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Abstract—Tasks management is a very interesting research
topic for various application domains. Tasks may have the form
of analytics or any other processing activities over the available
data. One of the main concerns is to efficiently allocate and
execute tasks to produce meaningful results that will facilitate
any decision making. The advent of the Internet of Things (IoT)
and Edge Computing (EC) defines new requirements for tasks
management. Such requirements are related to the dynamic
environment where IoT devices and EC nodes act and process the
collected data. The statistics of data and the status of IoT/EC
nodes are continuously updated. In this paper, we propose a
demand- and uncertainty-driven tasks management scheme with
the target to allocate the computational burden to the appropriate
places. As the proper place, we consider the local execution of a
task in an EC node or its offloading to a peer node. We provide
the description of the problem and give details for its solution.
The proposed mechanism models the demand for each task and
efficiently selects the place where it will be executed. We adopt
statistical learning and fuzzy logic to support the appropriate
decision when tasks’ execution is requested by EC nodes. Our
experimental evaluation involves extensive simulations for a set of
parameters defined in our model. We provide numerical results
and reveal that the proposed scheme is capable of deciding on
the fly while concluding the most efficient allocation.

Index Terms—Edge computing, Tasks management, Proba-
bilistic model, Kernel Density Estimator

I. INTRODUCTION

Tasks offloading is a key research topic in Edge Computing
(EC) and Internet of Things (IoT) if we consider the dynamic
environment where nodes act and their heterogeneity. Efficient
solutions should be provided that will allocate tasks to the
available processing nodes to conclude the desired analytics.
This becomes more important if we consider that any process-
ing at the EC will limit the latency that end users enjoy. Hence,
time sensitive applications can be easily served increasing
the performance and the quality of services provided to end
users. In addition, tasks processing at the edge can reduce
the network traffic [30], driving data analytics towards geo-

distributed processing, known as edge analytics [23], [27],
[36], [41].

It becomes obvious that an efficient tasks management
scheme can facilitate the delivery of analytics at the edge
and the respective decision making. Tasks offloading was first
applied to Mobile Cloud Computing (MCC) [11], [24], i.e.,
we can offload the computing tasks of mobile terminals to
traditional cloud data centers where centralized computing and
storage are the main features. However, in such cases there
are some obstacles related to the experienced delay especially
when communications are realized over a Wide Area Network
(WAN). Additionally, the intense variability of the contextual
information around the status of EC nodes, tasks and the
collected data impose strict requirements for the effective con-
clusion of tasks allocation. For instance, heterogeneity heavily
affects the decision making. These requirements should be met
by any model trying to manage task at the edge of the network.
In the relevant literature (see next Section), task allocation and
scheduling originates in the management of a group of nodes.
The allocation is, then, adopted to determine the assignment
of each task to a node while scheduling mainly aims to the
sequence of the execution for each task. The challenges are to
(C1) maximize the performance and (C2) minimize the energy
consumption, thus, maximizing the lifetime of the network.
Multiple research efforts deal with centralized approaches,
thus, the allocation and scheduling models suffer from the
drawbacks reported in the literature for Cloud computing [14].

In this paper, we focus on the investigation of tasks offload-
ing methodologies adopted to decide when a task should be
executed locally or be offloaded to other peer nodes. We adopt
a distributed approach, i.e., every EC node autonomously
decides for tasks allocation reported to it. Users’ mobility is
taken into consideration to, eventually, support the decision
making. Mobility affects the demand for the execution of tasks
imposing spatio-temporal requirements in our model. Users’
mobility also increases the complexity when trying to find out
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if a task will be kept locally and adds uncertainty in nodes’
behaviour. Demand and contextual information is exchanged
between nodes to support our mechanism. The contextual
information is related to the status of nodes as well as the
data present in them. Our strategic decision is to keep and
execute locally tasks exhibiting a high demand and offload
the remaining to nodes where also a high demand is observed
for each of them. The intuition behind this is two fold: First,
nodes save resources through the re-use of tasks execution
framework and load balancing is conserved; Secondly, the
latency experienced by users is minimized as highly demanded
tasks are initiated to be executed immediately. Another source
of complexity for the discussed problem is the need for a
scalable approach. The number of users and tasks may be
extensively high, thus, it would be difficult to apply any
optimization model that requires increased time to produce
outcomes. This, in combination with the need for real time
responses, makes us to focus on a ‘fast’ technique that covers
the uncertainty present into our problem, i.e., Fuzzy Logic
(FL), together with incremental statistical learning that limits
the required processing time. The following list depicts our
contributions:
• We propose a georeferenced task management scheme

where computation offloading is decided based on data
present at every node and tasks demand.

