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Abstract—The emerging success of Deep Learning (DL) in
various application areas comes also with the questions starting
with “How”s and “Why”s. These questions can be answered if the
DL methods are interpretable and thus provide a certain a degree
of explanation. In this paper, we propose a DL framework that
leverages the advantages of β-Variational Autoencoder (VAE)
and Fuzzy Sets (FSs), which are disentanglement and linguistic
representation, for the design of a novel DL based Fuzzy
Classifier (FC). We first present a step-by-step design approach
to construct the DL-FC which is composed of the encoder layer
of β-VAE and a Fuzzy Logic System (FLS) followed by a softmax
layer. The β-VAE is trained so that the semantic information of
the high dimensional data is captured. The latent space of the
β-VAE is clustered to extract FSs. The FSs are then used to
define antecedents of the FLS that is trained with DL methods.
We present results conducted on the MNIST dataset and showed
that DL-FC is quite competitive with its deep neural network
counterpart. We then try to provide an interpretation to the
antecedents of FLS by examining the FSs, the latent traversals
and heat-maps of each latent dimension. The results show that the
antecedents of FLS can be defined with linguistic interpretations.
Thus, for the first time in the literature, we showed that linguistic
interpretations can be defined for the latent space of β-VAE with
FSs.

Index Terms—Variational autoencoder, fuzzy sets, fuzzy c-
means clustering, classification, interpretation.

I. INTRODUCTION

In the last decade, Deep Learning (DL) methods showed a
great success in various fields [1], [2], [3], [4]. This is mostly
due to the high learning capacity of Deep Neural Networks
(DNNs) composed of hundreds to thousands of layers and
neurons [5]. However, as the DNN structures get more com-
plex, interpreting the underlying reasons of the predictions
becomes more challenging [6]. One of the attempts to solve
the interpretability problem is making visual inspections (such
as heat-maps) on the DNN layers in order to interpret which
nodes are activated for images of different classes [7]. Another
approach is the representation learning which tries to find
the underlying representations of the data so that even low
capacity and interpretable machine learning algorithms can
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achieve high accuracies [8]. In this aspect, generative networks
are very promising to provide an interpretation since they use
the underlying representations of the data to generate unseen
data [9].

Variational Autoencoders (VAEs) [10] are one of the most
popular generative networks among the field of representa-
tion learning. The main difference between VAEs and its
conventional autoencoder counterparts [11] is that VAEs use
a Bayesian inference for representing their low dimensional
latent space. For instance, in [12], VAE is used along with
decision in order to design an interpretable classifier. In [13], a
new loss function with a hyperparameter β is presented for the
training of VAE (abbreviated as β-VAE) to obtain disentangled
latent dimensions. Disentanglement in β-VAE can be defined
as the assignment of certain features of high dimensional data
to unique latent dimensions so that a variation in one latent
dimension is sensitive only to the corresponding feature [14],
[15].

For interpretability, Fuzzy Logic Systems (FLSs) are great
tools thanks to their linguistic representation and rule based
structure [16]. Thus, employing FLSs to machine learning
algorithms can be seen as an important step for both research
areas [17]. Accordingly, there has been some promising at-
tempts to accommodate FLSs in DNN. For instance, in [18],
DL methods are adapted to solve the design problem of FLSs
whereas in [19], type-2 FLSs are used as activation layers to
enhance the performance of DNNs. Conventional autoencoder
networks are also used with FLSs for fuzzy rule reduction
[20], data processing [21] and dealing with data uncertainty
[22].

There are also some promising studies about employing
FLSs into DNNs to provide interpretability. For instance in
[23], a stacked fuzzy classifier is proposed to obtain inter-
pretability on each layer. In [24], an architecture is proposed
where convolutional DNNs are used to extract features, then
these features are clustered with FSs. This approach is im-
proved in [25] by proposing a deep fuzzy clustering algorithm
to automatically extract the features.

