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College of Natural Sciences

University of Rzeszów
Rzeszów, Poland
wrzasa@ur.edu.pl

3rd Piotr Grochowalski
College of Natural Sciences

University of Rzeszów
Rzeszów, Poland
piotrg@ur.edu.pl

Abstract—The article deals with notions of fuzzy equivalences
connectives, dependencies between them, and their applicability
to real-life problem as engineering efficient classifiers. It is a
fundamental problem in supervised learning - part of artificial
intelligence. In the contribution the problem of preservation
of their properties in the aggregation process is considered.
Moreover, suitability of some fuzzy equivalences and aggregations
are proved in the task of data classification by a k-nearest
neighbour algorithm.

Index Terms—aggregation function, fuzzy connective, fuzzy
equivalence, fuzzy C–equivalence, k-nearest neighbour algorithm

I. INTRODUCTION

Fuzzy equivalences are known both as a fuzzy relation
(e.g. [1], [2]) or a fuzzy connective (e.g. [3]). In the paper
diverse approaches to the definition of fuzzy equivalences as
a fuzzy connective are considered. We recall two of them that
origin from fuzzy algebra and propose a new approach which
is related to the concept of measurement of closeness. The
possibility of using fuzzy equivalences as closeness measure
justifies their application to some problems of data mining,
where distance-based algorithms are applied. In this paper we
examine a potential of fuzzy equivalences when used in a
modified version of k-nearest neighbour classifier. For this
purpose, fuzzy equivalences are aggregated by aggregation
functions. Many applications of aggregation function to real
life problems are known (cf. [4], [5]). The problem of preser-
vation of fuzzy equivalences properties in the aggregation
process is considered as well. Moreover, since efficiency of
data mining algorithms is a crucial point (both for training
and testing stages) we formulate some remarks that allow to
reduce number of experiments without loss of information
about missed outputs.

In Section II, basic notions, concerning aggregation func-
tions and some fuzzy connectives, useful in the paper are
presented. In Section III, practical aspects of fuzzy equiva-
lences and possibilities of their aggregation are described, and
in Section IV, the experimental results by the use of practical
aggregation of fuzzy equivalences are discussed.

This work was partially supported by the Centre for Innovation and Transfer
of Natural Sciences and Engineering Knowledge in Rzeszów, through Project
Number RPPK.01.03.00-18-001/10.

II. PRELIMINARIES

A. Aggregation Functions

Now we present useful information about aggregation func-
tions.

Definition 1 (cf. [6], pp. 6-22, [7], pp. 216-218). Let n ∈ N.
A function A : [0, 1]n → [0, 1] which is increasing, i.e. for
xi, yi ∈ [0, 1], xi 6 yi, i = 1, . . . , n

A(x1, . . . , xn) 6 A(y1, . . . , yn)

is called an aggregation function if

A(0, . . . , 0) = 0, A(1, . . . , 1) = 1. (1)

Moreover, we call an aggregation function A a mean if it is
idempotent, i.e.

A(x, . . . , x) = x, x ∈ [0, 1]. (2)

Example 1 (cf. [6], pp. 44-56, [8], p. 29). Some examples
of aggregation functions are given by standard means such
as lattice operations min,max, projections, geometric mean,
harmonic mean and
• weighted arithmetic means

Aw(x1, . . . , xn) =

n∑
k=1

wkxk, (3)

for wk > 0,
∑n

k=1 wk = 1,
• quasi-arithmetic means

Mϕ(x1, . . . , xn) = ϕ−1(
1

n

n∑
k=1

ϕ(xk)), (4)

where
n∑

k=1

wk = 1, x1, . . . , xn ∈ [0, 1] and ϕ : [0, 1]→ R

is a continuous, strictly increasing function.

B. Fuzzy Conjunctions

Now, the definition and some properties of a fuzzy conjunc-
tion is presented.

Definition 2 ( [9]). An operation C : [0, 1]2 → [0, 1] is called
a fuzzy conjunction if it is increasing and

C(1, 1) = 1, C(0, 0) = C(0, 1) = C(1, 0) = 0.
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Let us observe that fuzzy conjunctions are aggregation
functions for n = 2. If a binary aggregation function has the
zero element z = 0 (e.g. geometric mean), then it is a fuzzy
conjunction.

Example 2. Consider the following family of fuzzy conjunc-
tions for a ∈ [0, 1]

Ca(x, y) =


1, if x = y = 1

0, if x = 0 or y = 0

a otherwise
. (5)

Operations C0 and C1 are the least and the greatest fuzzy
conjunction, respectively.