• We adopt a Fuzzy Logic Controller (FLC) to indicate
when a task should be offloaded or not, thus, we manage
the uncertainty related to the discussed decision making.

• We provide an extensive experimental evaluation that
reveals the pros and cons of the proposed approach. Our
evaluation is performed for a set of metrics adopting real
and synthetic traces.

Results indicate that our model is capable of supporting real
time applications while exhibiting an increased performance
for a large set of experimental scenarios.

The remaining paper is organized as follows. Section II
reports on the related work and presents important research
efforts in the field. In Section III, we discuss preliminary
information and describe our problem while in Section IV,
we present the proposed mechanism. Section V is devoted to
the description of our experimental evaluation adopting a set
of performance metrics. Finally, in Section VI, we conclude
our paper giving our future research plans.

II. RELATED WORK

EC could involve numerous nodes capable of interacting
with IoT devices and execute a set of tasks. Tasks are ‘dictated’
by applications or directly by end users and can have the form
of a processing activity, a query over the collected data and so
on and so forth. EC extends the Cloud infrastructure offering
numerous processing nodes close to end users, thus, limiting
the latency they enjoy [18]. This advantage leads to the trend
of offloading tasks to the edge infrastructure. It becomes natu-
ral to have recent studies dealing with computation offloading,
i.e., tasks partitioning, tasks allocation, resource management
and distributed execution [18]. In general, tasks offloading

could be performed in two modes, i.e., full offloading and
partial offloading [33]. In the former model, tasks should be
executed as a whole no matter the location. For instance, we
could adopt a model that delivers the appropriate place to
offload the desired tasks based on various characteristics (tasks
and nodes) [25]. The latter mode builds on the parallel execu-
tion of a set of sub-tasks possibly offloaded in different places.
Apart from the distributed nodes, we should not forget that
every EC node serves a set of users/IoT devices/applications.
To increase EC nodes’ performance we could incorporate
into their decision making mechanisms models for joint tasks
allocation, i.e., the allocation of tasks requested by different
users/devices/applications [7]. Joint allocations is also the
subject of [41] where the target is to minimize a tradeoff
between the task execution time and mobile energy consump-
tion. Resource sharing is considered as early as in [30], in
which a greedy task dissemination algorithm was developed
to minimize the completion time. In [15], a polynomial-time
task assignment scheme is proposed for allocating tasks with
inter-dependency towards achieving guaranteed latency-energy
trade-offs. Machine Learning (ML) can play a significant role
through the powerful models that can be adopted on the needs
of EC nodes, tasks and their environment. For instance, in
[7], the authors propose a strategy based on a Q-Learning
algorithm. Another option is to study the tasks allocation
problem as an optimization problem [10]. For instance, in [32],
data transfer and computation in terms of monetary and time
costs, with task deadlines guaranteed are studied. The problem
becomes a maximization problem over the two coupled phases:
data transfer and computation. However, its increased (it is an
NP-hard problem) complexity mandates the use of a set of
assumptions before we proceed with the final solution.

Various other models have been proposed for supporting
the efficient tasks allocation. In [9], a dynamic, decentralized
resource-allocation strategy based on evolutionary game theory
is presented. The matching theory is adopted in [12], i.e.,
the model does not take into consideration the central Cloud
in the Mobile Edge Computing (MEC) platform considering
the autonomous nature of edge nodes. One coalition-game-
based cooperative method to optimize the problem of task
offloading is the subject of [37] while in [13], the authors
present game-based strategies for the discussed problem to
achieve the Nash equilibrium among mobile users. In [29],
the authors discuss a model for computation offloading under
a scenario of multi-user and multi-mobile edge servers that
considers the performance of intelligent devices and server
resources. The task scheduling part of the model is based
on an auction algorithm by considering the time requirement
of the computing tasks and the performance of the mobile
edge server. In [35], the authors propose a device-to-device
(D2D)- enabled multi-helper MEC system, in which a local
user offloads its tasks to multiple helpers for cooperative
computation. The model tries to minimize the latency by
optimizing the local user’s task assignment jointly with the
time and rate for task offloading and results downloading, as
well as the computation frequency for task execution.