This paper proposes a framework that uses the merits
of β-VAEs and FSs, namely disentanglement and linguistic
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interpretation, for the design of a DL based Fuzzy Classifier
(FC). In the design of the DL-FC, firstly a β-VAE is trained so
that a low dimensional disentangled latent space is obtained.
The latent space of the β-VAE is extracted and then clustered
with the well-known Fuzzy c-Means (FCM) algorithm [26]
in order to define the latent space with FSs. The generated
FSs are then used as the antecedent Membership Functions
(MFs) of the FC which is defined with a multi input multi
output Takagi-Sugeno-Kang (TSK) FLS. In the design of the
FC, only the consequent parameters of the FLS are trained.
We conducted comparative experiments on the MNIST dataset
to analyze the performance and interpretation of the proposed
DL-FC. We firstly investigated the classification performance
of the DL-FC and showed that its performance is quite
competitive with its DNN counterpart. We then presented com-
prehensive investigations to provide linguistic interpretations
to the antecedent part of the FLS. In this context, we firstly
analyzed the antecedent FSs and observed that they are quite
distinguishable. Then, to define them with linguistic variables
and descriptions, we analyzed the latent traversals and heat-
maps of the latent dimensions. We demonstrated that the
latent dimensions and their FSs can be defined with linguistic
interpretations, especially for the ones that have high semantic
information. Thus, for the first time in the literature (to best to
our knowledge) we concluded that the latent space of β-VAE
can be represented with FSs that provide them a linguistic
interpretation. We believe that the results of this study will
open the doors to wider use of FSs in designing interpretable
DL methods.

This paper is organized as follows: Section II introduces
the DL-FC and its step-by-step design method. Section III
presents the comparative results in order to examine the clas-
sification performance and interpretation of the latent space
extracted from β-VAE. Finally, Section V closes this paper
with conclusions and future work.

II. DEEP LEARNING BASED FUZZY CLASSIFIER

Here, we present the structure of the proposed DL-FC
shown in Fig. 1 and its step-by-step design which consists
of following main steps:

1) Training the β-VAE: A disentangled latent space is
extracted to obtain semantic information of the high
dimensional data.

2) Clustering the latent space via FCM: The extracted latent
space is clustered to generate FSs.

3) Training the Fuzzy Classifier: The generated FSs are
used to construct an FC which is trained with DL
methods.

The employed layer structures and their design steps are
explained in the following subsections.

A. Step-1: Training the β-VAE

Here, we present the structure of β-VAE that is used to
extract a disentangled latent space. As it can be seen from
Fig. 2, β-VAE encodes the high dimensional input x to a K
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Figure 1: The internal structure of the proposed DL-FC.

dimensional space which is defined with following multivariate
Gaussian distribution:

qφ(z|x) = N (z; zµ, z
2
σI) (1)

where qφ(z|x), zµ and zσ correspond to the variational
posterior distribution and K-dimensional mean and standard
deviation vectors of this distribution, respectively. z represents
a K-dimensional sampled latent vector which is propagated
through the decoder in order to reconstruct the original input
x as x̃. In the design of β-VAE, the following two objectives
are considered [13]:
• assigning latent vectors z to x whose expected values

are distinctive enough, so that the reconstructions are
accurate (x ≈ x̃)

• finding a good posterior distribution, so that the transi-
tions within latent vectors give smooth transitions on x̃.

In this context, the following loss function is defined:

L(θ, φ) = Eqφ(z|x)[log pθ(x|z)]− βDKL(qφ(z|x)||p(z))
(2)

where φ and θ represent the weights of the encoder and
the decoder networks, respectively. The term Eqφ defines the
reconstruction loss (i.e. squared error or cross-entropy loss)
while DKL is the Kullback-Leibler divergence loss (KL)
between the posterior and unit normal distribution, p(z) =
N (z;0, I), which can be seen as a regulator to keep the
posterior close to unit normal distribution [13]. The scalar β is
a hyperparameter for adjustment of a crucial aspect of β-VAE,
namely disentanglement [13], [14] [15].

