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Abstract— Most of the time membership value in the 
fuzzy set cannot be exactly defined. Interval-valued fuzzy 
set (IVFS) is a special type of type-2 fuzzy sets which 
represents the membership value of the fuzzy set as an 
interval. IVFS assumes that membership interval can 
better represent the uncertainty in the data. Accordingly, 
IVFS can be used to obtain good clustering results since it 
can represent the uncertainty more appropriately. Thus, 
this paper proposes the interval-valued fuzzy c-means 
algorithm (IVFCM) which uses IVFSs to represent the 
data. The concept of the proposed IVFCM is then 
extended to introduce the interval-valued density based 
fuzzy c-means (IVDFCM) algorithm based on the 
distance measure of IVFSs. Both IVFCM and IVDFCM 
are simulated over various UCI benchmark datasets to 
show their suitability and supremacy over their existing 
counterparts.  

Keywords—Interval-valued fuzzy set, fuzzy c-means 
algorithm, density-based c-means algorithm, IVFS 
distance measure. 

I. INTRODUCTION  

Clustering is an important problem in the field of Machine 
learning and data mining. Clustering is used to group similar 
objects together and dissimilar objects in a different group. 
Broadly, clustering can be categorized into two types: hard 
clustering and fuzzy clustering. Hard clustering assigns a data 
object into one cluster while fuzzy clustering can assign a data 
object into many clusters with different membership grades. 
Fuzzy sets (FSs) are used to represent the uncertainty that exist 
in the data, and a membership function (MF) of a FS is used 
to find the degree of belongingness of its elements to the set 
[1]. Most of the time, predicted membership value 
approximates the degree of belongingness but should not 
represent the exact degree. A special case of type-2 fuzzy set 
(T2 FS) [2], interval-valued fuzzy set (IVFS) [3] defines an 
interval in which membership value for an element is an 
interval.  

Most of the fuzzy clustering approaches are based on 
fuzzy c-means algorithm (FCM) [4]. FCM is a fuzzy variant 
of the well-known k-means algorithm [5]. In the literature, 
various variants of the FCM algorithm were proposed such as: 
intuitionistic fuzzy c-means (IFCM) algorithm [6], modified 
fuzzy c-means algorithm [7], modified intuitionistic fuzzy c-
means algorithm [8], probabilistic intuitionistic fuzzy c-means 
(PIFCM) algorithm [9] and many more. To represent the data, 
these algorithms use variants of fuzzy sets such as: ordinary 
FSs, intuitionistic fuzzy sets [10], interval type-2 fuzzy sets 
[11], type-2 fuzzy sets [2], vague sets [12], rough sets [13] and 
other variants of FSs [14]. These variants offer technical 
capabilities to represent the uncertainty in the data. Though 
IVFSs can represent the uncertainty of the data appropriately, 

very little research has been done in the field of interval-
valued fuzzy clustering. 

FCM is an iterative clustering algorithm. FCM initializes 
cluster centroids randomly and assigns data points to the 
clusters based on the distance measure used. It then computes 
the average of the data points in a cluster to find the new 
cluster centroids until the cluster centroids converges. FCM is 
highly dependent on the choice of the initialized cluster 
centroids. Recently proposed density based fuzzy c-means 
(DFCM) algorithm removes the random initialization from the 
FCM and finds the cluster centroid based on the density of the 
data points [15]. Interval-valued possibilistic fuzzy c-means 
(IPFCM) algorithm used the two fuzzifier constants to 
generate IVFSs [16]. IPFCM is an inter-valued update of the 
possibilistic fuzzy c-means (PFCM) algorithm [17]. There 
was another approach for interval-valued extension of the 
FCM as was proposed in [18]. Here, authors proposed 
interval-valued fuzzy partition with the constraint with only 
the lower membership values sum up to one. The interval 
computed in [18] for the membership, non-membership 
values can often be large. It also uses an adjustment parameter 
K which makes it computationally infeasible. 