The dynamicity of the environment also imposes require-
ments in the tasks offloading problem. For instance, to re-
duce energy while guaranteeing delay constraints for mobile
applications, the authors of [38] propose an access control
management architecture for a 5G heterogeneous network.
Two algorithms are considered, i.e., an optimal static algorithm
based on dynamic programming to get the exact solution and
a two-stage online algorithm to adaptively obtain the current
optimal solution in real time. In the majority of the relevant
research efforts, the rarely changing network is treated as
a stable environment, thus, ‘static’ algorithms are adopted
e.g., integer linear programming approach [6], dynamic pro-
gramming [34] and so on and so forth. Enhancements can
increase the performance being adapted to the variations of the
environment. For instance, a dynamic programming solution
with randomization is presented in [26]. Hence, we are able
to get an approximate solution and early formulate a time
constrained offloading policy.

In [22], the authors propose the cooperation of Cloud
computing and MEC in IoT. The offloading problem is solved
through a branch and bound algorithm, a Mixed Integer
Linear Programming (MILP) scheme and an Iterative Heuristic
MEC Resource Allocation (IHRA) algorithm to make the
offloading decision dynamically. The authors of [16] consider
an estimator for predicting the total processing duration of
each task on each candidate node using linear regression.
Another estimator is proposed in [20]. It is responsible to
predict the round trip time (RTT) based on the network’s
characteristics. Then, the estimated RTT is ‘bounded’ with
other parameters (e.g., energy consumption) to decide when
and where to offload tasks.

Tasks offloading is studied with the presence of Software
Defined Networking (SDN) and virtualized resources [21]. The
optimality of the decision is related to the local or remote
task computation, the selection of the appropriate node and the
selection of the appropriate path for the offloading. In [19], the
authors study the flexible compute-intensive task offloading to
a local cloud trying to optimize energy consumption, operation
speed, and cost. In [1], a model based on the Optimal Stopping
Theory is adopted to deliver the appropriate time to offload
data and tasks to an edge server. The challenge is to to
determine the best offloading strategy that minimizes the
expected total delay. Finally, in [5], the authors consider un-
manned vehicles (i.e., Unmanned Aerial Vehicles - UAVs) and
propose a framework enabling optimal offloading decisions as
a function of network and computation load parameters and
current state. The optimization is formulated as an optimal
stopping time problem over a Markov process.

III. PRELIMINARIES & PROBLEM FORMULATION

We consider an EC scenario where a set of N nodes,
N = {n1, n2, . . . , nN}, are available. EC nodes are ‘con-
nected’ with a number of IoT devices being responsible to
collect and store data while performing the requested tasks.
Nodes are also connected with the Cloud to transfer data
for ‘long-term’ processing. They act between the IoT and

Cloud infrastructures being capable of hosting and executing
various tasks for limiting the latency that end users enjoy.
Locally, at every node, a dataset is formulated over the data
reported by IoT devices. These data become the subject of
various processing activities that may requested by end users
or applications. Due to the limited computational resources of
EC nodes (compared to the Cloud infrastructure), only a part
of the collected data should be locally stored. The remaining
data are transferred to the Cloud for further processing. We
have to notice that the study of the methodology adopted to
select the data that will be locally stored is beyond the scope
of this paper.

