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Abstract—Consensus achievement is a class of problems in
which a group of agents, such as a swarm, needs to collectively
reach a common decision to select one of the available options.
Many consensus achievement strategies were proposed in which
an agent forms its opinion and exchanges it with the other agents
to reach a collective decision. To facilitate the decision making
process, agents which are highly confident in their opinions are
commonly given a higher chance to influence the collective’s
decision making. However, the use of subjective metrics for
confidence could degrade the performance of the state-of-the-
art algorithms in complex scenarios where agents with wrong
opinions can be the most confident. To tackle this problem, we
propose an objective metric for confidence by using experience
to learn the mapping between the information available to an
agent and the probability that the agent’s opinion is correct. To
compute its confidence level, an agent feeds data from its local
observations, as well as the received neighbours’ opinions, into
a fuzzy inference system (FIS) that uses these inputs to estimate
confidence. The proposed strategy is distributed and it requires
the agents to communicate locally using messages containing only
their ID and opinions. Our strategy is evaluated under scenarios
with different levels of complexity. The results show that our
algorithm outperforms the state-of-the-art algorithms in terms
of its accuracy, task time, and ability to reach majority. The
proposed approach was also shown to maintain its success, even
in the most complex environments.

Index Terms—Swarm Decision Making, Best-of-n Problem,
Fuzzy Inference System, Collective Decision Making, Self-
Organisation

I. INTRODUCTION

Collective decision making can be defined as “the phe-
nomenon whereby a collective of agents makes a choice in a
way that, once made, it is no longer attributable to any of the
individual agents” ( [1, p.1]). In the field of swarm and multi-
agent systems, Brambilla et al. [2] classified collective decision
making problems into two classes: consensus achievement and
task allocation. Consensus achievement scenarios are those
in which the swarm members need to collectively reach a
common decision to select one of the available options. On
the other hand, task allocation problems require agents to
assign tasks to themselves to maximise the overall mission

This work was funded by the Australian Research Council Discovery Grant
number DP160102037 and UNSW-Canberra.

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

performance. This paper is focused on consensus achievement
problems. Consensus achievement has received the interest
of many research studies on swarm and multi-agent systems
(e.g. [1], [3]-[9]) due to its widespread applications. Examples
of these applications in the literature include: robot selection
within human interaction with multi-robots [10], the selection
of the shortest path to be traversed by the swarm [11], swarm
leader election [12], best site selection [6], and abnormal
behaviour detection [13].

Several studies (e.g. [3], [5], [14], [15]) proposed consensus
achievement strategies using opinion-based approaches. In
opinion-based approaches, agents have an explicit represen-
tation of their opinion but the specifics of how opinions are
exchanged and how decisions are made can vary between
different strategies [1]. To facilitate the decision making pro-
cess, some strategies give agents that are highly confident
in their opinions a higher chance to influence the collec-
tive decision. For instance, in [3]-[6] an agent subjectively
calculates the level of confidence in its opinion using only
its own observations. We describe this way of confidence
calculation as subjective because it relies only on an agent’s
own observations regardless of the actual probability of the
opinion to be correct. Agents then broadcast their opinions for
a duration proportional to their confidence level such that the
opinions of highly confident agents can be received by many
agents. Due to the subjectivity in confidence estimation, it is
not hard to imagine situations in which agents with the wrong
opinion having high levels of confidence. For example, agents
that encounter the same set of observations again and again
will be more confident than those encountering a diverse set
observations, possibly with conflicting cues. Facilitating the
propagation of wrong opinions strongly disturbs the decision
making process as it can result in an incorrect collective
decision, lack of agreement on the final decision, or at least
inefficient decision making.

This work aims to propose a consensus achievement al-
gorithm that avoids the weaknesses of the existing algo-
rithms by designing an objective confidence metric that can
be calculated by each agent in a distributed way during
the consensus achievement task. This facilitates the decision



making process as agents with wrong opinions are given lower
chances to broadcast their opinions which improves the swarm
performance under different levels of complexity. Using the
proposed metric, an agent calculates its confidence level using
a pre-trained FIS model given data from both the agent’s local
observations and the opinions received from the other agents.