 

Fig. 1. Membership interval for a data value ‘a’. 

This paper proposes an interval-valued fuzzy c-means 
(IVFCM) clustering algorithm. It uses IVFSs to represent the 
data and the IVFSs’ Euclidean distance measure. Instead of 
using two membership functions to generate the interval of 
membership, in this paper, we have assumed that membership 
function approximates the membership degree which can be 
used to obtain the interval for the membership value. We have 
taken ceiling and floor of the membership function values as 
the interval membership value, as shown in Fig. 1. In Fig. 1, 
for a data point ‘𝑎’, 𝑢(a) is the membership value as found by 
using a suitable membership function for a . Here, 
[𝑢௅(a), 𝑢ோ(a)]  is the interval obtained for the membership 
value of a, where 𝑢௅(a) is the floor of 𝑢(a) and 𝑢ோ(a) is the 
ceiling of 𝑢(a) . Proposed IVFCM doesn't require any 
adjustment parameter as in [18]. It assumes that the used 
membership function can approximate the data points. The 
interval chosen has fixed length (0.1) as described above. 
Proposed IVFCM is a cost-effective technique for inter-
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valued FCM. We use the IVFSs’ Euclidean distance measure 
to propose our algorithm. An extension of the IVFCM with 
recently proposed DFCM called, ‘interval-valued density 
based fuzzy c-means (IVDFCM) Algorithm’ is also proposed 
in this paper. IVDFCM initializes the cluster centroids based 
on their density. Proposed algorithms have been compared 
with well-known FCM and DFCM. Results have shown that 
proposed algorithms outperform their existing counterparts. 

The major contribution of this paper is as follows: 

1) A new clustering algorithm called ‘interval-valued fuzzy 
c-means (IVFCM) algorithm’ is proposed using the 
interval value fuzzy sets. 

2) An extension of IVFCM called ‘Interval-valued Density 
based fuzzy c-means (IVDFCM) algorithm’ has also 
been proposed. 

This paper is organized as follows: Section-II provides the 
required basic concepts, Section-III provides the proposed 
algorithms and the related explanations, Section-IV contains 
the experimental results, and Section-V gives a brief 
conclusion of the work and highlights some future directions. 

II. BASIC CONCEPTS 

A. Fuzzy Sets (FSs) 

Let 𝑋 be the universe of discourse. A Fuzzy set 𝐴 for 𝑥 ∈
𝑋 can be represented as [1]: 

 𝐴 = {〈𝑥, 𝜇஺(𝑥)〉|𝑥 ∈ 𝑋}   (1) 

where 𝜇஺(𝑥) ∈ [0,1] is the membership value for element x. 
It’s non-membership value, 𝑣஺(𝑥) is given by: 

𝑣஺(𝑥) = 1 − 𝜇஺(𝑥) 

B. Interval Valued Fuzzy sets 

For an element 𝑥  in the universe of discourse 𝑋 , an 
interval valued fuzzy set 𝐴ሚ for 𝑥 can be defined as [3]: 

 𝐴ሚ = {〈𝑥, [𝜇஺
௅ , 𝜇஺

ோ]〉|𝑥 ∈ 𝑋}   (2) 

where [𝜇஺
௅ , 𝜇஺

ோ]  is an interval between [0,1] . For all 𝑥 , 
[𝜇஺

௅ , 𝜇஺
ோ] are the membership interval iff: 

 0 ≤ 𝜇஺
௅ ≤ 𝜇஺

ோ ≤ 1.   (3) 

C. Distance Measure for FSs  

The distance measure for FSs d: 𝑋 × 𝑌 → [0,1]  is a 
function which is used to compute the distance between two 
FSs 𝐴 (∈ 𝑋) and 𝐵 (∈ 𝑌). It satisfies the following properties 
[19]: 

1: 0 ≤ 𝑑(𝐴, 𝐵) ≤ 1 
2: 𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴)          
3: 𝑑(𝐴, 𝐵) = 0, iff A = B         (4) 
4: For, 𝐴 ⊆ 𝐵 ⊆ 𝐶, 𝑑 follows: 

𝑑(𝐴, 𝐶) ≥ 𝑑(𝐴, 𝐵) and 𝑑(𝐴, 𝐶) ≥ 𝑑(𝐵, 𝐶). 