Furthermore, EC nodes are able to execute a set of tasks.
Tasks may have the form of queries over the available data,
the calculation of statistical metrics or the execution of various
processing activities like the delivery of a local ML model. In
any case, one can define before hand the categories of tasks
that can be executed in every EC node. The execution of tasks
aims at generating knowledge locally, thus, to make EC nodes
capable of efficiently reacting in users’ requests. Without loss
of generality, we consider that nodes may support the same
number of tasks, i.e., E. At a time instance t, a node may
have to execute a subset of the predefined tasks. Tasks are
placed in a queue and wait for their execution. The throughput
of each node depends on its computational capabilities and
affects the size of the queue. In this effort, we consider
that the corresponding queue can host as many tasks as we
want without any limit. We have to notice that a task may
be requested by multiple users/applications, thus, every node
should execute it repeatedly in no consecutive time instances.
We also consider that tasks exhibit specific characteristics like
their complexity (the steps and resources required to be spent
for their execution), priority (depending on the critically of the
application asking the execution of the task) or their sub-tasks
(if the task is separated based on an appropriate algorithm).
These characteristics may be adopted to build more complex
tasks management mechanisms applying a strategical decision
making. For instance, high priority tasks may be executed first,
however, securing that starvation effects are eliminated. We
have to notice that the study of these research issues is beyond
the scope of this work.

Tasks demand is realized by the number of users/devices
asking for their execution. Requests are delivered to EC nodes
through specific interfaces and affect the demand. For simplic-
ity, we consider that the demand for a task is realized by the
number of users asking for its execution in a specific node
at a specific time instance (i.e., at t). In addition, users (IoT
devices) may move while requesting for services/applications,
thus, their mobility affects tasks demand in ‘neighbour’ EC
nodes. Every node maintains a vector, i.e., the Tasks Demand
Vector (TDV), TDV = {et1, et2, . . . , etM} which depicts the
demand for each task at time instance t. EC nodes at specific
epochs, i.e., t = 1, 2, . . ., update the corresponding TDV as
users are moving in an area. EC nodes should decide which
tasks will be locally executed or offloaded to another peer
node. The aim is to keep the execution locally for popular



tasks eliminating the time required for their conclusion. No
popular tasks can be offloaded to other nodes. In addition,
when executing popular tasks, EC nodes may adopt techniques
like incremental models or caching to facilitate their execution.
By offloading non popular tasks, nodes may save resources as
they are not benefited from re-using previous outcomes. For
instance, consider the case of a task waiting for execution in
the queue. At t, the hosting EC node updates the TDV and sees
that there is limited demand for this task. Hence, it may decide
to offload the task to another node that may have increased de-
mand for it (incremental models and caching may be adopted
to deliver the final result) paying the communication cost (for
sending the task and getting the response) and the time for
waiting the final outcome. In this paper, we focus on the study
on how we can decide which tasks will be kept locally to be
executed based on the TDVs. The important is that our model
takes into consideration not only the demand for tasks locally
at an EC node but also in its peers concluding a complete
georeferenced tasks management scheme. The study on the
decision on where (peer selection) we can offload a task is
available in [17]. For this decision, the data present at peers,
the load, etc can be adopted to secure the efficient execution
of the task.

IV. GEOREFERENCED TASKS DEMAND MANAGEMENT

A. Tasks Demand Indicator

EC nodes, at predefined intervals, exchange their TDVs to
spread the demand information for the available tasks. The
incoming TDVs could exhibit different information, e.g., the
ith task may be requested at nj but not at nk. In our work, we
are interested in the ‘locality’ of the demand, i.e., the demand
in neighbour nodes. The rationale is that mobile users will not
be capable of performing distant hand overs in consecutive
time instances. Hence, EC nodes keep the TDVs only for
peers being in a distance ρ. The limitation of the approach
(for local demand modelling) is that nodes should monitor
a high number of users/devices to be able to calculate the
local demand for the available tasks. This could lead to a
complicated processing and increase the complexity of nodes’
‘reasoning’ when the number of users is very high. However, a
solution to alleviate the complexity of the required processing
could be the grouping of users in the range of each node as
proposed in [2].

Let TDVs be {TDV t1 , TDV t2 , . . . , TDV tD}. (the index of
each vector does not correspond to the index of a peer node
but to the order of the received vectors) with D ≤ N . Actually,
nodes apply a sliding window approach and maintain the last
W historical TDVs, i.e.,

[{
TDV 1

1 , TDV
2
2 , . . . , TDV

3
D

}]
,[{

TDV 2
1 , TDV

2
2 , . . . , TDV

2
D

}]
,

. . . ,
[{
TDVWs

1 , TDVW2 , . . . , TDVWD
}]

. This way, they
can have a view on the ‘trends’ of tasks demand at each peer.
Our aim is to define a decision making mechanism that at
each epoch t will result the tasks that will be kept locally
while the remaining will be offloaded in peer nodes. For this,
we define a function f() being responsible to deliver a ranked
list of the tasks waiting for execution in the corresponding

queue. f() gets as input the local and the incoming TDVs
and delivers the ranked {ei}.

