operation in their mathematical
mechanism; thus, our proposed similarity measure between A-
IFS will also enjoy those properties too. Let us assume that
F be the class of all finite non-negative measurable functions
with range [0, 1] defined in (X,Γ). For any given f ∈ F , we
can write fα = {x : f(x ≥ α}, where α ∈ [0, 1]. fα is called
α − cut set (see Fig. 1). For a finite set X , we denote the
value of function f at point xi in X by fi. Then, the Sugeno
integral of f with respect to the fuzzy measure m is defined
as: ∫

f dm = ∨ni=1(fi ∧m(Ai))

,
where Ai = xi, xi+1, ..., xn, i = 1, ..., n and An+1 = φ.

Moreover, as the membership function (µ) and non-
membership function (ν) are of opposite nature. Thus, the
only α-cut is not sufficient to deal with both the component
functions simultaneously (see Fig. 2). Thus, by utilizing α-cut
on µ and β-cut on ν we defined a novel similarity measure
between two A-IFSs A and B.

For any two A-IFSs A and B, where;

A = {(x, µA(x), νA(x));x ∈ X}

B = {(x, µB(x), νB(x));x ∈ X}

Let us define the following sets;

Cµ(A,B) = {(x, |µA(x)− µB(x)|, x ∈ X} (1)

Cν(A,B) = {(x, |νA(x)− νB(x)|, x ∈ X} (2)

Now, us define two Sugeno integral E(Cµ(A,B)) and
E(Cν(A,B)) with respect to (α, β)-cut as follows:

E(Cµ(A,B)) =
1

n

n∑
k1=1

Kαi

∫
Cαiµ(A,B)

Cµ(A,B)dm (3)

here, Kαi is associated with the α-cut on the membership
function µ ( in discrete case, Kαi is the number of
x ∈ Cµ(A,B) such that µCµ(A,B)(x) = αi).

and

E(Cν(A,B)) =
1

n

n∑
k2=1

Kβi

∫
Cβiν(A,B)

Cν(A,B)dm (4)

here, Kβi is associated with the β-cut on the non-
membership function ν (in discrete case Kβi is the
number of x ∈ Cν(A,B) such that νCν(A,B)(x) = βi).

The Sugeno integral E(Cµ(A,B)) can also be seen as
expected total difference between A-IFSs A and B associated
with α-cut based upon membership values µA and µB . And,

Sugeno integral E(Cν(A,B)) seen as the expected total
difference between A-IFSs A and B associated with β-cut
based upon non-membership values νA and νB .

Now, on the basis of the two Sugeno integrals;
E(Cµ(A,B)) and E(Cν(A,B)), the new Sugeno integral
based intuitionistic fuzzy similarity measure between two
A-IFSs A and B induced by (α, β)-cuts, we define as follows:

S(α,β)
new (A,B) = exp

(
− E(Cµ(A,B)) + E(Cν(A,B))

2

)
(5)

here, α is associated with α-cut on µ and β is associated
with β-cut on ν.

Theorem 3.1: S(α,β)
new is an intuitionistic fuzzy similarity

measure between two A-IFSs induced by (α, β)-cuts.

Proof 3.1: To proof S
(α,β)
new is a similarity measure, we

have to prove all (1)-(4) conditions of definition-2.6 as follows:

(1) 0 ≤ S(α,β)
new ≤ 1 (obvious property by the definition).

(2) S
(α,β)
new (A,B) = 0 ⇔ A = B.

Now, let
S
(α,β)
new (A,B) = 0 ⇔ E(Cµ(A,B)), E(Cν(A,B)) = 0

⇔ each element in E(Cµ(A,B)) and E(Cν(A,B)) are
zero
⇔ |µA(x) − µB(x)| = |νA(x) − νB(x)| = 0 for each
x ∈ X ⇔ A = B.

(3) S
(α,β)
new (A,B) = S

(α,β)
new (B,A) (obvious property by

the definition).

(4) A ⊆ B ⊆ C, then S
(α,β)
new (A,C) ≤ S

(α,β)
new (A,B),

S
(α,β)
new (A,C) ≤ S(α,β)

new (B,C).

Since, A ⊆ B ⊆ C. Then, for each x ∈ X and for each
(α, β)-cut, we have;

µA(x) ≤ µB(x) ≤ µC(x) and νA(x) ≥ νB(x) ≥ νC(x).