Example 3. Other examples of fuzzy conjunctions are listed
below. Among them we recall the well-known t-norms: mini-
mum, product, Łukasiewicz, drastic, which are denoted in the
traditional way TM , TP , TLK , TD, respectively:

C2(x, y) =

{
y, if x = 1

0, if x < 1
,

C3(x, y) =

{
x, if y = 1

0, if y < 1
,

C4(x, y) =

{
0, if x + y 6 1

y, if x + y > 1
,

TM (x, y) = min(x, y),

TP (x, y) = xy,

TLK(x, y) = max(x + y − 1, 0),

TD(x, y) =


x, if y = 1

y, if x = 1

0, otherwise
.

C. Fuzzy Implications

Definition 3 ( [10]). A binary operation I : [0, 1]2 → [0, 1]
is called a fuzzy implication if it is decreasing with respect
to the first variable and increasing with respect to the second
variable and

I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0.

Definition 4. We say that a fuzzy implication I fulfils the
identity principle (IP) if

I(x, x) = 1, x ∈ [0, 1]. (IP)

Example 4 ( [10], pp. 4,5). The operations I0 and I1 are the
least and the greatest fuzzy implication, respectively, where

I0(x, y) =

{
1, if x = 0 or y = 1

0, otherwise
,

I1(x, y) =

{
0, if x = 1, y = 0

1, otherwise
.

The following are the other examples of fuzzy implications.

ILK(x, y) = min(1− x + y, 1),

IGD(x, y) =

{
1, if x ≤ y

y, if x > y
,

IRC(x, y) = 1− x + xy,

IDN(x, y) = max(1− x, y),

IGG(x, y) =

{
1, if x ≤ y
y
x , if x > y

,

IRS(x, y) =

{
1, if x ≤ y

0, if x > y
,

IFD(x, y) =

{
1, if x ≤ y

max(1− x, y), if x > y
,

IWB(x, y) =

{
1, if x ≤ 1

y, if x = 1
,

IDP(x, y) =


y, if x = 1

1− x, if y = 0

1, otherwise
.

The implications fulfilling the property IP are: I1, ILK, IGD,
IGG, IRS, IWB, IFD, IDP.

D. Fuzzy equivalences

Let us focus on fuzzy equivalences which can be defined in
different ways.

Definition 5 ( [11], cf. [12], p. 33). Let C be a fuzzy conjunc-
tion. A fuzzy C–equivalence is a function E : [0, 1]2 → [0, 1]
fulfilling the following conditions for x, y, z ∈ [0, 1].

E(0, 1) = 0 (boundary property), (6)

E(x, x) = 1, (reflexivity), (7)

E(x, y) = E(y, x), (symmetry), (8)

C(E(x, y), E(y, z)) 6 E(x, z), (C-transitivity). (9)

Further generalizations of fuzzy C–equivalence can be
found in [11].

A fuzzy equivalence considered by Fodor and Roubens in
[3] is defined as follows.

Definition 6 ( [3], p. 33). A Fodor-Roubens fuzzy equivalence
is a function E : [0, 1]2 → [0, 1] which fulfils (6), (7), (8), and

E(x, y) ≤ E(u, v), x ≤ u ≤ v ≤ y, x, y, u, v ∈ [0, 1]. (10)

There exists a characterization of such defined fuzzy equiv-
alence by the use of fuzzy implications fulfilling (IP).

Theorem 1 ( [3], p. 33). A function E : [0, 1]2 → [0, 1] is
a fuzzy equivalence if and only if there exists such a fuzzy
implication I fulfilling (IP) that

EI(x, y) = min(I(x, y), I(y, x)), x, y ∈ [0, 1]. (11)



If, in the place of min in (11) we consider any fuzzy
conjunction, then we obtain more generalized definition of a
fuzzy equivalence.

Definition 7 ( [13]). Let C, I be a fuzzy conjunction and
implication, respectively. The function E : [0, 1]2 → [0, 1]
given by the formula

EC,I(x, y) = C(I(x, y), I(y, x)), x, y ∈ [0, 1] (12)

will be called (C, I)-equivalence.

Remark 1. ( [13]) The operation EC,I given by (12) fulfils
zero-one table of crisp equivalence. Additionally, if I fulfils
(IP), then EC,I is reflexive, i.e. it fulfils (7). Moreover, if C
is a commutative fuzzy conjunction, then EC,I is symmetric,
i.e. it fulfils (8).

Theorem 2 (cf. [3], p.27). Let T be a left continuous t-norm,
and IT its residual implication. Then the following inequality
holds for all x, y, z ∈ [0, 1]

T ((IT (x, y), IT (y, z)) ≤ IT (x, z).

Theorem 3. Let T be a left continuous t-norm, and IT its
residual implication. Then operation Emin,IT is a fuzzy C-
equivalence for any commutative fuzzy conjunction C ≤ T .