II. RELATED WORK

Consensus achievement algorithms have been used in dif-
ferent swarm-based applications. In a consensus achievement
scenario, a collective decision needs to be reached based on
different pieces of evidence collected by the swarm mem-
bers. Swarm members are typically of limited sensing and
computational capabilities. However, by properly fusing their
local observations, complex decision making problems can be
solved. In this section, we present some examples of how
consensus achievement algorithms were used to solve real-
life problems. We follow this with a discussion on how the
existing generic algorithms work and what aspects of these
algorithms can be improved.

Several studies used consensus achievement algorithms to
facilitate human-swarm interaction. For instance, Giusti et
al. [14] used a swarm distributed consensus algorithm to
enable a human to interact with a swarm using gestures.
The human uses a predefined set of hand gestures to send
commands to the swarm. Being spatially distributed, the robots
capture images of the gesture from different viewpoints. Each
robot performs some processing on its image to form an
opinion on the gesture. Robots then exchange their opinions
to reach a consensus so that the whole swarm can execute the
command. Consensus achievement was also used to enable
other intuitive human-to-swarm interfaces. In [10], Couture-
Beil et al. used distributed face detection so that the robots can
decide which individual robot the human is looking at to select
for performing a task. Similarly, Nagi et al. [15] proposed an
algorithm that allows a human to use a set of spatial gestures
to select an individual or a subgroup of robots to command.
In addition to human-swarm interfaces, the literature contains
different applications of consensus achievement in swarm-
based tasks including: shortest path selection [11], swarm
leader election [12], best site selection [6], distributed feature
detection [5], and abnormal behaviour detection [13]

Although many similarities exist between different consen-
sus achievement problems, most of the existing algorithms
are domain specific as they rely on exploiting particular
features of the environment [6]. This limits the ability to
deploy a consensus achievement algorithm designed to solve
one problem in other problems. Recently, Valentini et al. [5]
formulated a consensus achievement problem to serve as a
benchmark problem for developing domain-agnostic collective
decision making strategies. In this formulation, agents explore
a grid-based environment to evaluate the abundance of an
environmental feature that is scattered across the environment.
The swarm is required to collectively determine whether or
not the feature is frequent in the environment, i.e the feature
exists in at least half of the cells. The problem resembles

the swarm searching for precious metals, pollutants, or cancer
cells. However, the feature is abstracted as the color of the cell
(which can be black or white) to allow for designing general
strategies that do not assume domain specific properties of the
feature.

The complexity of the problem formulation, presented by
[5], is influenced by the ratio of cells containing the feature
in question [5] as well as the homogeneity of feature dis-
tribution [3]. As the ratio of white cells approaches 0.5, the
problem becomes harder as it requires an agent to make a
high number of observations before reaching a decision on
which color is the most frequent. On the other hand, when
this ratio approaches 1 in mostly white environments or 0 in
mostly black environments, the agent needs to sample a lower
number of cells before reaching a decision. So, the problem
becomes easier in such environments.

The spatial distribution of the black and white cells in the
environment is a another important factor that has a great
impact on the complexity of the scenario [3]. A homoge-
neous environment with feature ratio r is an environment in
which the color of a cell can be white with a probability r
independently of other cells. Meanwhile, a non-homogeneous
environment with feature ratio r has a continuous region
of white cells constituting r of the environment area. Non-
homogeneous environments increase the problem complexity
as an agent’s estimate will be biased by the regions it explores.
This means that agents exploring different regions are expected
to have widely different views of the environment.