⇒ |µA(x)− µB(x)| ≤ |µA(x)− µC(x)|

and

|νA(x)− νB(x)| ≤ |νA(x)− νC(x)|

⇒ Cµ(A,B) ⊆ Cµ(A,C), α ∈ [0, 1]

Cν(A,B) ⊆ Cν(A,C), β ∈ [0, 1]
⇒
E(Cµ(A,B)) = 1

n

n∑
k1=1

Kαi

∫
Cαiµ(A,B)

Cµ(A,B)dm



by using definition of Sugeno integral, we have;

= 1
n

n∑
k1=1

Kαi sup
0≤δ≤1

(
δ∧m(Cαiµ(A,B)∩Cδµ(A,B))

)
(here δ is the α cut on the membership function µ
such that the quantity δ ∧ m(Cαiµ(A,B) ∩ Cδµ(A,B)
attended their suprima)

≤ 1
n

n∑
k1=1

Kαi sup
0≤δ≤1

(
δ∧m(Cαiµ(A,C)∩Cδµ(A,C))

)
= 1

n

n∑
k1=1

Kαi

∫
Cαiµ(A,C)

Cµ(A,C)dm

= E(Cµ(A,C))

⇒ E(Cµ(A,B)) ≤ E(Cµ(A,C))

In similar fashion,

E(Cν(A,B)) = 1
n

n∑
k1=1

Kβi

∫
Cβiν(A,B)

Cν(A,B)dm

Again by using definition of Sugeno integral, we
have;

= 1
n

n∑
k1=1

Kβi inf
0≤δ≤1

(
δ ∧m(Cβiν(A,B)∩Cδν(A,B))

)
(here in above case δ is associated with β-cut on the
non-membership function ν. Moreover, as the nature
of the non-membership function ν is concave, so the
quantity δ∧m(Cβiν(A,B)∩Cδν(A,B) will attend their
suprima at the lowest level of δ (see figure I)

≤ 1
n

n∑
k1=1

Kβi inf
0≤δ≤1

(
δ ∧m(Cβiν(A,C)∩Cδν(A,C))

)
= 1

n

n∑
k1=1

Kβi

∫
Cβiν(A,B)

Cν(A,C)dm

= E(Cν(A,C))

similarly for each (α, β)-cuts, we can easily prove
E(Cµ(B,C)) ≤ E(Cµ(A,C)), E(Cν(A,B)) ≤
E(Cν(A,C)) and E(Cν(B,C)) ≤ E(Cν(A,C))

Therefore, by using Euq. 5, for A ⊆ B ⊆ C, we have;

S
(α,β)
new (A,C) ≤ S

(α,β)
new (A,B) and S

(α,β)
new (A,C) ≤

S
(α,β)
new (B,C).

Thus, S(α,β)
new is an intuitionistic fuzzy similarity measure

between two A-IFSs A and B induced by (α, β)-cuts.

Algorithm 1 Steps of S(α,β)
new similarity measure

Input: Given two AIFSs

A = {(x, µA(x), νA(x));x ∈ X}

B = {(x, µB(x), νB(x));x ∈ X}

Computation of the set Cµ and Cν:

Cµ(A,B) = {(x, |µA(x)− µB(x)|, x ∈ X}

Cν(A,B) = {(x, |νA(x)− νB(x)|, x ∈ X}

Expected total sum of membership by using α-cut:

E(Cµ(A,B))

Expected total sum of non-membership by using β-cut:

E(Cν(A,B))

Computation of S(α,β)
new similarity:

S(α,β)
new (A,B) = exp

(
− E(Cµ(A,B)) + E(Cν(A,B))

2

)

Example : Let us include one artificially constructed
example to understand the working of the proposed similarity
measure which as follows:

Let X = {x1, x2, x3} be the universe of discourse and A
and B are the three A-IFSs given as follows:

A = {(0.1, 0.4), (0.2, 0.5), (0.4, 0.5)}

B = {(0.2, 0.3), (0.4, 0.4), (0.3, 0.1)}

Then, we calculated Cµ(A,B) and Cν(A,B) as follows:

Cµ(A,B) = {0.1, 0.2, 0.1}

Cν(A,B) = {0.1, 0.1, 0.4}

Now, by applying Algorithm 1, we have;

S(α,β)
new (A,B) = exp

(
− 0.2 + 0.1

2

)
= exp(−0.3/2) = 0.861

On the other hand, we also calculated similarity degree
between A and B by using similarity measure Snew proposed
by Hwang et al. [4] by using only α-cut on both the
component function µ and ν given as;

Snew(A,B) = 0.741

This implies, S(α,β)
new (A,B) 6= Snew(A,B) this validates that

our proposed measure is new and different than to similarity
measure proposed by Hwang et al. [4].