D. Normalized Euclidean Distance Measure for FSs 

Szmidt and Kacprzyk [20] defined the normalized 
Euclidian distance Measure as follows: 

 𝑑̅(𝐴, 𝐵) = [
ଵ

ଶ௡
∑ ൫𝜇஺(𝑥௜) − 𝜇஻(𝑥௜)൯

ଶ௡
௜ୀଵ ]

భ

మ  (5) 

E. Normalized Euclidean Distance Measure for IVFSs 

Normalized Euclidean distance measure 𝑑ሚ(𝐴, 𝐵)  for two 
IVFSs 𝐴 and 𝐵 may be defined as follows [21]: 

𝑑ሚ(𝐴, 𝐵) = ൥
൫𝜇஺

௅ (𝑥௜) − 𝜇஻
௅ (𝑥௜)൯

ଶ
+

൫𝜇஺
ோ(𝑥௜) − 𝜇஻

ோ(𝑥௜)൯
ଶ ൩

భ

మ

      (6) 

F. Fuzzy c-Means Algorithm (FCM)  

Normalized Euclidian distance measure defined in Eq. 
(5) acts as the proximity function in FCM [4]. In FCM, FSs 
are used to represent the real-valued data points. FCM 
clusters 𝑝 data points, each in 𝑛-th dimension, into 𝑐 clusters. 
The objective function for FCM is given below: 

min 𝐽௠ = ∑ ∑ 𝑢௜௝
௠𝑑̅௜௝

ଶ௖
௝ୀଵ

௣
௜ୀଵ  

       s.t.     ∑ 𝑢௜௝
௖
௝ୀଵ = 1, 1 ≤ 𝑗 ≤ 𝑐         (7) 

      𝑢௜௝ ≥ 0,   1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑐     

෍ 𝑢௜௝

௣

௜ୀଵ

> 0,   1 ≤ 𝑗 ≤ 𝑐 

Here, 𝑢௜௝  acts as a partition matrix which contains the 
membership of 𝑖 -th data point into 𝑗 -th cluster, 𝑑̅௜௝

ଶ  is the 
Euclidian distance measure which is used to compute the 
distance between the 𝑖 -th data point and the 𝑗 -th cluster 
centroid, and m ∈ [1, ∞] is the fuzzifier constant. 

G. Density based Fuzzy c-Means Algorithm (DFCM) [15]: 

DFCM yields good clustering results in comparison to 
FCM by initializing cluster centroids on the basis of density. 
FCM is highly sensitive to the randomly initialized cluster 
centroids, a drawback which DFCM removes. DFCM 
computes the density of a data point (𝜌௜)  and it’s cut-off 
density (𝑟௖)  for determining the set of potential cluster 
centroids (𝐶௣). DFCM also uses two adjustable parameters, 
the density rate (𝜎)  to control the cut-off density, and the 
distance rate (𝜆) to control the distance between the potential 
cluster centroids. Mathematically, these parameters can be 
described as follows: 

𝜌௜ = ∑ 𝑋(𝑑௜௝ − 𝑑௖)௝   (8) 

Here, 𝑋: 𝑅 → {0,1} is a function over 𝑥 such that,  

  𝑋(𝑥) = ൜
1,       if 𝑥 < 0
0,   otherwise

  

Also, the 𝑑௜௝  function computes the Euclidian distance 
between the 𝑖-th and the 𝑗-th data points. The 𝑑஼  is a random 
constant function which chooses values from [0,1]. In DFCM, 
all the data points are collected in a set 𝑋௦ in non-increasing 
order of the densities. The cut-off density 𝑟௖  can be derived by 
using the formula given below: 