Three state-of-the-art algorithms were proposed by previous
studies to solve this problem: Voter Modulation [4], Direct
Comparison (DC) [5], and Majority Modulation [3], [6]. While
these algorithms have many similarities, they are mainly dif-
ferent with regard to what information are exchanged between
agents and how agents update their opinions based on the
received information. Starting with their similarities, in these
algorithms agents can be in one of two phases: exploration
and opinion dissemination. While in the exploration phase,
an agent navigates through the environment to sense its
distributed feature. At the end of the first exploration phase,
each agent sets its opinion based on the most frequently
encountered colour. The agent calculates its confidence as the
ratio of the cells with the color associated with its opinion to
the total number of cells encountered. That is, the confidence
reaches its maximum level of 1 when all the cells encountered
by the agent have the same color. In contrast, the lowest
confidence level of 0.5 occurs when the agent observes the
same number of black and white cells. In effect, in non-
homogeneous environments, agents that explore only a single-
coloured region will be the most confident regardless of the
relative area of the region to the whole environment. On the
contrary, agents that navigate through different regions of the
environment will be less confident though their observations
are more representative of the actual feature distribution.

After its exploration, an agent disseminates its opinion for
a duration proportional to its confidence level. That is, agents
that are highly confident are given more power to influence



the decision. In the Voter and Majority algorithms, agents
exchange messages containing only their ID and opinion.
The DC algorithm, however, requires the agents to send their
confidence level together with their ID and opinion. When the
dissemination phase ends, the agent starts another round of
exploration-dissemination. The three existing algorithms differ
in how agents fuse the received opinions to form their own
opinion. In the Voter algorithm, an agent simply copies the
opinion of a random neighbour. In the Majority algorithm,
the agent applies a majority rule on all the received opinions
including its own opinion and copies the opinion of the
majority. In the DC, however, an agent copies the opinion
of another agent if and only if the confidence of the received
opinion is higher than its own confidence.

Valentini et al. [5] compared the three algorithms under
different complexity levels by manipulating the feature ratio r.
They found that, in easy settings (high feature ratio), DC had
the best performance in terms of accuracy and speed. However
the speed of the DC was the most sensitive to feature ratio.
In complex settings, the algorithms showed a speed-accuracy
trade-off; such that the Majority was the fastest but the least
accurate. The Voter had a high accuracy similar to DC but it
recorded the lowest speed.

III. PROBLEM FORMULATION

In this work, we use the consensus achievement problem
proposed in [5] and later used in [3], [9]. This abstract
formulation allows for focusing on developing the decision-
making algorithm itself rather than exploiting domain specifics
to facilitate solving the problem. Thus, generic algorithms can
be designed to be ported across different domains.

The problem can be formulated as follows: Consider an
Leny X Leny, grid-based environment, E, where each cell ¢; is
charachterised by a value of a binary feature f, such that f :
¢; = {0,1},V¢; € E. The feature f represents the colour of
the cell and can be either black or white. A swarm of N agents
IT = {m,7ma,..ty} is deployed in the environment which
is bounded by four walls that are detectable by the swarm
members. In the beginning of the mission, the swarm members
are placed in an L5 X Lyese nest in the top left corner of
the environment with random positions and orientations. The
swarm is required to explore the environment and perform
collective decision making to decide which feature value is
the most frequent in the environment.

The swarm members have some limitations on their actions,
similar to the limitations described in [3]. First, an agent 7;
can sense the colour of a cell ¢; only if the position of m; lies
within the boundaries of ¢;. In addition, at any time step an
agent 7; can either sense the colour of a cell or disseminate
its opinion, but not both. Meanwhile, m; can listen to other
agents at each time step, regardless of whether it is sensing
or disseminating. Besides, the swarm members have no means
for calculating their absolute positions within the environment.
Thus, they can not determine which cells have or have not
been visited by the swarm as a whole. An agent 7; can locally
communicate with another agent 7, if the distance between 7;
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Fig. 1. The opinion update cycle. Confidence level is denoted by c.

and 7; is less than the communication range, R.omm. Using
these local communications, estimates calculated by individual
swarm members can be exchanged to form an overall estimate
of the feature in question.

IV. THE PROPOSED ALGORITHM

Our proposed algorithm builds on the algorithms presented
in [3]-[6] with the main difference being in confidence esti-
mation. The details of the proposed algorithm are as follows:

A. Motion

An agent 7; navigates through the environment by per-
forming a random walk which is a simple strategy that does
not require agents to calculate their positions within the
environment. Random walk is achieved by a straight line
movement followed by an on-the-spot rotation. An agent 7;
moves in a straight line for a duration ¢s which is a random
variable with an exponential distribution ¢ ~ EX P(X). Then,
m; performs an on the-spot rotation with an angle drawn from
a uniform distribution U[=", 7]. This sequence of straight
line movements and rotations is repeated till the end of the
simulation. Collision is resolved by a random rotation followed
by a new cycle of random walk.