Proof. Let us observe that a residual implication IT fulfils
(IP), so according to Remark 1 the operation Emin,IT fulfils
(6), (7), (8). It is enough to show that the operation Emin,IT

is C-transitive. Let x, y, z ∈ [0, 1]. By (12), monotonicity of
C, the condition C ≤ T and Theorem 2 we obtain as the
following

C(Emin,IT (x, y), Emin,IT (y, z))

= C(min(IT (x, y), IT (y, x)),min(IT (y, z), IT (z, y)))

≤ C((IT (x, y), IT (y, z)) ≤ T ((IT (x, y), IT (y, z)) ≤ IT (x, z).

Similarly we can show that

C(Emin,IT (x, y), Emin,IT (y, z)) ≤ IT (z, x).

Hence
C(Emin,IT (x, y), Emin,IT (y, z))

≤ min(IT (x, z), IT (z, x)) = Emin,IT (x, z).

III. PRACTICAL ASPECTS OF FUZZY EQUIVALENCES AND
THEIR AGGREGATION

A. Various approaches to the notion of fuzzy equivalence

Let us consider the exclusive disjunction of the classical
propositional calculus and its generalization in the fuzzy logic,
i.e. the function D̄ : [0, 1]2 → [0, 1], fulfilling boundary
conditions D̄(0, 0) = D̄(1, 1) = 0, D̄(0, 1) = D̄(1, 0) = 1.
This operation can be associated with a discrete metric on a
unit interval. In classical logic, the equivalence is the negation
of exclusive disjunction. Analogously, in fuzzy logic it can be
expressed by duality of these operation, i.e. their values for
equal arguments sum up to 1. Continuing this analogy, but

in relation to the concept of a metric, we notice that while
the metric is a measure of the distance of two points, fuzzy
equivalence can be interpreted in a dual way, i.e. as a measure
of the closeness of two points. Indeed, crisp equivalence
connective has value 1 for arguments with the same logical
value, and 0 for arguments with different logical values, so
- using the closeness interpretation - it takes value 1 if the
closeness of the arguments is ’complete’, and value 0 when
the closeness of arguments is the smallest possible. As a
consequence of the interpretation of fuzzy equivalence as
closeness, as in the case of metrics (and pseudo-metrics), it is
natural to require closeness to have the property of symmetry.

If we additionally consider the triangle condition d(x, y) +
d(y, z) ≤ d(x, z) from the definition of a metric (and pseudo-
metric), then its equivalent for fuzzy equivalence is E(x, y) +
E(y, z)−1 ≤ E(x, z) which can be expressed by Łukasiewicz
t-norm TLK as follows: TLK(E(x, y), E(y, z)) ≤ E(x, z).
Replacing Łukasiewicz t-norm with any fuzzy conjunction
C and adding for fuzzy equivalence the requirement that
C(E(x, y), E(y, z)) ≤ E(x, z) leads to the definition of fuzzy
C-equivalence (Definition 5).

Conducting purely cognitive considerations can lead to
definitions of fuzzy equivalences by the use of a variety of
formulas. However, with regard to some practical applications
of fuzzy equivalence connective, as a factor determining the
degree of closeness of two points, it seems natural to require
that for three values x, y, z in the natural order x ≤ y ≤ z,
assume that x and z are not closer to each other than with the
element y ’separating’ them. This can be expressed formally
by the conditions for all x, y, z ∈ [0, 1] such that x ≤ y ≤ z

E(x, z) ≤ E(y, z) and E(x, z) ≤ E(x, y). (13)

Condition (13) is equivalent to (10) (what was shown in [14]),
which leads to the definition of fuzzy equivalence introduced
by Fodor and Roubens (Definition 6).

Now, let us focus on interpretations of selected fuzzy
equivalences.

Example 5. Table I presents examples of fuzzy equivalences
generated by the use of formula (11) and these of the fuzzy
implications from Example 4 that fulfil (IP).

Assessing the chosen equivalences from the perspective of
their use in practical applications as a closeness measure, it can
be seen that fuzzy equivalences ERS and E1 may be applied
to problems and phenomena described by the values from a
symbolic scale of measure, EGD and EWB can be applied
for ordinal scale, ELK , EFD and EDP when the values are
from an interval scale, and finally EGG in the case where the
values are from a ratio scale.

All the above formulas take into account only two points’
values (namely x and y) in the assessment of their closeness.
We will call this type of closeness absolute. However, it is
possible to define the closeness of two points, taking into
account other points in the problem to which the closeness
factor is applied. In this sense, such closeness will be called
relative.