In the proposed method, as the aim is to extract an interpre-
tation, it is crucial to acquire a good disentangled latent space.
The disentanglement of the latent space is closely related to the
balance between Eqφ and DKL [13]. Thus, the training of β-
VAE has to be accomplished with a proper β value since there
is a trade-off between a good reconstruction performance and
disentanglement. The training of the β-VAE is accomplished
via the Adam optimization algorithm [27]. Then, the sampled
latent vectors (z) are extracted for the whole training dataset.

B. Step-2: Clustering the latent space via FCM

In this step, we cluster the latent space with FCM clustering
algorithm to generate FSs to be used and processed by the FC.
If the latent space is disentangled enough, we believe that the
interpretability of the generated FSs of the DL-FC will be
high.
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Figure 2: VAE structure.

FCM is based on the minimization of the following objec-
tive function [26]:

Jm =

D∑
d=1

N∑
j=1

µmdj‖xd − cj‖2 (3)

where D is the number of data points, N is the number of
clusters, m is fuzzy partition matrix exponent for controlling
the degree of fuzzy overlap where m > 1, xd is the dth data
point, cj is the center of the jth cluster, µdj is the degree of
membership of xd in the jth cluster. For a given data point,
xd, the sum of the membership values for all clusters is one.
The resulting cluster centers and their standard deviations are
approximated with Gaussian FSs to ease the training process
of the FC.

C. Step-3: Training the Fuzzy Classifier

The rule structure of the fuzzy classifier is constructed with
a K input and M output FLS which is defined as:

Rn: IF x(1) is A(1)
n AND . . . AND x(K) is A(K)

n

THEN yn = bn,0 +
∑K
k=1 bn,kx

(k)

where x(k) defines the inputs (z(k)) which is partitioned
with N Gaussian FSs A(k)

n , bn,k represents the consequent
parameters of the FLS and the total number of fuzzy rules is
N . The FLS uses and employs the product implication and
the center of sets defuzzification method [16]. The firing level
of the nth rule is as follows:

fn(x) =

K∏
k=1

µ
A

(k)
n

(x) (4)

where µ
A

(k)
n

(x) is the membership degree of the antecedent
FSs. Then, the M outputs of the FLS are calculated as follows:

y(x) =

∑N
n=1 fn(x)yn(x)∑N

n=1 fn(x)
(5)

Here, y is an M dimensional output vector of FLS. Then, the
outputs of FLS y are passed to a softmax layer as follows:

ỹ(m) =
exp(y(m))∑M

m′=1 exp(y
(m′))

(6)

where ỹ is an M dimensional vector whose elements are
scaled between 0 and 1.

In the training of the presented DL-FC, as the antecedent
Gaussian MFs A(k)

n are generated from the FCM algorithm,

Table I: β-VAE Layer Specifications and Hyperparameters.

Adam optimizer
Learning rate: 0.001
Gradient decay factor: 0.9
Squared gradient decay factor: 0.999

Layers

Input: 28x28x1
Encoder (ReLU activation):
Conv 16x7x7, 32x5x5, 64x64x3, FC 3136
Latents: 10
Decoder (ReLU activation):
Trans. Conv 64x7x7, 32x5x5, 16x3x3, 16x1x1

only the parameter vectors bn,k have been handled as learnable
parameters. In this context, we define a tensor B with a
size of MxKxN that represents the learnable parameters of
the FC. The training of the DL-FC is achieved through the
minimization of the cross-entropy loss function via the Adam
optimization algorithm [27].

III. EXPERIMENTS

Several experiments were conducted on hand-written digits
dataset MNIST [28] in order to examine the performance
and interpretation of the DL-FC. The first 60K samples of
the MNIST dataset are used for training while the remaining
10K are used for testing. We performed all experiments in
MATLAB and CUDA environments on a PC that includes
Intel(R) Core(TM) i9-7900X 3.3GHz CPU, 64GB RAM and
NVIDIA GeForce GTX 1080 TI GPU.