B. Opinion Update Cycle

The opinion update cycle consists of two sequential phases:
exploration and opinion dissemination. While the length of an
opinion update cycle is fixed to Ty time steps, the duration
of each phase is dynamic and is calculated based on an agent’s
level of confidence, as shown in figure 1.

Exploration and opinion dissemination

Agent 7; keeps a record of the numbers of black 4401 and
white 1,5t cells it encounters within the environment. These
numbers are set to zero in the beginning of the simulation and
are then updated after the colour of each cell is sensed. At
the end of each exploration phase, 7; calculates its estimate
e; based on its observations, such that e; is the ratio of white
cells to the total number of cells observed. This estimate is
then used as the agent’s opinion €2;.

ei _ { nwhitei } (1)

Nblack; + Nuwhite;



When an agent 7; moves to the opinion dissemination
phase, it keeps disseminating its opinion €2; in each time step
till the end of the belief update cycle. As stated previously,
the duration of exploration and the opinion dissemination
phases are determined based on the agent’s level of confidence.
However, in the first cycle, agents do not have the sufficient
data to calculate their confidence, so the confidence level is
set to its mid value of 0.5. The details of estimating the level
of confidence in the subsequent cycles are described in IV-C.

Receiving neighbours’ opinions

As mentioned earlier, in each time step, an agent can receive
opinions transmitted by other agents within its own commu-
nication radius, R;omm. Similar to the algorithm in [3], each
agent keeps track of all the received opinions by integrating
them into one local variable: opinion concentration, ~. In
effect, v can be thought of as a spatio-temporal integration
of the other agents’ opinions as perceived by an agent. In the
beginning of the simulation, ~ is set to 0.5, which then gets
updated during the course of the simulation as follows:

o Agent m; keeps a list of all opinions received in the
current belief update cycle. In the beginning of each
cycle, the list is cleared.

o When agent m; receives the opinion 2; of an agent ;,
m; searches its list to check whether it contains an entry
for m;. If an entry is found for m;, then {2; is ignored.
Otherwise, (2; is added to the list and is used to update
v, according to the equation:

vi = wy; + (1 —w); 2

The weight w determines the influence of a newly received
opinion €2; on ;. We set w to 0.9 to limit this influence so
that ; becomes a robust representation of all the received
opinions. When +; approaches 0 (or 1), it reflects the fact that
most opinions received by the agent were O (or 1).

Opinion update and decision making

At the end of each exploration phase, an agent m; updates
its opinion, by setting it to match its estimate e;, before
disseminating it. To facilitate reaching consensus, if an agent
m; perceives that the received opinions are sufficiently decisive
(i.e. most agents have the same opinion), it makes a non
revertible decision that is consistent with the received opinions.
To achieve this, in each time step m; compares ~y; against a
threshold 6 such that if v; < 6 or 1 — 7; < 6, m; makes an
irreversible decision and sets its opinion €; to

Q; = Round{~;} 3)

C. Confidence Assessment

To objectively assess its level of confidence, an agent needs
to estimate the expected accuracy of its opinion. Estimating the
confidence based only on its direct observations can be highly
misleading. For instance, encountering the same observation
again and again will result in increasing the confidence,
although this may result from a scenario where an agent
is stuck in a small region. Thus, the level of confidence

should not be evaluated based only on the direct observations.
Although an agent has no means to access the ground truth
to estimate its confidence during the task, it can learn from
previous experiences how to map its state to an expected
accuracy. That is, the task now is to define how to describe
a state and to teach the agents how to estimate their level
of confidence from their state. Below is a discussion on how
our algorithm calculates the confidence level by describing
the relevant state variables, the inference model used to map a
state to a confidence level, and how machine learning is used
to train this model.