Let us focus on a specific EC node nj . nj applies a
monitoring scheme for updating the local TDV and receives
TDVs from its peers. It tries to estimate the demand for each
task locally and in peers. When receiving the incoming TDVs,
nj detects the common tasks for which it should estimate the
demand. nj concludes the Local Demand Indicator (LDI) and
the Group Demand Indicator (GDI). LDI and GDI are metrics
that will affect the final ranking as delivered by f(). Formally,
LDI and GDI are defined as the number of users requesting a
specific task, i.e., LDIi = e

nj

i & GDIi = enk
i ,∀k, k 6= j. We

adopt a simple scheme and ‘connect’ LDI and GDI with the
probability of having the demand for a task over a pre-defined
threshold T . The LDI is based on the local observations while
the GDI is concluded over D nodes.

As mobility patterns are unknown and we are not aware
of the distribution of the demand in each node, nj applies
the widely known Kernel Density Estimator (KDE) [31] to
derive the demand distribution. Our intention, when applying
a statistical learning process (i.e., the KDE), is to detect the
hidden statistics of the mobility patterns as exposed by the
demand for each task. The KDE can be adopted to deliver the
probability density function (pdf) of the unknown distribution
of the demand for a task d ∈ TDVi. The statistical learning
process is applied on top of d1,d2, . . . ,dW which represent
the historical demand values. We adopt an incremental esti-
mation of g(di) to derive the hidden statistics of the unknown
distribution. The estimation of the expected value E[d] =∫
R dg(d)dd gives an insight of current demand observations.
E[d] is estimated through the adoption of an approximation
applied over a set of measurements and, also, over g(d)’s
approximation [4]. If we consider d[1],d[2], . . . ,d[W ], as
the demand values, our problem is to estimate g(d) on-the-
fly. This requires the estimation of E[d] in limited time. We
define the cumulative KDE through the following equation:
ĝ(d; k) = 1

k·h
∑k
m=1K

(∣∣∣d−d[k−m]
h

∣∣∣). h > 0 represents
the bandwidth of the adopted Kernel function K(·) that is
is symmetric and integrates to unity. For K(·), we adopt
the Gaussian kernel, (K(z) = 1√

2π
exp (− 1

2z
2)). Addition-

ally, ĝ(d; k) is incrementally estimated through its previous
estimation ĝ(d; k − 1) and the current distance d[k]. More
specifically, if x[k] = |d−d[k]h |, we take through calculations
that,

ĝ(d; k) =
1

kh

( k−1∑
m=1

K(x[k −m]) +K(x[t])

=
k − 1

kh
ĝ(d; k − 1) +

1

kh
K(x[k]) (1)

When d[k] is received, we can easily estimate ĝ(d; k) by
adopting the proposed incremental approach. The proposed
approach estimates ĝ(d; k) through ĝ(d; k−1) plus the Kernel
function applied on the difference |d − d[k]|. By adopting
the described incremental KDE estimation of ĝ(d; k), we
approximate E[d; k] by E[d; k−1]. Integrating in both sides of



the Eq(1), we obtain E[d; k] = k−1
k E[d; k − 1] + 1

kd[k]. LDI
is concluded over the local observations for each task, i.e.,
LDIei . Based on the KDE, we get a single probability, i.e.,
LDIei = P (dei > T ) where dei depicts the random variable
depicting the demand for task ei.