TABLE I
A COMPARATIVE OF THE PATTERN RECOGNITION PROBLEM DISCUSSED IN

EXAMPLE 4.1 WITH S
(α,β)
new AND THE OTHER WELL KNOWN MEASURES.

SM S(P1, Q) S(P2, Q) S(P3, Q) Output

SDC 1.000 1.000 1.000 Not Classify

SLS1 1.000 0.933 0.800 P1

SLS2 1.000 0.967 0.900 P1

SLS3 1.000 0.956 0.867 P1

SM 1.000 0.933 0.800 P1

S1
HY 1 1.000 0.933 0.800 P1

S1
HY 2 1.000 0.898 0.713 P1

S1
HY 3 1.000 0.875 0.667 P1

Snew 1.000 0.936 0.741 P1

S(α,β)
new 1.000 0.906 0.8187 P1

Bold entities means unreasonable results .

IV. VERIFICATION AND COMPARISON OF S
(α,β)
new

SIMILARITY MEASURE ON SOME BENCH MARK EXAMPLES

In this section, for the unbiased and proper justification
of the proposed similarity measure S(α,β)

new , we have selected
two more examples of pattern recognition. These examples
have been chosen as a bench mark data by the researchers
to examine the similarity measures. Simultaneously, for each
examples, we compared the outcomes of our similarity mea-
sure with the other well known similarity measures SDC
([24]), SLS1 ([25]), SLS2 ([25]), SLS3 ([25]), SM ([26]),
S1
HY 1 ([27]), S1

HY 2 ([27]), S1
HY 3 ([27]), Snew([4]) (due to

space constrain, for the detail explanation and functional
representation of these similarity measures please visit [20]),
and shown that the proposed similarity measure is genuine.

Example 4.1: In this example, borrowed from [4] we have
three given patterns P1, P2 and P3 in terms of A-IFSs in the
universe of discourse X = {x1, x2, x3, x4} as follows:

P1 = {(x1, 0.3, 0.3), (x2, 0.2, 0.2), (x3, 0.1, 0.1)}

P2 = {(x1, 0.2, 0.2), (x2, 0.2, 0.2), (x3, 0.2, 0.2)}

P3 = {(x1, 0.4, 0.4), (x2, 0.4, 0.4), (x3, 0.4, 0.4)}

On the basis of these patterns P1, P2 and P3, we need to
identify the unknown A-IFS Q in X = {x1, x2, x3, x4} where:

Q = {(x1, 0.3, 0.3), (x2, 0.2, 0.2), (x3, 0.1, 0.1)}

In order to solve this example, we evaluate the similarities
between AIFSs (P1, P2, P3) and Q by using our proposed
similarity measure S(α,β)

new and by other well known similarity
measures. The similarity degree with respect to each measure
is given in Table-I. By seeing the data, it is clear that P1 = Q.
The proposed similarity measure S

(α,β)
new along with SLS1,

SLS2, SLS3, SM , S1
HY 1, S1

HY 2, S1
HY 3, Snew claiming the

same output. But, SDC measure failed to identify the patterns.
Hence, the unknown pattern Q is classified into the pattern
P1 as the values of S(α,β)

new (P1, Q) are the largest.

TABLE II
A COMPARATIVE OF THE PATTERN RECOGNITION PROBLEM DISCUSSED IN

EXAMPLE 4.2 WITH S
(α,β)
new AND THE OTHER WELL KNOWN MEASURES.

SM S(P1, Q) S(P2, Q) S(P3, Q) Output

SDC 1.000 1.000 0.600 Not Classify

SLS1 0.833 0.933 0.600 P2

SLS2 0.917 0.967 0.600 P2

SLS3 0.899 0.956 0.722 P2

SM 0.833 0.933 0.600 P2

S1
HY 1 0.833 0.933 0.567 P2

S1
HY 2 0.757 0.898 0.444 P2

S1
HY 3 0.714 0.875 0.395 P2

Snew 0.741 0.936 0.632 P2

S(α,β)
new 0.8187 0.936 0.7047 P2

Bold entities means unreasonable results .