Agent state characterisation

We propose characterising the state of an agent at a given

point of time using the following four variables:

o The number of observations an agent made: we know
from Statistics that the higher the number of observations
sampled by an agent, the more reliable its estimation is.
Thus, the level of confidence should be positively related
to the number of observations. We acknowledge that this
assumption may break down in adversarial environments,
where the experience an agent gets exposed to may get
manipulated by a second agent to deceive the former.

o The strength of the feature estimated by an agent: this
variable has been used by previous algorithms [3]-[6]
to determine agents’ level of confidence. However, using
it alone can be misleading as it does not capture the
dependency between adjacent environment cells in non-
homogeneous environments. This variable is calculated
by an agent m; as |e; — 0.5].

« Opinion concentration ~;: perceiving the collective opin-
ion of the other agents and the level of agreement among
their opinions is crucial. That is, a collective opinion with
a majority vote of 51% tells a different story than the
same collective opinion but with a majority vote of 90%.

o The agreement between the agent’s estimate e; and the
perceived collective opinion 7;: when the agent’s estimate
leads to the same conclusion as the aggregated opinions
of the other agents, the agent’s confidence should be
higher than when they lead to different conclusions.

The proposed state variables represent different but com-
plementary sources of information that can be used to infer
the expected accuracy of an agents’ opinion. For instance, it
is rational for an agent to assign a high level of confidence
to its opinion when this opinion is based on a large number
of observations, the observations are highly consistent (i.e,
most observed cells are white or black), opinions received
from other agents are highly consistent (most agents have
the same opinion), and the agent’s own estimate agrees with
the aggregated opinions received from the other agents. On
the contrary, if the agent has a large number of consistent
observations but its estimate disagrees with the aggregated
opinions of the other agents, it might be rational to lower
its level of confidence as this state may stem from a scenario
where all the agent’s observations come from a single-colored
region in the environment.



To estimate their confidence level, each agent determines its
state using these four variables then uses some inference model
to map its state to a confidence level. In fact, we have some
ideas about how confidence levels should be assigned to some
of the easily explainable states. Nevertheless, it is impractical
to hard-code the mapping between all the states and the
corresponding confidence levels for two main reasons. First,
the state space, characterised by the previously mentioned four
variables, is continuous. Even if the continuous variables are
discretised, the resulting space will still be huge. Second, while
we perceive states in terms of qualities like “large number of
observations” , "highly consistent”, and "highly confident”, it
is not straightforward to translate these qualities into numbers.
That is, we may tell that an agent that made 500 observations
should be highly confident in its opinion. However, we may not
be able to accurately translate highly confident to a number in
the interval between 80% and 100% on the confidence scale.
Therefore, we use machine learning to learn these rules from
previous experience. The details of the inference model and
its rules are supplied in the next subsections.

Mapping states to confidence levels using FIS

We propose the use of a Fuzzy Inference System (FIS)
to approximate the mapping between the states and their
corresponding confidence levels. FIS is based on the fuzzy set
theory, proposed by Zadeh in 1965 [16]. Fuzzy sets facilitate
the use of linguistic variables to express rules and apply
logic-like fuzzy operators on these rules to make inferences.
We chose FIS due to its simplicity and low computational
cost during the reasoning process. This makes it suitable
for deployment on swarm agents that can be of limited
computational capabilities. FIS works in a similar way to
human reasoning which facilitates interpreting model results
and analysing its performance.

The operation of FIS can be decomposed into three main
steps, as follows:

1) Fuzzification: in this step, numerical input variables are
fuzzified by calculating their degree of membership to
the fuzzy sets. That is, the four numerical state variables
are converted into fuzzy variables. We used five fuzzy
sets for each of the first three variables, and only two
sets for the fourth variable as it is binary.

2) Fuzzy inference: FIS has a database of IF-THEN rules
that map fuzzy inputs to fuzzy outputs. Fuzzy variables
calculated from the previous stage are checked against
each of these rules to determine which rules are fired
(or activated). Then the outputs from the fired rules are
combined using fuzzy operators.

3) Defuzzification: fuzzy outputs generated from the pre-
vious step are converted back into crisp outputs so
that they can be used by the agents as a numeric
representation of their confidence level.