𝑟௖ = ൫∑ 𝜌௜
௣
௜ୀଵ ൯ × 𝜎   (9) 

Then, 𝑟௖  is used to find the set of potential clusters (𝐶௣) as 
follows: 

𝐶௣ = ൛𝑥෤௜ห∑ 𝑝෤௜ < 𝑟௖ ,   ∑ 𝑝෤௜ ≥ 𝑟௖ ,   𝑖 = 1,2, … , 𝑘௞
௜ୀଵ

௞ିଵ
௜ୀଵ ൟ     (10) 

Each of the cluster centroids should be some distance (𝛿) 
apart, which depends on the distance rate 𝜆 as follows: 

𝛿 =
ଵ

௞
(∑ 𝑑ሚ௜௝

௞
௜,௝ୀଵ ) ∗ 𝜆  (11) 



Based on 𝛿, set of the potential clusters is used to initialize the 
cluster centroids.  

 DFCM also defines density-based membership function as 
follows: 

𝑢෤௜௝ =

⎩
⎪
⎨

⎪
⎧

1,                     if x෤୧ ∈ V and j = k                                        
0,                     if x෤୧ ∈ V and j ≠ k                                       

ఘ෥೔/ఘೡభ

௞ିଵ
,             if 𝑥෤௜ ∉ 𝑉,  𝜌௩ೖ

≤ 𝜌෤௜ ≤ 𝜌௩ೖషభ
and 𝑗 ≤ 𝑘 − 1

ଵିఘ෥೔/ఘೡభ

௖ି(௞ିଵ)
,   if 𝑥෤௜ ∉ 𝑉,  𝜌௩ೖ

≤ 𝜌෤௜ ≤ 𝜌௩ೖషభ
and 𝑗 ≤ 𝑘 − 1

 

                                                            (12) 

DFCM differs from the FCM because it contains unique 
initialization process. 

H. IVFSs generation techniques: 

We assume that if a good membership function is chosen 
instead of using two membership function to find the 
membership interval, a good approximation of membership 
value is obtained. We have taken min-max normalization as 
the membership function. Floor of the function is taken as the 
lower membership limit, 𝜇௅  and ceiling of the membership 
value acts as the upper membership limit, 𝜇ோ . Therefore, 
chosen membership function [22,23]  is as follows: 

𝜇஺(𝑥௜) =
𝑥௜ − 𝑥௜௠௜௡

𝑥௜௠௔௫ − 𝑥௜௠௜௡

 

Hence,               𝜇஺
௅ (𝑥௜) = 𝑓𝑙𝑜𝑜𝑟(

௫೔ି௫೔೘೔೙

௫೔೘ೌೣି௫೔೘೔೙
)      

and,               𝜇஺
ோ(𝑥௜) = 𝑐𝑒𝑖𝑙(

௫೔ି௫೔೘೔೙

௫೔೘ೌೣି௫೔೘೔೙
).  

From Eq. (2), an IVFS 𝐴ሚ can be represented as follows: 

𝐴ሚ = {〈𝑥, [𝑓𝑙𝑜𝑜𝑟(
௫೔ି௫೔೘೔೙

௫೔೘ೌೣି௫೔೘೔೙
), 𝑐𝑒𝑖𝑙(

௫೔ି௫೔೘೔೙

௫೔೘ೌೣି௫೔೘೔೙
)]〉 |𝑥 ∈ 𝑋}

       (13) 

III. PROPOSED WORK 

In this section, we introduce our proposed interval-valued 
fuzzy c-means (IVFCM) algorithm. We also introduce it’s one 
extension which is interval-valued density based fuzzy c-
means (IVDFCM) algorithm in this section. Eq. (13) is used 
to generate the IVFSs. The normalized Euclidean distance 
defined in the Eq. (6) is taken as the distance measure. First, 
we provide the flowchart of the proposed IVFCM, and then 
we discuss its different steps by giving its pseudocodes as 
Algorithm 1. The pseudocode of the proposed IVDFCM is 
given as Algorithm 2 followed by its discussions.  