TABLE I
FUZZY EQUIVALENCES

I EI

ILK ELK(x, y) = 1− |x− y|

IGD EGD(x, y) =


1, if x = y

x, if x < y

y, if x > y

IGG EGG(x, y) =


1, if x = y
x
y
, if x < y

y
x
, if x > y

IRS ERS(x, y) =

{
1, if x = y

0, if x 6= y

IWB EWB(x, y) =


1, if x 6= 1, y 6= 1

x, if y = 1

y, if x = 1

IFD EFD(x, y) =


1, if x = y

max(1− y, x), if x < y

max(1− x, y), if x > y

IDP EDP (x, y) =



x, if y = 1

y, if x = 1

1− x, if y = 0

1− y, if x = 0

1 otherwise

I1 E1(x, y) =

{
0, if {x, y} = {0, 1}
1 otherwise

Let U be a universe of a discrete problem with card(U)
≤ 3 called a set of cases, which are described by one feature
a with values from [0, 1]. Since a : U → [0, 1] then the value
of feature a for the case u ∈ U will be denoted by a(u). The
closeness of any pair of cases x, y ∈ U can be expressed by
means of closeness of a(x) and a(y) as follows:

1, x = y
card({{u,v}:u,v∈U∧{u,v}6={x,y}∧E(a(u),a(v))≤E(a(x),a(y))})

card({{u,v}:u,v∈U∧{u,v}6={x,y}}) ,

otherwise
(14)

where E is any closeness of absolute type. It contains infor-
mation about what part of all pairs of cases from the set U is
at most as close to each other as the pair (x, y).

It is easy to see that the above method of measuring the
closeness of cases may not meet the boundary condition. This
happens when the cases x, y such that a(x) = 0, a(y) = 1
are not the only one fulfilling property E(a(u), a(v)) = 0.
On the other hand, the above formula meets the conditions of
reflexivity and symmetry.

Now, let us consider the set U = [0, 1]. Let us denote
R(x, y) = {(u, v) ∈ U2 : E(u, v) ≤ E(x, y)} and ER(x, y)
denotes the field of the figure R(x, y). If the absolute closeness
of x, y ∈ [0, 1] is expressed by the formula ELK , then the
corresponding relative closeness of ER

LK(x, y) is the sum of
the fields of two congruent isosceles right triangles with side
length of ELK(x, y)), denoted on Fig. 1 as e (see Fig. 1). So,
in this case

ER
LK(x, y) = (ELK(x, y))2. (15)

Fig. 1. A picture of ER
LK(x, y),ER

GD(x, y), and ER
GG(x, y)

Fig. 2. A picture of ER
FD(x, y)

If the absolute closeness of x, y ∈ [0, 1] is expressed by
the formula EGD, then the corresponding relative closeness
of ER

GD(x, y) is the difference between the square field with
side 1 and the square field with side 1−EGD(x, y). The value
EGD(x, y) is denoted on figure 1 as e. Therefore, in this case

ER
GD(x, y) = EGD(x, y) ∗ (2− EGD(x, y)). (16)

If the absolute closeness of x, y ∈ [0, 1] is expressed by
the formula EGG, then the corresponding relative closeness
of ER

GG(x, y) is the sum of the fields of two congruent right
triangles with side lengths of 1 and EGG(x, y), denoted on
figure 1 as e. Therefore, in this case

ER
GG(x, y) = EGG(x, y). (17)

If the absolute closeness of x, y ∈ [0, 1] is expressed by
the formula EFD, then the corresponding relative closeness
of ER

FD(x, y) is the sum of the fields of two squares with side
length EFD(x, y) or the difference between the square field
with side 1 and the sum of the fields of two squares with side
length 1−EFD(x, y), where EFD(x, y) is denoted on figure
2 as e (see Fig. 2). Therefore, in this case

ER
FD(x, y) =

{
1− 2 · (1− EFD(x, y))2, if EFD(x, y) ≥ 0.5

2 · (EFD(x, y))2, otherwise
(18)

Remark 2. Let U = [0, 1] and E be Fodor-Roubens
fuzzy equivalence then the corresponding ER(x, y) is Fodor-
Roubens fuzzy equivalence.

Now, let us recall a notion of ordinal equivalence introduced
in [15].

Definition 8 (cf. [15]). Let E,F : [0, 1]2 → [0, 1] be fuzzy
equivalences. We say that E and F are orderly equivalent, and
denote E v F , if

E(x, y) < E(u, v)⇔ F (x, y) < F (u, v), x, y, u, v ∈ [0, 1].
(19)



Proposition 1 (cf. [15]). The relation given by (19) is an
equivalence relation.

Proposition 2 (cf. [15]). Let E v F . Then

E(x, y) = E(u, v)⇔ F (x, y) = F (u, v), x, y, u, v ∈ [0, 1].
(20)

By the properties of monotonic function we obtain the
following observation.

Proposition 3. Let g : [0, 1] → [0, 1] be an increasing func-
tion, and E,F be fuzzy equivalences. If E(x, y) = g(F (x, y)),
then E v F .

Regarding to the four considered fuzzy equivalences we can
observe the following facts.

Remark 3. Fuzzy equivalences ELK , EGD, EGG, EFD

are orderly equivalent to their corresponding equivalences
ER

LK , ER
GD, ER

GG, E
R
FD.