A. Classification Performance

As stated in Section II-A, we first trained a β-VAE with
the layer and hyperparameter settings which are given in
Table I. We have experimentally found that a latent space
dimension of K = 10 and a β value of 0.01 result with a
satisfactory reconstruction performance and disentanglement
in the latent space. The resulting loss values, defined in (2),
are calculated as 0.0421922 and 0.0422257 for the training
and testing datasets, respectively. The trained β-VAE resulted
in a disentangled latent space whose latent dimensions have
the following KL values:

KL= [3.03; 2.15; 0.73; 1.99; 1.10; 1.30; 1.37; 2.54; 3.18; 0.49]

where the kth element of the vector defines the KL value of
the kth latent dimension (z(k)). Latent dimensions with higher
KL values indicate that these dimensions encode relatively
more information [13]. To analyze the effect of each latent
dimension, we sorted the KL values and matched them with
their corresponding latent dimension (z(k)) as shown in Fig.
3. Then, as the KL value provides a measure on the encoded
information, we showed in Fig. 4 that how the encoded in-
formation is increasing with the number of latent dimensions.
We can observe that the first 6 dimensions of the sorted latent
dimensions contain almost 80% of the total information for
the dataset.

We extracted the z vectors and then clustered them to
used them as the antecedent MFs of the FC. The testing
performances of the DL-FCs for N = {3, 5, 10} number of
rules is given in Fig. 5. Note that, the latent dimensions are



Figure 3: KL values of each latent dimension.

Figure 4: Variation of the cumulative KL value with respect
to the total number of inputs.

sorted according to their KL values as it has been done in Fig.
4. This result shows that the increments in the accuracy with
the addition of the next important latent dimensions impact
similarly as discussed for the results given in Fig 4. It can
be concluded that the first 6 latent dimensions, which have
relatively high KL values, have the biggest impact on the
accuracy as expected. It can be also observed that the number
of rules does not have a huge impact on the accuracy and thus,
one might conclude that the DL-FC composed of N = 3 rules
is sufficient for the handled classification problem.

We also compared the performance of the DL-FCs with
their Linear Classifier (LC) and DNN counterparts that use
and process all latent dimensions. In the design of DNNs, we
constructed a 5 layer DNN that uses Tanh as its activation
function. Moreover, for a fair comparison, the total number
of learnable parameters (i.e. weights) of the DNN was kept
equal to the size of the tensor B which is MKN . The testing
accuracy performance measures of the classifiers are tabulated
in Table. II. Here, the DNN classifiers abbreviated as DNN-1,
DNN-2 and DNN-3 are the counterparts of the DL-FCs with
N = 3, N = 5 and N = 10, respectively. It can be observed
that the performances of the DL-FCs are quite competitive
with their DNN counterparts.

B. Linguistic Interpretation of Latent Dimensions

In this section, we examine the interpretability of the DL-FC
composed of N = 3 rules/clusters since its resulting perfor-
mance is quite satisfactory as shown in the preceding subsec-
tion. We start by analyzing the FSs for the latent vectors that
resulted in high KL values which are z(1),z(2),z(4),z(7),z(8)

and z(9).constructed. In Fig. 6 the generated FSs of each
latent dimension is presented. It can be seen that the FSs
are quite distinguishable which might provide an opportunity
to define them with linguistic variables and descriptions, i.e.
interpretation. However, the interpretability of the DL-FC
does not only depends on the generated FSs but also on
the semantic information which is embedded in the latent
dimensions. Therefore, we examine the output sensitivity of

β-VAE with respect to each latent dimension both qualitatively
and quantitatively to comment on the interpretation of the DL-
FC.