 
Fig. 2. Flowchart of IVFCM 

As mentioned in the Algorithm 1, in the IVFCM algorithm, 
we first find the IVFSs for each of the data points using the 
IVFS generation technique defined in the Eq. (13). Then we 

use Eq. (6) as the distance measure. We then randomly choose 
the initial cluster centroids and find the initial partition matrix. 
We re-compute the cluster centroids and partition matrix at 
each iteration until the algorithm converges.  

Algorithm 1: Interval valued Fuzzy c-Means Algorithm 

1: Initialize 𝑐, 𝜖, 𝑚, z(iteration) = 0 and 𝑝 data points 
matrix 𝐴 using eq. (13) and random initialized 
centroids S(0). 

2: while (true) 
3: Compute partition matrix M=൫𝑢௜௝൯

௣×௖
 using distance 

measure defined in eq. (6) 
4:    If 𝑑ሚଶ൫𝐴௜, 𝑆௭(𝑟)൯ = 0 
5:       𝑢௜௞ = 1 and 𝑢௜௝ = 0 ∀ 𝑗 ≠ 𝑘. 
6:    Else 

7:       𝑢௜௝ =  
ଵ

∑ ൭
೏෩మ

మቀಲ೔,ೄೕቁ

೏෩మ
మ൫ಲ೔, ೄೖ൯

൱

మ
೘షభ

೎
ೖసభ

 

8:      End 
9: Compute new centroids 𝑆(𝑧 + 1) using weight 

defined as: 𝑤௝ = ൜ 
௨೔ೕ

೘

∑ ௨೔ೕ
೘೛

೔సభ

,   1 ≤ 𝑖 ≤ 𝑝 ൠ 

10: If ∑
ௗ෨మ(ௌ೥(௥),ௌ೥శభ(௥) )

௖

௖
௞ୀଵ < 𝜖 

11: Break; 
12: end while 
13: END. 

Algorithm 2: Interval valued Density-based Fuzzy c-
Means Algorithm 

1: Initialize λ, 𝜖, 𝑚, z = 0  and 𝑝 data points matrix 
𝐴 using eq. (13). 

2: Initialized cluster centroids S(0) by using eq. (10), eq. 
(11) and section II.F. 

3: while (true) 
4: Compute partition matrix M=൫𝑢௜௝൯

௣×௖
 using distance 

measure defined in eq. (6) 
5:    If 𝑑෨2൫𝐴𝑖, 𝑆𝑧(𝑟)൯ = 0 

6:       𝑢𝑖𝑘 = 1 and 𝑢𝑖𝑗 = 0 ∀ 𝑗 ≠ 𝑘. 
7:    Else 

8:       𝑢𝑖𝑗 =  
1

∑ ቆ
𝑑෨2

2
൫𝐴𝑖,𝑆𝑗൯

𝑑෨2
2

൫𝐴𝑖, 𝑆𝑘൯
ቇ

2
𝑚−1

𝑐
𝑘=1

 

9:      End 
10: Compute new centroids 𝑆(𝑧 + 1) using weight 

defined as: 𝑤𝑗 = ൜ 
𝑢𝑖𝑗

𝑚

∑ 𝑢𝑖𝑗
𝑚𝑝

𝑖=1

,   1 ≤ 𝑖 ≤ 𝑝 ൠ 

11: If ∑
ௗ෨మ(ௌ೥(௥),ௌ೥శభ(௥) )

௖
௖
௞ୀଵ < 𝜖 

12: Break; 
13: end while 
14: END. 

We shall now discuss our proposed IVDFCM algorithm, 
which is shown above in its pseudocode format as Algorithm 
2. IVDFCM algorithm also uses IVFSs to represent the data 
and the distance measure given in Eq. (6). It choses cluster 
centroids on the basis of the density of the data points. Again, 



we have used the min-max normalization as the membership 
function for the IVDFCM instead of Eq. (12), the membership 
function used by DFCM. The procedure for selection of the 
cluster centroids has been explained in the Section II.G. 