GDI is calculated for all peers, i.e., we consider D GDI
realizations (D realizations of the above described statistical
learning process), i.e., pi = GDI

nj
ei = P (d

nj
ei > T ). In this

case, we face the problem of combining multiple probabilities
reported by different sources. For combining them, we adopt
the geometric mean [8], i.e., a geometric opinion pool; this
metric does not increase by orders of magnitude affected by a
single data point and performs better with small samples. The
geometric mean combines our values with a product instead
of a sum and sees each data point as a scaling factor. Actually,
this is the strong assumption behind the use of the geometric
mean, i.e., data can be interpreted as scaling factors. The
following equation stands true:

pi =

∏D
k=1 p

wk

k∏D
k=1 p

wk

k +
∏D
k=1(1− pk)wk

(2)

where wk are weights usually taken as wk = 1
D . In our case,

weights are affected by pk, i.e., wk = pk∑
pk

. This means
that the node exhibiting the highest probability of exceeding
affects more the corresponding weight. This strategy makes us
to be more ‘sensitive’ in scenarios where there is an increased
probability of facing a high demand for a task. As explained,
in these cases, we try to host popular tasks to specific nodes (at
nodes where the increased demand is observed), thus, to gain
benefits from their ‘repetitive’ execution. We have to notice
that the adoption of the specific strategy for weights definition
is not contradictory with the use of the geometric mean as we
target to smoothly ‘aggregate’ all the available probabilities
considering them as scaling factors. In general, the presence of
a few extremely low or high values has no considerable effect
on the geometric mean, thus, we can easily incorporate into
the envisioned processing the desired focus on the probabilities
that exhibit a high weight without resulting extreme outcomes.

B. Our Uncertainty Driven Decision Making Model

For each task, as described above, we calculate two prob-
abilities of having the demand over the threshold, i.e., the
LDIei and the GDIei . Both of them depict EC nodes’ local
knowledge about the estimation of the demand of a task. As it
is difficult to be aware and define specific thresholds for both
metrics to support efficient decision making and aiming at the
management of the ambient uncertainty, we adopt an FLC to
deliver a value over which the final decision is made. In FL
systems, the objects of discourse are associated with informa-
tion which is, or is allowed to be, incomplete, partially true
or partially possible. FL deals with incomplete information
and provides knowledge representation models (i.e., Fuzzy
Set Theory) through which an entity can automatically take
decisions. FL principles express human expert knowledge and
enable the automated interpretation of the results. The local
execution of a task or the offloading is based on our FLC that

is a non-linear mapping between l inputs ui ∈ Ui, i = 1, . . . , l
and m outputs yi ∈ Yi, i = 1, . . . ,m. In this paper, we adopt
two inputs, i.e., LDIei , GDIei and a single output, i.e., the
Task Offloading Indicator (TOI) TOIej . The knowledge base
of our FLC consists of a set of rules defined in the following
form: Rj : IF u1j is A1j AND/OR u2j is A2j AND/OR . . .
AND/OR ulj is Alj THEN y1j is B1j AND . . . AND ymj
is Bmj , where Rj is the jth fuzzy rule, uij(i = 1, . . . , l) are
the inputs of the jth rule, ykj(k = 1, . . . ,m) are the outputs
and Aij , Bkj are membership functions usually associated by
linguistic terms. Without loss of generality, we assume that
inputs and output are in the unity interval. When LDIei → 1
means that there is an increased demand for the task ei while
LDIei → 0 depicts the case where a limited number of users
express interest for the specific task. GDIei → 1 depicts
an increased demand for the ith task as exposed by peer
nodes (the opposite stands for GDIei → 0). Concerning the
output TOIei , a value close to zero depicts a ‘keep locally’
decision in contrast when a value close to unity is met. For
inputs and the output, we consider three linguistic values: Low,
Medium, High. A Low value represents that the fuzzy variable
takes values close to the lower limit while a High value
depicts the case where the variable takes values close to the
upper level. In addition, we consider triangular membership
functions as they are widely adopted in the literature. The
proposed FLC receives values for the two inputs, it fuzzifies
them and, accordingly, proceeds with the inference process.
The inference process involves a set of fuzzy rules that result
the best possible value for the output TOIej . These rules
are defined by experts and incorporate a human view on the
described decision process. In Table I, we present the adopted
FL rule base.