It results from proposition 3 and the fact that each of the
fuzzy ER equivalences is an increasing bijection on [0, 1] of
the corresponding fuzzy equivalence E.
For instance for the pair ELK , ER

LK , and any x, y, u, v ∈ [0, 1]
we have

ELK(x, y) < ELK(u, v)⇔ (ELK(x, y))2 < (ELK(u, v))2.

Remark 4. None two of the fuzzy equivalences
ELK , EGD, EGG, EFD are orderly equivalent.
For example, let us observe that for (x, y) = (0.1, 0.3) and
(u, v) = (0.3, 0.6) we have on one hand

ELK(0.1, 0.3) = 0.8 > 0.7 = ELK(0.3, 0.6),

EFD(0.1, 0.3) = 0.7 > 0.4 = EFD(0.3, 0.6).

On the other hand

EGD(0.1, 0.3) = 0.1 < 0.3 = EGD(0.3, 0.6),

EGG(0.1, 0.3) = 0.(3) < 0.5 = EGG(0.3, 0.6).

It means that none of ELK , EFD is orderly equivalent with
any of EGD, EGG.

Moreover for (x, y) = (0.9, 0.5) and (u, v) = (0.5, 0.4)
we may observe in analogous way that ELK is not orderly
equivalent EFD as well as EGD is not with EGG.

From the above two remarks we can conclude the following.

Remark 5. None two of the fuzzy equivalences
ER

LK , ER
GD, ER

GG, E
R
FD are orderly equivalent.

The ordinal equivalence relation can be used to compare
fuzzy equivalences with (pseudo) metrics specified on [0, 1].
Going back to the observation from the introductory part of
the work that (pseudo) metrics and equivalences are dual in
some sense we propose the following definition.

Definition 9. Let E,D : [0, 1]2 → [0, 1], E be a fuzzy
equivalence, D be a metric. We say that E and D are reverse
orderly equivalent, and denote E ' F , if

E(x, y) < E(u, v)⇔ D(x, y) > D(u, v), x, y, u, v ∈ [0, 1].
(21)

Proposition 4. Let g : [0, 1]→ [0, 1] be a decreasing function,
E be a fuzzy equivalence and D be a metric. If E(x, y) =
g(D(x, y)), then E ' D.

Example 6. Let us observe that fuzzy equivalence ELK and
absolute value metric D = |x−y|, for x, y ∈ [0, 1] are reverse
orderly equivalent.

B. Aggregation of fuzzy equivalences

Properties of aggregation for fuzzy relations were presented
In [3]. Here we consider aggregation of fuzzy equivalences
defined previously.

Definition 10 (cf. [3], p. 14). Let n ∈ N and A : [0, 1]n →
[0, 1] be an arbitrary aggregation function. For given fuzzy
equivalences E1, . . . , En, we consider a binary operation for
all x, y ∈ [0, 1]

E(x, y) = A(E1(x, y), . . . , En(x, y)). (22)

We say that a class of fuzzy equivalences is closed under
an aggregation function A if the result of aggregation belongs
to this class for arbitrary fuzzy equivalences from the class.

Theorem 4 (cf. [13]). The family of all Fodor-Roubens fuzzy
equivalences is closed under any aggregation function A.

Theorem 5 ( [16]). The family of all fuzzy C-equivalences is
closed under aggregation functions A that dominate C (A�
C), i.e.

A(C(a1,1, a1,2), . . . , C(an,1, an,2)) >

> C(A(a1,1, . . . , an,1), A(a1,2, . . . , an,2)).

Example 7. Minimum preserves fuzzy C-equivalence for any
fuzzy conjunction C. Weighted minimum preserves fuzzy C-
equivalence for any t-seminorm C.

Definition 11. Let n ∈ N and A be any aggregation function.
For given fuzzy equivalence E, we consider a binary operation
for all x,y ∈ [0, 1]n

A(E)(x,y) = A(E(x1, y1), . . . , E(xn, yn)). (23)

Definition 12. Let n ∈ N and A1, A2 : [0, 1]n → [0, 1] be
any aggregation functions, E,F : [0, 1]2 → [0, 1] - fuzzy
equivalences, D : [0, 1]2 → [0, 1] a metric. We say that A1(E)
is orderly equivalent to A2(F ) and denote A1(E) v A2(F )
if for all x,y,u, v ∈ [0, 1]n

A1(E)(x,y) < A1(E)(u,v)⇔ A2(F )(x,y) < A2(F )(u,v).
(24)

We say tat A1(E) is orderly equivalent to A2(D) and denote
A1(E) ' A2(D) if for all x,y,u, v ∈ [0, 1]n

A1(E)(x,y) < A1(E)(u,v)⇔ A2(D)(x,y) > A2(D)(u,v).
(25)

Proposition 5 (cf. [15]). Ordinal equivalences given by (24)
and (25) are equivalence relations.

By the properties of monotonic function we obtain the
following observations.