The database containing the fuzzy rules is a key element in
any FIS. Generally, these rules can be supplied directly by a
domain expert. For instance, in our case, we can define fuzzy
rules like:

IF number of observations is very large AND

estimated feature strength is very high AND

opinion concentration is very high AND

local estimate agrees with opinion concentration
THEN confidence is very high.
Although such linguistic rules are intuitive, we prefer learning
the rules from a set of training data rather than defining them
ourselves. In fact, our database can have a maximum of 5 X
5 X 5 x 2 = 250 rules and defining such a large number of
rules can be tedious. Besides, using the training data to learn
the rules can help increase their precision.

Learning the fuzzy rules

To obtain a set of training data, we ran the algorithm under 6
different complexity levels: 3 feature ratios (r = 0.75, r = 0.65,
and r = 0.55) x 2 homogeneity levels (homogeneous and non-
homogeneous). Each complexity level was run 10 iterations.
That is, a total of 60 simulation runs were used to generate the
training data. In all these runs, the confidence level for all the
agents is set to 0.5 and kept fixed throughout the simulation.
We logged the state of an agent and whether its opinion was
correct in the end of each belief update cycle. This resulted in
about 38K rows of data. Then, we quantised the state variables,
grouped similar states, and calculated the average of opinion
correctness over similar states. This resulted in about 5.5K
data rows of the form: (state, average opinion correctness).
The average opinion correctness of a state is then used as
an objective metric for the confidence level. We used Hybrid
neural Fuzzy Inference System (HyFIS) [17] to build the
model and learn its rules. Using the training data, the trained
model has 169 fuzzy rules.

V. EXPERIMENTS

We set up several simulation experiments to evaluate the
proposed algorithm and compare its performance to the
three state-of-the-art algorithms (Voter [4], Direct comparison
(DC) [5], and Majority [3]). As proposed in [3], we extend
these algorithms by allowing each agent to calculate opinion
concentration vy, as in equation 2. In this way, an agent can
lock in a final decision when this decision becomes sufficiently
popular.

The same simulation platform with the same parameter
setting is used for all the algorithms to ensure fairness. Each
algorithm was run 180 times: 30 iterations X 6 complexity
conditions (3 feature ratios X 2 homogeneity conditions).
Without loss of generality, we assume that the white tiles
are always the most frequent features. In non-homogeneous
environments, the starting region of the swarm was black in
half of the iterations and white in the other half. The parameter
setting used for the simulation is listed in table 1.

VI. RESULTS

This section presents the results of the evaluation experi-
ments by reporting the mean and standard deviation (SD) of
each performance metric. T-tests were conducted to investigate
the statistical differences between pairs of algorithms. The
criterion for statistical significance is set at p = .05.



TABLE I
THE PARAMETER SETTINGS USED IN THE EXPERIMENTS.
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Fig. 2. The percentage of agents which reached the correct decision in non-
homogeneous environments with different feature ratios.

A. Accuracy

Algorithm accuracy is evaluated in terms of the percentage
of agents that reached the correct decision. In homogeneous
environments, all the algorithms achieved 100% accuracy in
all the simulation runs across the different levels of feature
ratios (r = 0.75, r = 0.65, and r = 0.55).

On the other hand, non-homogeneous environments wit-
nessed different levels of accuracy, as shown in figure 2. In
non-homogeneous environments with high feature ratio (r =
0.75), all the algorithms achieved similar and very high levels
of accuracy ranging from an average accuracy of 99.7% (by
the Majority algorithm) to 100% (by the DC algorithm). When
the feature ratio was medium (r = 0.65), both the proposed
and the DC algorithms were 100% accurate in all the runs.
However, the average accuracy of the Majority and the Voter
algorithms dropped notably to 94.7% (SD = 7.5) and 86.8%
(SD = 21.6), respectively. In environments with low feature
ratio (r = 0.55), the fuzzy-based algorithm achieved the highest
average accuracy of 96.6% (SD = 17.9). The average accuracy
of the Majority, DC, and Voter algorithms dropped drastically
to 64.9% (SD = 39.5), 71.8% (SD = 12.8), and 51% (SD
= 49.1); respectively. Not only is a statistically significant
difference found between the accuracy of the fuzzy-based
algorithm and the other ones (p < .0002), but also a practically
significant difference is noted as the fuzzy-based was ahead
of the other algorithms by at least 24%.