TABLE I
FUZZY LOGIC RULE BASE

No LDIei GDIei TOIei
1 Low Low or Medium Low
2 Low High High
3 Medium Low Low
4 Medium Medium or High Medium
5 High Low or Medium Low
6 High High Medium

The final step is the de-fuzzification process to derive the
final TOIej . nj produces a sorted list of TOIej s and the ‘last-
k’ tasks are offloaded to peer nodes as described in [17].

V. EXPERIMENTAL EVALUATION

A. Performance Indicators & Setup

We report on the performance of our model concerning
its ability of making correct decisions when deciding the
execution of an incoming task. We also focus on the time
requirements to perform the final allocation in order to reveal if
our model is capable of deciding in real time, thus, supporting
time critical applications. We evaluate our scheme through



an extensive set of simulations involving a high number of
tasks. We consider that such tasks are ‘generated’ in various
nodes into our network. To simulate users’ activity, we use
the dataset provide by [39]. This dataset describes real-world
QoS evaluation results from 142 users on 4500 Web services
over 64 different time slices.

The performance of the proposed mechanism is evaluated
by a set of metrics. We adopt metrics in the following axes:
(i) the number of correct decisions ∆. To measure the number
of correct decisions, we assume a loss function λ (C,Rs)
that measures the cost of executing a task s locally and the
cost of offloading a task to another peer node. The binary
variable C is equal to unity when the task is executed locally
otherwise is equal to zero. Three different metrics are adopted
as elements to set the final value of Rs. The initiation time
(ITs), i.e., task’s execution starting time, the response time
(RTs), i.e., the time spent to deliver the result of task t from
a node to a specific user and the demand indicator ds. If s
is executed locally then λ (C = 1, ITs) =0 and λ (C = 1, Rs)
otherwise λ (C = 0, ITs) = MGT and λ (C = 0, Rs) =RST.
MGT and RST are the migration time and the response
time, respectively. ITs and RTs are selected to be uniformly
distributed in the interval (0,1]. Regarding ds, we adopt the
exponential function to produce the corresponding values as
Eq(3) dictates. λ (C, ds) results values close to zero when the
demand indicator of s is high. On the other hand, when the
demand of s is low, λ (C, ds) approaches unity.

λ (C, ds) = e−ds (3)

Costt(C) =

|R|∑
r∈R

(C, r), R ∈ {ITs, RTs, ds} (4)

When a user requests a task s from a specific node, the
cumulative cost is calculated for both C = 1 and C = 0
as imposed by Eq(4).

A decision is considered as correct when one of the equa-
tions Eq(5), Eq(6) holds true. For instance, Eq(6) indicates that
a decision is correct when the overall cost of executing a task
locally is higher than offloading a task to another peer node
and at the same time the FLC decides that the node should
offload the task.

Costs(C = 1) < costs(C = 0)&& FLC→ local execution
(5)

Costs(C = 1) > costs(C = 0)&& FLC→ offloading action
(6)

(ii) the average time τ required to take a decision. τ is
measured for every task as the time spent (CPU time) by
the system deciding if a task should be offloaded or not. For
this reason, τ is calculated as the sum of (a) the time spent
to estimate KDE and (b) the time spent for FLC to produce
the final TOI. We perform a set of experiments for different

N , W , E and T . The number of EC nodes is set to N ∈
{50, 100, 500, 1000}. We adopt W ∈ {10%, 50%, 100%}, i.e.,
different sliding window sizes to measure the effect on ∆
and τ . The total number of tasks requested by the users is
set to E ∈ {5000, 10000, 50000, 100000}. The probability of
having the demand for a task over a pre-defined threshold is
set to T ∈ {0.5, 0.7}. In total, we conduct 100 iterations for
each experiment and report our results for the aforementioned
metrics. Experiments where conducted on a Linux server with
two 6-core Intel Xeon E5-2630 CPUs running at 2.3GHz.

B. Performance Assessment

Initially, we evaluate of our model in terms of ∆. The
number of tasks increases from a baseline value equal to 5000
up to 2x, 10x and 20x. Having as a base the realistic dataset
presented in [39], we extend it and create additional datasets to
experiment with different number of tasks and nodes. In Fig. 1,
we plot the average number of correct decisions ∆ for various
combinations of and W . In this set of experiments, we assume
that our model offloads the top k = 10% of the incoming tasks.
As the number of tasks increases, the same stands for ∆ as
well. When we focus on an extreme value for the number of
tasks, i.e., 100000, the number of correct decisions is close to
90% in all the experimental scenarios. This is significant for
our model as it is capable of correctly allocating the requested
tasks, thus, it increases the performance of nodes. It is worth
mentioning that a small performance degradation is observed
as the sliding window size increases. This stems from the fact
that the solidity of the data located in a node is affected by the
time. The demand of a task may significantly vary in different
time units.