Proposition 6. Let g : [0, 1] → [0, 1] be an increasing
function, A1, A2 be aggregation functions, E,F - fuzzy equiv-
alences. If A1(E)(x,y) = g(A2(F )(x,y)), then A1(E) v
A2(F ).

Proposition 7. Let g : [0, 1]→ [0, 1] be a decreasing function,
A1, A2 be aggregation functions, E a fuzzy equivalence and
D. If A1(E)(x,y) = g(A2(D)(x,y)), then A1(E) ' A2(D).

Now, let us consider the following aggregation functions:
A1-arithmetic mean,
A2p-power-root mean, where p > 0,
A3 - minimum,
A4 - maximum,
and a metric D(x, y) = |x− y| for x, y ∈ [0, 1].
Let us recall that we have A2p(D) - Minkowski metric for p >
0, A22(D) - Euclidean metric, A21(D) - Manhattan metric,
A4(D) - Chebyshev metric.

Corollary 1. A1(ELK) ' A21(D).

Proof. Let us observe that

A1(ELK)(x,y) =
1

n
·

n∑
i=1

(1− |xi − yi|) =

= 1− 1

n
·

n∑
i=1

(|xi − yi|) = 1− 1

n
·A21(D)(x,y).

Using Proposition 7 with g(x) = 1− 1
n ·x ends the proof.

Theorem 6. Let E,F be fuzzy equivalences such that E v F .
Then A3(E) v A3(F ) and A4(E) v A4(F ).

Corollary 2. For any fuzzy equivalence E from the set
{ELK , EGD, EGG, EFD} and corresponding fuzzy equiva-
lence ER from the set {ER

LK , ER
GD, ER

GG, E
R
FD} we have

A3(E) v A3(ER) and A4(E) v A4(ER).

IV. KNN CLASSIFIER WITH AGGREGATIONS OF FUZZY
EQUIVALENCES

A. kNN algorithm

One of the most popular machine learning algorithms is the
k nearest neighbours algorithm (for short kNN (algorithm)).
It represents the class of supervised learning algorithms.
The purpose of algorithms from this class is to learn from
historical data how values of the features describing input
cases determine belonging these cases to known categories.
Then, supervised learning algorithms can use this knowledge
in the process of qualifying new cases with unknown category
membership to proper category. The detailed specification of
the k nearest neighbours algorithm is as follows:
Input
Dec - set of categories
Tr - training (historical) set of objects described by a set of
attributes A, with known membership to one of categories
from Dec
Ts - set of objects described by a set of attributes A, with
unknown membership to categories from Dec

k - number of nearest neighbors, k - natural number not greater
than cardinality of Tr
Dist - distance measure defined in the space generated by
ranges of values of attributes from set A
Output
Membership of each object from set Ts to one of categories
from Dec.
Algorithm
1. Repeat for each object o ∈ Ts;
2. Among the objects u ∈ Tr find k ones that have the closest
distance to the object o;
3. Return the category most often represented by k objects
designated in the previous step.

The above description reflects well the main idea of the kNN
method. However, to be implemented, it needs more detailed
description. The selection criterion for k objects from the set
Ts (shown in the step 2) is insufficient because it may happen
that more than k objects will be at the same distance. In this
situation, we need to select as few as possible, but not less than
k objects with the smallest possible distances from the object
o. The description in the step 3 also needs to be clarified as it
may happen that more than one category occurs the maximum
number of times. In practice, various approaches are used to
resolve such ambiguity. One of them is the assumption that
each of the closest neighbours "votes" for this category for
the object o from the set Ts, which it represents itself with
the weight inversely proportional to its distance to the object
o. In this approach, the ambiguity of the criterion for choosing
the category for object o (step 3) is a sporadic situation. For
the purposes of this study, the following solution was applied:
if more than one category occurs most frequently, the one that
appears earlier in the input data set is proposed (a pseudo-
random approach).

The main goal of this work is to verify the suitability
of using fuzzy equivalences in the kNN algorithm. More
precisely, we aim to comparing the quality of the classification
made using the kNN algorithm and selected metrics with the
quality of the classification using the same algorithm when
diverse aggregations of fuzzy equivalences are used instead of
the metrics. To do this, in step 2 of the algorithm, instead of
a metric a function 1 − A(E) was used, where A and E are
an aggregation function and a fuzzy equivalence, respectively.
Let us pay attention to another aspect of the kNN algorithm’s
operation. In the process of selecting k nearest neighbors, the
involved metric or aggregation of fuzzy equivalence de facto
acts as a rank operator. This means that it is more important
to order the objects of the Tr set with respect to their distance
from the object o ∈ T s (and choosing k among them with
the smallest distance from o) than using exact value of this
distance. The usefulness of Propositions 6, 7 and Theorem
6 can be seen here. Any aggregation of fuzzy equivalences
or a metric can be replaced with another, orderly equivalent
to the given, and the selection of k nearest neighbors will
not change. As a consequence, we can reduce the number
of operations performed by the computer when choosing k
nearest neighbors and restrict the computations for this step of