B. Task time

Figure 3 shows the time taken by each algorithm to finish
the task in homogeneous environments with different feature
ratios. When the feature ratio was high, all the algorithms
managed to finish the task within a maximum of 12 minutes.
Nonetheless, the fuzzy-based algorithm needed a statistically
significantly less time (mean = 5.2, SD = 1.1 minutes) than

Task time in homogeneous environments
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Fig. 3. The time taken by each algorithm to complete the task in homogeneous
environments with different feature ratios.

all the other algorithms whose average time was over 9
minutes, (p < .0001). In homogeneous environments with
medium feature ratio, a slight increase is recorded for the
task time of the fuzzy-based algorithm (mean = 6.5, SD =
3.9 minutes). However, the fuzzy-based algorithm maintained
the shortest task time that is statistically different from all the
other algorithms’ (p < .0001). Moving to environments with
low feature ratio, the Majority algorithm had the lowest mean
task time of 11.6 (SD = 1.6) minutes which, however, was
not statistically significantly different from the task time of
the proposed algorithm (mean = 15.3, SD = 10.4 minutes),
(p = .0575). The fuzzy-based algorithm had a statistically
significantly shorter task time than the DC and the Voter
algorithms (p < .0371) and (p < .0001), respectively.

Non-homogeneous environments caused more salient dif-
ferences in the task time, as shown in figure 4. In scenarios
with high feature ratio, the fuzzy-based algorithm had the
lowest mean task time, of 15.4 (SD = 4.3) minutes, which
was not statistically significantly different from that of the
Majority algorithm of 16.4 (SD = 3.4) minutes, (p = .3368).
The differences between the task time of the fuzzy-based
algorithm and both the DC (mean = 52.5, SD = 14.4) and
the Voter (mean = 41.2, SD = 27) algorithms were larger
and statistically significant, (p < .0001). In medium feature-
ratio environments, the fuzzy-based algorithm was in the lead
with a huge average difference of at least 85 minutes from
the second fastest competitor, the Majority algorithm. Finally,
in scenarios with low feature ratio, we found that the Voter
algorithm had the lowest task time (mean = 89.3, SD = 116.6)
followed by the fuzzy-based algorithm (mean = 203, SD =
76), (p < .0001). The Majority algorithm comes next (mean
=292.3, SD = 208.7) with statistically significant longer task
times than the fuzzy algorithm (p = .0316). The DC algorithm
had a task time of 500 minutes in all the scenarios which
means that it failed to finish the task till it was forced to do
so by the end of the simulation.

C. Majority rate

The algorithms are also compared in terms of their ability
to reach majority. The majority rate is calculated as the ratio
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Fig. 5. The majority rate achieved by the different algorithms in non-
homogeneous environments with different feature ratios.

of simulation runs in which at least 90% of the agents had
the same final decision. In homogeneous environments, all the
algorithms achieved a majority rate of 1, across scenarios with
different feature ratios.

On the contrary, majority was not easy to achieve in some
non-homogeneous environments. When the feature ratio was
high, all the algorithms maintained the majority rate of 1.
However, in environments with medium feature ratio, only
the fuzzy-based and DC algorithms maintained their perfect
majority rate while the Majority and the Voter algorithms
recorded rates of 0.8 and 0.63, respectively. Finally, when
the feature ratio was low, only the fuzzy-based algorithm
maintained the majority rate of 1. Meanwhile, the rates for
the Voter, Majority, and DC algorithms are 0.93, 0.63, and
0.1; respectively.

Table II summarises the results described in this section. The
statistical difference between the proposed algorithm and the
three state-of-the-art algorithms is tested. It can be seen that
the proposed algorithm achieves the overall best performance
as measured by the mean values of each performance metric
averaged over all the 180 scenarios.