Note: IVFCM and IVDFCM differs respectively from the 
FCM and DFCM in the representation of the data points and 
the used distance measure. FCM and DFCM uses the distance 
measures defined in Eq. (5), whereas IVFCM and IVDFCM 
uses the distance measure defined in the Eq. (6). 

Computational Complexity of IVFCM and IVDFCM: Both of 
the proposed algorithms, IVFCM and IVDFCM, are 
independent of any adjustment parameter and uses 𝑂(1) time 
to generate the membership interval and the non-membership 
interval, and hence they do not add any extra costs. The 
computational complexity of the IVFCM is same as that of 
FCM, which is  𝑂(𝑝𝑛𝑐ଶ𝑖). The computational complexity of 
the IVDFCM is same as of that DFCM, which is 𝑂(𝑝ଶ +
𝑝𝑛𝑐ଶ𝑖) , where 𝑝  is the number of data points, 𝑑  is the 
dimension of each data point, 𝑐 is the number of clusters and 
𝑖 is the iteration required to converge. 

IV. EXPERIMENTAL RESULTS 

In this section, we will show the comparison of 
performance of the FCM, IVFCM, DFCM, and IVDFCM 
algorithms over various UCI benchmark datasets [24]. We 
have used three performance indices, viz., clustering accuracy, 
partition coefficient and cluster entropy to compare our 
proposed algorithms with their counterparts. Table I gives the 
details of the used datasets.  

                             TABLE I.  DETAILS OF BENCHMARK UCI DATASETS 

Dataset No. of 
instances 

No. of 
features 

No. of 
classes 

BALANCE SCALE 625 4 3 

BREAST CANCER 569 30 2 

CAR EVALUATION 1728 6 4 

DERMATOLOGY 366 34 6 

ECOLI 336 7 8 

IMAGE SEGMENTATION 2310 19 7 

IRIS 150 4 3 

WINE 178 13 3 

ZOO 101 17 7 
 

Clustering accuracy: Clustering accuracy is one of the 
highly used performance metric to compare the results of 
clustering algorithms. Accordingly, we have used clustering 
accuracy to compare the performances of the FCM, DFCM, 
and the proposed IVFCM and IVDFCM algorithms. 
Mathematically, clustering accuracy is defined as follows: 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦         

                     =  
𝑁𝑢𝑛𝑏𝑒𝑟  𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

Validation Index: Two validation indices, viz., partition 
coefficient (𝑉௉஼) and cluster entropy (𝑉஼ா) are used to show 
the superiority of our proposed algorithms over their 
counterparts. We may compute 𝑉௉஼ and 𝑉஼ா as follows [25]: 

𝑉௉஼ =  
ଵ

௣
∑ ∑ 𝑢௜௝

ଶ௖
௝ୀଵ

௣
௜ୀଵ ,    

 𝑉஼ா = −
ଵ

௣
∑ ∑ 𝑢௜௝ log 𝑢௜௝

௖
௝ୀଵ

௣
௜ୀଵ  

For good clustering results, we look for high clustering 
accuracy, high partition coefficient (𝑉௉஼)  and low cluster 
entropy (𝑉஼ா). 

(A) Comparison based on clustering accuracy 

Comparison of clustering Accuracy of IVFCM, IVDFCM 
over various UCI benchmark datasets: Table II shows the 
clustering accuracies of the FCM and the DFCM algorithms 
over 9 UCI datasets, whereas Table III provides the clustering 
accuracies of the IVFCM and the IVDFCM algorithms.  

TABLE II. CLUSTERING ACCURACIES OF THE FCM AND DFCM      
      ALGORITHMS OVER VARIOUS UCI DATASETS. 