Fig. 1. Percentage of correct decisions; k = 10%

Fig. 2 & Fig. 3 plot the average number of correct decisions
for different values of the threshold T . It should be noted for
T = 0.7, the average ∆ ranges from 90% to 99% which is
very close to the maximum possible outcome. As demonstrated
in both figures, our model produces a low number of correct
decisions as the number of nodes increases. This performance
degradation is explained due to the high number of peer nodes
available to be selected by our model. Comparing the results
for the T values, we can observe that when T = 0.7, we
have a considerable higher number of correct decisions up to
20%. The reason behind this is that a low number of tasks



Fig. 2. Percentage of correct decisions; T = 0.5

Fig. 3. Percentage of correct decisions; T = 0.7

are offloaded being kept for execution locally. Comparing
the results from above described figures, we observe that a
threshold close to T = 0.7 archives the best performance
instead of using a threshold close to T = 0.5. Additionally, it is
preferred to offload the top k = 10% tasks than to keep them
locally. This is reasonable since a small threshold indicates
that the majority of tasks should be offloaded.

Fig. 4. Execution time

In Fig. 4, we present our evaluation results related to τ .
Recall that τ depicts the time required by our model to deliver
the final decision. We observe that our scheme is efficient
managing to derive the final decision in short time, i.e., below
0.18 ms in the worst case. This leads to a throughput of the
management of (approx.) 5500 tasks per second. If we focus
on the average case, the throughput increases. The reason is
that the mean required time is around 0.05 ms. The mean

time is similar for scenarios where N increases form 50 to
1000. However, we observe a significant difference in the
statistical deviation of the realized time values. In any case,
the proposed approach is characterized by scalability as the
increased number of tasks does not add a high amount of
time to conclude the desired processing. Hence, the proposed
model can be adopted to respond in real time to the requests
for the execution of tasks at the edge infrastructure.

We compare the performance of our model with the scheme
presented in [3] where the authors propose a task scheduling
algorithm (ETSI) that is based on a heuristic. This heuristic
delivers the final outcome based on the remaining energy, the
distance from the edge of the network and the number of
neighbours calculating the rank of each node. The node with
the lowest ranking is selected for the final allocation. Fig. 5
presents our comparison results for ∆. We observe that our
model clearly outperforms ETSI no matter the experimental
scenario we adopt. ETSI manages to result a limited number
of correct decisions related to the offloading of tasks. The
highest realization of ∆ is 45% (approximately) with the mean
and median be around 25%. The lowest value for ∆ in our
evaluation scenarios is around 80%.

Fig. 5. Comparative assessment

VI. CONCLUSIONS & FUTURE WORK

In this paper, we tackle the problem of task alloca-
tion/offloading in the presence of a heterogeneous IoT envi-
ronment. IoT devices are connected with EC reporting the
collected data for further processing. Over these data hosted
at the EC nodes, multiple users can request the execution of
tasks. The demand for each task may be altered over time
affected not only by the desires of end users but also by
their mobility. For this reason, we propose a georeferenced
task management scheme that decides when a task should
be offloaded or not. This scheme incorporates a FLC that
delivers the realization of an indicator over which the final
decision is made. The discussed indicator shows the efficiency
of the allocation either decided to be locally or offloaded to
peer nodes. Through simulations and using a real dataset, it
is concluded that our scheme can achieve a high amount of



correct decisions (up to 98%) while it is efficient to derive
the final solution in short term. In the first places of our
future agenda is to conduct our experiments in a real world
IoT environment and to apply Optimal Stopping Theory to
identify the appropriate time to offload a task. Furthermore,
we will enhance our model with a scheduling component in
order to minimize tasks execution time, maximize throughput
and satisfy QoS constraints defined by end users.
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