TABLE II
SUMMARY OF THE COMPARISON BETWEEN THE DIFFERENT ALGORITHMS.
MEAN VALUES OF THE PERFORMANCE METRICS, AVERAGED OVER ALL
THE SCENARIOS, ARE REPORTED WITH THE STANDARD DEVIATION
WRITTEN BETWEEN PARENTHESES. STATISTICAL SIGNIFICANCE IS
INDICATED BY * AND *** TO REPRESENT SIGNIFICANCE LEVELS OF
p < .05 AND p < .001, RESPECTIVELY.

Algorithm  Accuracy Task time Majority rate
Voter 89.6% 74.6 0.93
(28.3) *#k (131.1) * (0.07) ***
DC 95.3% 123.6 0.85
(11.8) ***  (176.3) #** (0.13) sk
Majority 93.2% 76.4 0.91
(20.8) *** (149.2) * (0.04) ***
Fuzzy 99.4% 46.3 1
(7.4) (71.5) 0)

VII. CONCLUSIONS AND FUTURE WORK

In consensus achievement algorithms, agents that are highly
confident in their opinions are given higher chances to influ-
ence the decision making than less confident agents. In the
state-of-the-art algorithms, an agent uses its estimated feature
strength to evaluate the level of confidence in its opinion.
This may result in scenarios which degrades the decision
making process where the most confident agents are those
with incorrect opinions. This is particularly the case in non-
homogeneous environments where feature distribution varies
across different regions. In such environments, the perfor-
mance of the state-of-the-art algorithms suffers dramatically.
To avoid this problem, we proposed a fuzzy-based approach
for the objective assessment of agents’ confidence in their
opinions. The objectivity of the estimated confidence stems
from the fact that agents use previous experience to learn
the mapping from states to expected opinion correctness. We
characterised agent states in terms of four variables that carry
complementary information about the observations made by
the agent as well as the perceived opinions of the other agents.
An FIS is used by agents to map their states to confidence
levels.

The results of the experiments demonstrate the pronounced
merits of the proposed algorithm over all the rival ones.
Our algorithm could beat the other algorithms by achieving
statistically and practically significant improvements in the
performance as measured by accuracy, task time, and majority
rate. Even in the most complex environments (with low feature
ratio and non-homogeneous feature distribution), the proposed
algorithm maintained its high performance by achieving an
average accuracy of 96.6% while recording the lowest increase
in task time. Technically, the Voter algorithm had lower task
times in the most complex environments, but it completely
fails in these scenarios as its accuracy drops to about 50%.

It is worth mentioning that performance gains achieved by
our algorithm did not require agents to exchange new pieces of
information. Messages containing only agents’ ID and binary



opinion are used in our algorithm. While using non-binary
opinion representation could have further improved the perfor-
mance, we used binary opinion representation similar to the
state-of-the-art algorithms as exchanging non-binary opinions
would require more network resources. That is, we did not
want to compromise communication cost for algorithm perfor-
mance when comparing between the proposed and the state-
of-the-art algorithms. The power of our proposed approach,
however, can be attributed to two factors: 1- defining states
in terms of the four variables presented in subsection IV-C
and 2- using experience to learn the mapping between states
and confidence levels. This results in a reliable confidence
estimation, where the confidence level approximates the actual
reliability of being correct. Consequently, agents that have
correct opinions are given a higher chance to influence the
conclusion.

In this work, the performance of the proposed approach
was evaluated in a simulation platform. To compare its perfor-
mance with the state-of-the-art algorithms, all the algorithms
were tested on the same simulation platform using the same
agent’s capabilities (e.g communication range, locality of ob-
servations, and velocity). Nonetheless, we consider evaluating
our approach in physical environments using real robots. This
will help evaluate the proposed approach more comprehen-
sively and support its validity.

Similar to past studies, the environmental feature used in
this work is binary. As a future work, we consider evaluating
the performance of our algorithm in environments with non-
binary features. Another future direction is to extend the
proposed algorithm so that the swarm members become able
to estimate the feature ratio r rather than just deciding which
feature value is the most prevalent.
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