Datasets (size) FCM (%) IVFCM (%) 

IRIS 90.67 90.67 

𝑚 = 2.1 𝑚 = 1.3 

ZOO 83.17 92.08 

𝑚 = 1.8 𝑚 = 1.6 

WINE 93.25 94.94 

𝑚 = 3.9 𝑚 = 1.7 

BREAST CANCER 92.09 92.97 
𝑚 = 1.2 𝑚 = 2.4 

BALANCE SCALE 71.2 72.48 
𝑚 = 1.9 𝑚 = 1.4 

IMAGE SEGMENTATION 64.81 65.48 

𝑚 = 2.8 𝑚 = 2.0 

CAR EVALUATION  76.04 77.78 

𝑚 = 1.2 𝑚 = 1.1 

DERMATOLOGY 89.34 89.34 

𝑚 = 2.8 𝑚 = 1.4 

ECOLI 79.46 81.85 

𝑚 = 3.6 𝑚 = 1.1 

TABLE III. CLUSTERING ACCURACIES OF THE DFCM AND IVDFCM 
ALGORITHMS OVER VARIOUS UCI DATASETS. 

Datasets (size) DFCM (%) IVDFCM 

IRIS 92 91.33 
m=1.1, dc=0.2, 
𝜆=0.25, 𝜎=0.2 

m=2.4, dc=0.2, 
𝜆=0.25, 𝜎=0.1 

ZOO 93.06 95.05 
m=1.1, dc=0.1, 
𝜆=1.0, 𝜎=0.5 

m=3.6, dc=0.4, 
𝜆=0.7, 𝜎=0.3 

WINE 96.07 96.63 
m=2.8, dc=0.1, 
𝜆=1.0, 𝜎=0.2 

m=1.5, dc=0.2, 
𝜆=0.25, 𝜎=0.2 

BREAST CANCER 93.67 93.67 
m=3.8, dc=0.5, 
𝜆=1 .0, 𝜎=0.4 

m=3.4, dc=0.2, 
𝜆=0.25, 𝜎=1.0 

BALANCE SCALE 76.64 76.96 
m=3.0, dc=0.1, 
𝜆=1.0, 𝜎=0.6 

m=1.9, dc=0.2, 
𝜆=0.4, 𝜎=0.1 

IMAGE SEGMENTATION 77.67 80.81 
m=2.0, dc=0.1, 
𝜆=1.0, 𝜎=0.2 

m=1.2, dc=0.2, 
𝜆=1.0, 𝜎=0.2 

CAR EVALUATION  79.46 79.52 
m=1.2, dc=0.2, 
𝜆=1.0, 𝜎=0.2 

m=1.1, dc=0.2, 
𝜆=0.15, 𝜎=0.2 

DERMATOLOGY 96.99 96.18 
m=1.2, dc=0.1, 
𝜆=1.0, 𝜎=1.0 

m=1.1, dc=0.4, 
𝜆=0.15, 𝜎=0.60 

ECOLI 
 

86.41 86.91 
m=2.8, dc=0.1, 
𝜆=0.4, 𝜎=0.6 

m=2.5, dc=0.2, 
𝜆=0.7, 𝜎=0.6 



Fig.3. Comparison of FCM, IVFCM over various benchmark datasets. 

 Fig.4. Comparison of DFCM, IVDFCM over various benchmark datasets. 

 As may be seen from the Table II, clustering accuracies of 
the proposed IVFCM algorithm is better than the FCM 
algorithm for all the considered datasets except two datasets 
(IRIS and DERMATALOGY). For these two datasets, both 
performance of both FCM and IVFCM are at par with each 
other, i.e., both gave equal clustering accuracies.  

 From the Table III, we can see that the proposed IVDFCM 
algorithm gives better clustering accuracies than the DFCM 
algorithm for most of the datasets except three data sets (IRIS 
and BREAST CANCER). For the IRIS and the 
DERMATOLOGY datasets, DFCM provided better 
clustering accuracies, whereas for the BREAST CANCER 
dataset both DFCM and IVDFCM provided equal clustering 
accuracies.  