TABLE II
DESCRIPTION OF DATA SETS

ID and data set name data size number of categories
1. Banknote authentication 1372 × 5 2
2. QSAR biodegradation 1055 × 41 2
3. Diabetic retinopathy Debrecen 1151 × 20 2
4. Fertility diagnosis 100 × 10 2
5. German credit data 1000 × 20 2
6. Iris 150 × 5 3
7. Parkinson speech (train) 1040 × 26 2
8. Spambase 4601 × 57 2
9. Wine quality - red 1599 × 12 6
10. Zoology 101 × 17 10

the kNN algorithm for one of the orderly equivalent operation
(compare Proposition 1 and Corollary 2) .

B. Description of experiments

For the experiments, 10 data sets from the UCI ML repos-
itory [17] were used. Their synthetic description is presented
in Table II. Implementations of the kNN algorithm in Python,
available in the scikit-learn library were exploited.

The following metrics, aggregations and fuzzy equivalences
were used to determine k nearest neighbours: three metrics
A4(D), A22(D), A21(D), four aggregation functions A1,
A2, A3, A4 including aggregation A2 with parameter p ∈
{0.5, 2, 3, 4} used with respect to eight fuzzy equivalences
ELK , EGD, EGG, EFD, ER

LK , ER
GD, ER

GG, E
R
FD. The choice

of parameter p values was partly inspired by [4]. During
the experiments, it was benefited that ER

GG = EGG and the
relationships expressed in corrolaries 1 and 2.

For each data set from Table II the kNN algorithm was used
with k = 3, 5, 10, 20, 30, three metrics and 42 compositions
of aggregations and fuzzy equivalences (instead of 56 if
mentioned corollaries not engaged). Each data set was tenfold
divided into training and test parts in a 9 : 1 ratio using
10-fold cross validation (CV) technique. Classification quality
was determined using the accuracy coefficient. It defines, what
part of the test objects the classifier correctly assigned to
individual category. It was the basic measure that was used
when analyzing the results of experiments and formulating
conclusions. All following observation concern the specified
above set of parameters.

At the beginning the influence of parameters k,Aj,Ei to
output classification accuracy was examined. It was checked,
which of these 3 parameters affects accuracy the most. For
this purpose, separately for each data set, average values of
accuracy were computed:
(a) for each k and all A(E) and 10 iterations of CV,
(b) for each A and all k, E and 10 iterations of CV,
(c) for each E and all k, A and 10 iterations of CV.
After that intervals of [min,max] values from these computed
for (a), (b), (c) were determined, as well as parameter p
values corresponding to min and max values. The results
are presented in Table III. General observation is that for
all data sets, excluding 3rd and 10th ones least difference

between max and min is for parameter k. On the other hand,
for all data sets excluding the 3rd one biggest difference is
for aggregation. Wilcoxon matched pairs tests implemented
in Statistica software [18] used for each pair (k,A), (k,E),
(A,E) showed that with significance parameter p = 0.125
appropriate choice of aggregations influence output accuracy
the most and the influence of parameter k on output is the
weakest. Second observation is that aggregation A1 and A2
gives accuracy very better than A4 and most of all than A3
(see column 3 in Table III).

Next, we examined, if little difference in closeness mea-
surement on each attribute (received by using different fuzzy
equivalences) may lead to significantly different classification
accuracy. Now, we focused on comparing outputs for Ei

equivalences and their counterparts from the family of ER
i

equivalences. It is because an easy observation of ER
i formulas

shows that for ER
LK and ER

GD differs from ELK and EGD,
respectively on 0.25 at most (only when ELK(x, y) = 0.5
and EGD(x, y) = 0.5) and ER

FD differs from EFD on at
most 0.125 (only when EFD(x, y) = 0.25 or EFD(x, y) =
0.75). Experiments showed that for more than 99% cases
the difference in output accuracy was between −0.1 and 0.1.
However, for 0.9% cases the difference was at least 0.2 and
twice happened (for A4(ELK) of course for A4(ER

LK)) that
the difference was over 0.4. For 18% cases, family of ER

equivalences gave better accuracy than corresponding E and
for 16, 5% cases the converse was true. For over 65% the
output accuracy was the same.

Next, output accuracy received for each aggregation and
fuzzy equivalence was compared with output accuracy re-
ceived for reference, widely used distance metrics, such that
Chebyshev, Euclidean, Manhattan ones. Table IV presents
outputs for those 3 distance metrics and aggregations of fuzzy
equivalences with 3 best accuracy values. Notice, that on the
basis of formula ER

GG and Corollary 1 outputs for A(ER
GG)

and A1(ELK) are the same as for A(EGG) and Manhattan
metric, respectively. Therefore, they are not presented explic-
itly, even if they are one of 3 best values for aggregations.