We analyze the latent traversals in order to find out which
latent dimension captures the data generative factors, i.e.
linguistic variables of the FLS. Thus, firstly a latent vector
is arbitrarily chosen. Then, a traverse is performed only on
the latent dimension of interest (z(k) : −3 → 3) and the
outputs of β-VAE are analyzed. In Fig. 7, the latent traversals
are given for z(1),z(2),z(4),z(7),z(8) and z(9). However, in
order to conclude on the linguistic descriptions, we need to
analyze various latent traversals in all latent dimensions. In
this context, we generated and examined the heat-maps of each
latent dimension. The generation of the heat-maps requires
the gradients of each pixel between two consecutive decoder
outputs of a latent traverse. An example of a consecutive
gradient transition on z(1) is illustrated in Fig. 8 where the
brighter pixels define positive gradients while darker pixels
correspond to negative gradients. Note that, the gradient of
each z(k) always starts with negative values and incrementally
transforms to positive values as the latent traverse direction is
always defined from z(k) : −3→ 3. This gradient calculation
was run 1000 times and means of the results were calculated
for each latent dimension in order to achieve the statistical
mean of every pixel-wise gradient. In Fig. 9, the generated
heat-maps of the latent dimensions are presented. In the light
of Fig. 7 and Fig. 9, one may define the latent dimensions that
have the highest KL values as follows:
• z(1) with the linguistic variable “Inclination angle of the

digit”. The antecedent MFs A(1)
1 , A(1)

2 , A(1)
3 , given in

Fig. 6b, can be represented with the linguistics terms
“Zero”,“Negative” and “Positive”, respectively. This can
be also clearly seen from the latent traversal shown in
Fig. 7b.

• z(8) with the linguistic variable “Horizontal position of
the digit’s curvature”. For this case, since A(8)

1 and A(8)
3

are very similar, the MFs A
(8)
1 , A(8)

2 , A(8)
3 (given in

Fig. 6c) can then be defined with the linguistics terms
“Down”, “Up” and “Up”, respectively. This can be clearly
seen from the latent traversal given in Fig. 7c.

• z(9) with the linguistic variable “Circularity of the digit”.
The corresponding FSs, given in Fig. 6a, A(9)

1 , A(9)
2 , A(9)

3 ,
can then be defined with the linguistics terms “Small”,
“Zero” and “Large”, respectively. This can be also clearly
seen from the latent traversal presented in Fig. 7a.

It is worth mentioning that we defined the linguistic vari-
ables by taking into account the most dominant underlying
factors. Note that, defining linguistic variables and terms for
the latent dimensions z(2), z(4), z(7) and their corresponding
FSs is not straightforward since their semantic information,
i.e. KL values, is relatively low in comparison to the ones of
z(1), z(8) and z(9).

IV. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a DL-FC that leverages the
advantages of β-VAE and FSs which are disentanglement



Figure 5: Testing performances of the DL-FCs.

Table II: Accuracy values of LC, DNN and DL-FC structures.

Classifer LC DNN-1 DNN-2 DNN-3 DL-FC (N=3) DL-FC (N=3) DL-FC (N=3)

Accuracy 0.830 0.871 0.883 0.883 0.869 0.864 0.867
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Figure 6: Antecedent MFs of DL-FC.
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Figure 7: Latent traversals (a)z(9),(b)z(1),(c)z(8),(d)z(2),(e)z(4),(f)z(7)

Figure 8: Transition of bit-wise gradients for an arbitrary z-Traverse on z(1).
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Figure 9: Heat-maps of latent dimensions that have highest KL values.

and linguistic representation. We first presented a step-by-step
design method for the DL-FC. We trained a β-VAE such that
a disentangled latent space is obtained. Then, this latent space
of β-VAE is clustered to extract FSs. The generated FSs are
used to construct an FC that is trained with DL methods. We
presented various experimental results and showed that the
performance of DL-FC is quite satisfactory. More importantly,
we defined linguistic interpretations to the latent space of
β-VAE by examining the antecedent MFs, latent traversals
and heat-maps of the latent dimensions with high KL values.
Although we believe that the results of the paper are quite
important milestones in placing FSs in the research area of
DL, there is still the following question to be answered: “How
does the DL-FC make predictions?”

As for our future work, we plan to first try to provide an
interpretation for the rule base of DL-FC. We also plan to
employ type-2 FSs as antecedent MFs as they are powerful
tools to represent the higher levels of uncertainties [16].
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