 Fig. 3 shows the comparative pictorial depiction of the 
clustering accuracies of FCM against IVFCM over various 
benchmark datasets. Similarly, Fig. 4 visualizes the same for 
DFCM against the proposed IVDFCM. From both these 
figures, we can say that our proposed algorithms outperform 
their existing counterparts. 

(B) Comparison based on validation indices 

FCM and IVFCM: From the Table IV, we can see that the 
proposed IVFCM has performed better in terms of validation 
index over iris and dermatology datasets, even when they 
both resulted same clustering accuracies (see Table II). 
DFCM and IVDFCM: From Table IV, it can be seen that our 
proposed IVDFCM has performed better in terms of 
validation index over the IRIS and the DERMATOLOGY 
datasets, even when DFCM gave better clustering accuracies 
for these two datasets (see Table III). 

TABLE IV. COMPARISON OF FCM AND IVFCM ALGORITHMS  
BASED ON VALIDATION INDEXES 

Dataset Algorithm 𝑉௉஼ 𝑉஼ா 

IRIS 
FCM 0.880 0.213 

IVFCM 0.986 0.024 

DERMATOLOGY 
FCM 0.306 1.446 

IVFCM 0.521 0.924 

TABLE V. COMPARISON OF DFCM AND IVDFCM ALGORITHMS  
BASED ON VALIDATION INDEXES 

Dataset Algorithm 𝑉௉஼ 𝑉஼ா 

IRIS 
DFCM 0.614 0.683 
IVDFCM 0.835 0.304 

DERMATOLOGY 
DFCM 0.960 0.072 
IVDFCM 0.984 0.030 

V. CONCLUSIONS AND FUTURE WORK 

Until now, little research has been done for interval-valued 
fuzzy sets in clustering domain. This paper has proposed two 
novel IFVS based algorithms, viz., the interval-valued fuzzy 
c-means (IVFCM) algorithm, and the interval-valued density 
based fuzzy c-means (IVDFCM) algorithm. Instead of using 
two membership functions, we have used ceiling and floor of 
the membership value to generate the interval membership 
value. Our proposed algorithms uses Euclidean distance 
measure defined for IVFSs. Experimental results considering 
over various benchmark datasets have shown that our 
proposed algorithms are superior to their existing counterparts 
in terms of clustering accuracy and the validation indices. This 
paper has also highlighted the drawbacks of the proposed 
algorithm. It has assumed that the membership function is 
good at approximating the membership value for the set. It 
also assumed that interval required for the generation of IVFS 
can be taken as the ceiling and the floor of the membership 
value. Assumption of interval range of 0.1 may or may not 
work. A flexible interval range may also predict better 
clustering results. 

A different technique for the generation of the IVFSs 
which can generate tighter or looser interval value depending 
on the dataset can be a good direction for future work. Further, 
recently it has been reported that IVFSs may be generalized as 
the interval type-2 fuzzy sets (IT2FSs) [26], [27]. The concept 
of IT2 FSs was floated by Mendel his co-authors in [28] based 
on the idea of type-2 fuzzy sets (T2 FSs) proposed by Zadeh 
[29]. During the last two decades many researchers have used 
T2 FSs and IT2 FSs for uncertainty handling in the data in 
many domains such as energy efficient scheduling [30], 
linguistic group decision making [31], clustering [32], [33], 
big data [34] and service quality evaluation [35]. Moreover, it 
was also reported by Shukla et al. [36] that research on T2 FSs, 
which has attracted profound attention of the scientific 
community, are now enough matured. Therefore, one fruitful 
future research work may be to extend the proposed IVDFCM 
for clustering the data wherein uncertainties are handled with 
T2 FSs or IT2 FSs, to investigate their comparative 
performance potentials. Similarly, intuitionistic fuzzy sets 
(IFSs), proposed by Atanassov [10] has also been showing 
promising results in many problems including clustering [37]-
[41].  So, extending the algorithms proposed in this work for 
data clustering with IFS based uncertainty handling for a 
comparative study may be another prospective future research 
direction.  
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