V. CONCLUSIONS

In the paper diverse approaches to the definition of fuzzy
equivalences as a fuzzy connective were considered. Some
dependencies between them were indicated. However, it seems
interesting to examine further relationships as well as useful-
ness of the approaches in applications.
Practical utility of mean and power-root aggregations as well
as some fuzzy Fodor-Roubens equivalences (especially ELK ,
ER

LK , EGG) in data classification tasks were observed during
experiments of real-life data sets. Compositions of theirs or
with the use of other means (like geometric, harmonic, OWA
ones) may be an interesting alternative for classical metrics
in application to distance-based classifiers. On the other hand,
min and max aggregations seem to be incidentally useful in
this case. There are still several aspects of using aggregations
of fuzzy equivalences to be examined during experiments
which may result with valuable observations useful in data



TABLE III
CLASSIFICATION ACCURACY

data set [min acc(k), max acc(k)] [min acc(Aj), max acc(Aj)] [min acc(E), max acc(E)]
1 [0.796, 0.807]; [30, 3] [0.588, 0.882]; [A4, A1=A2] [0.605, 0.892]; [EGD , ER

LK ]
2 [0.679, 0.705]; [30, 3] [0.535, 0.844]; [A3, A1] [0.668, 0.708]; [ELK , ER

FD]
3 [0.879, 0.890]; [5, 20=30] [0.886, 0.890]; [A2, A1] [0.880, 0.892]; [ER

GD , EGG]
4 [0.463, 0.506]; [30, 3] [0.326, 0.715]; [A3, A1] [0.453, 0.504]; [ER

GG, EFD]
5 [0.818, 0.841]; [5, 20] [0.642, 0.874]; [A4, A2] [0.793, 0.866]; [ER

GD , ER
LK ]

6 [0.517, 0.534]; [30, 5] [0.463, 0.615]; [A3, A1] [0.510, 0.542]; [ER
FD , ELK ]

7 [0.527, 0.539]; [3, 30] [0.495, 0.629]; [A3, A1] [0.502, 0.542]; [ER
FD , EGG]

8 [0.748, 0.761]; [10, 3] [0.544, 0.844]; [A3, A1] [0.625, 0.817]; [EFD , ER
GG]

9 [0.457, 0.472]; [3, 5] [0.435, 0.564]; [A2, A1] [0.445, 0.475]; [ER
FD , EGG]

10 [0.685, 0.756]; [20, 3] [0.354, 0.890]; [A3, A1] [0.686, 0.746]; [EGD = EFD = ELK , ER
FD]

TABLE IV
OPERATIONS WITH THE BEST ACCURACY VALUES

data Reference metrics Best tested A(E)
set Chebyshev Euclidean Manhattan ' 1st best 2nd best 3rd best

(A1(ELK))
1 0.996 0.996 0.996 0.997 0.996 0.996 A1(ER

LK)p = 0.5
A2(ELK)p = 0.5 A2(ER

LK)p = 2, p = 3 A2(ER
LK)p = 0.5, p = 4

2 0.834 0.853 0.859 0.858 A1(ER
LK) 0.852 A1(EGG) 0.846 A1(EGD)

3 0.892 0.888 0.89 0.898 A1(EGG) 0.896 A1(ER
LK), 0.894 A1(ER

FD)
A2(EGG)p = 2

4 0.616 0.714 0.718 0.719 A1(ER
GD) 0.717 A1(ER

LK) 0.715 A1(EGG)

5 0.913 0.910 0.901 0.901 A2(ELK) p=0.5 0.9 0.898A1(ER
LK)

A2(ER
LK)p = 0.5 A2(ER

LK)p = 4 A2(ELK)p = 2
A2(EGG)p = 2, p = 4 A2(EGG)p = 3

6 0.615 0.624 0.639 0.640 A1(ER
LK) 0.618 A1(EGG) 0.613 A4(ER

LK)

7 0.629 0.661 0.670 0.670 A1(ER
LK) 0.659 A1(EGG) 0.615 A1(EGD)

8 0.871 0.887 0.894 0.933 A2(EGG)p = 0.5 0.929 A1(EGG) 0.920 A2(EGG)p = 2

9 0.581 0.596 0.586 0.585 A1(ER
LK) 0.578 A1(EGG) 0.552 A1(ER

GD)

10 0.506 0.89 0.89 0.892 A1(EFD),A1(ER
FD), 0.89 all remaining 0.408 all A4(E), A4(ER)

A2(EFD),A2(ER
FD) all p A1(E), A1(ER),

A2(E), A2(ER) all p

mining. For example examining properties of a sphere induced
by fuzzy equivalences aggregations or, as in paper [19],
applying aggregations and fuzzy equivalence to clustering
problems.
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