Example 4.2: In this example, as given in [4], we have
three given patterns P1, P2 and P3 in X = {x1, x2, x3, x4}
as follows:

P1 = {(x1, 0.1, 0.1), (x2, 0.5, 0.1), (x3, 0.1, 0.9)}

P2 = {(x1, 0.5, 0.5), (x2, 0.7, 0.3), (x3, 0.0, 0.8)}

P3 = {(x1, 0.7, 0.2), (x2, 0.1, 0.8), (x3, 0.4, 0.4)}

On the basis of these provided patterns P1, P2 and
P3, we need to classify the unknown A-IFS Q in X =
{x1, x2, x3, x4} where Q is given as follows:

Q = {(x1, 0.4, 0.4), (x2, 0.6, 0.2), (x3, 0.0, 0.8)}

To solve this example, we calculated the similarity of Q with
the AIFSs (P1, P2, P3) by using the our proposed similarity
measure S

(α,β)
new and by other similarity measures. The out-

comes of the all respective similarity degrees with respect to
each measure is given in Table-II. Now, by usual observation,
it is clear that the unknown pattern Q is more similar to
P2 than to other known patterns. The other measures SLS1,
SLS2, SLS3, SM , S1

HY 1, S1
HY 2, S1

HY 3, Snew claiming the
same output results. But, the similarity measure SDC fails
to recognize the patterns. Hence, the unknown pattern Q is
classified into the pattern P2 as the values of S(α,β)

new (P1, Q) is
the largest.

Example 4.3: In This example, as given in [4], we have
two given patterns P1 and P2 in the universe of discourse
X = {x1, x2, x3, x4} as follows:

P1 = {(x1, 0.1, 0.4), (x2, 0.4, 0.3), (x3, 0.2, 0.1)}

P2 = {(x1, 0.3, 0.4), (x2, 0.3, 0.4), (x3, 0.1, 0.1)}

On the basis of the patterns P1 and P2, we have to classify
the unknown A-IFS pattern Q in X = {x1, x2, x3, x4} where
Q is given as follows:

Q = {(x1, 0.2, 0.2), (x2, 0.2, 0.2), (x3, 0.2, 0.2)}



Now, by using Equ. 1 and 2, we have;

C1µ = {0.1, 0.2, 0.1}, C1ν = {0.2, 0.1, 0.1}

C2µ = {0.1, 0.1, 0.1}, C2ν = {0.2, 0.2, 0.1}

TABLE III
A COMPARATIVE OF THE PATTERN RECOGNITION PROBLEM DISCUSSED IN

EXAMPLE 4.3 WITH S
(α,β)
new AND THE OTHER WELL KNOWN MEASURES.

SM S(P1, Q) S(P2, Q) Output

SDC 0.758 0.888 Not Classify

SLS1 0.867 0.867 Not Classify

SLS2 0.875 0.911 P2

SLS3 0.744 0.845 P2

SM 0.833 0.933 P2

S1
HY 1 0.833 0.833 Not Classify

S1
HY 2 0.653 0.653 Not Classify

S1
HY 3 0.641 0.641 P1

Snew 0.818 0.861 P2

S(α,β)
new 0.985 0.990 P2

Bold entities means unreasonable results .

A comparative analysis of example 4.3 with the proposed
(α, β)-cuts based similarity measure S(α,β)

new is given in Table-
III. In Table-III, the measure S(α,β)

new along with the similarity
measures SLS2, SLS3, SM , Snew classifies the pattern Q in
to the pattern P2. But, the similarity measures SDC , SLS1,
S1
HY 1, S1

HY 2, S1
HY 3 are either fails to identify or incorrectly

identify the unknown pattern Q.

V. CONCLUSION

Atanassov’s intuitionistic fuzzy set (A-IFS) is the general
form of Zadeh’s fuzzy set, which is used to deal with un-
certainty more precisely. The similarity measure is a tool
to differentiate two objects based on the given information.
The Sugeno integral based similarity measure is highly ap-
preciated in applied mathematics, statistics, computer science,
etc. Therefore in this paper, we proposed a novel similarity
measure by using Sugeno integral and (α, β)-cut and stud-
ied its mathematical properties. Moreover, some benchmark
examples we borrowed from already published papers for
verification and comparison purposes. The outcomes of the
proposed measure S(α,β)

new is either equivalent to existing sim-
ilarity measure or provided better results.
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