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Abstract—This paper presents an approach which combines
unified variable precision fuzzy rough set model together with the
concept of fuzzy linguistic labels. A real world application of the
standard fuzzy rough sets can be problematic, especially in the
case of large universes and noisy data. Due to relaxation of strict
inclusion requirement in determining approximations of sets, a
more tolerant variable precision fuzzy rough set model is better
suited to be useful in analysis of this kind of data. Furthermore,
a crucial issue at the initial stage of the fuzzy rough set approach
consists in generating a fuzzy partition of a universe, with respect
to condition and decision attributes. It requires comparing of
elements by using a suitable fuzzy similarity relation. We simplify
this process by applying the concept of fuzzy linguistic labels for
determining the family of fuzzy similarity classes. This is done
by performing a comparison of elements of the universe to a
subset of representative elements which are described with the
help of dominating linguistic values of attributes. The notions of
the variable precision fuzzy rough set model, which is expressed
in a unified parameterized form, can be used to determine the
quality of the considered information system by evaluating its
consistency, and to obtain a system of fuzzy decision rules.

Index Terms—information systems, linguistic labels, fuzzy
rough sets, fuzzy decision rules

I. INTRODUCTION

Important areas of application of the rough set theory
include modeling and analysis of control actions of human
operators (experts) and diagnostics of industrial processes
which is based on recorded signals.

In the face of a high popularity of the fuzzy set theory, a
natural step was an attempt to compare the ideas of rough sets
and fuzzy sets. Both paradigms focus on different aspects of
uncertainty, and their combined use in the form of a hybrid ap-
proach has begun the next important stage in the development
of these theories. Dubois and Prade [1], as well as Nakamura
[2], were the first researchers who proposed generalization of
the Pawlak’s concepts of rough set approximation, in order to
adapt them to approximation of fuzzy sets. The idea of fuzzy
rough sets, in the sense given by Dubois and Prade, gained a
major interest of specialists working on the borderline of the
two theories, e.g., [3]–[8].

Unfortunately, the inconsistency of noisy data obtained
from real decision processes can be a severe obstacle for
a successful application of standard crisp or fuzzy rough
sets models. Strict adherence to requirements of the rough

set theory, with respect to set inclusion, can lead to losing
substantial parts of the decision model represented by the
analyzed information system. In other words, the obtained
lower approximations of sets become too small because of
rejection of large approximating indiscernibility classes, due
to the lack of inclusion of even individual elements of such
classes in the approximated set. On the other hand, the
determined upper approximations of sets may be too large,
because even single common elements of large approximating
indiscernibility classes and the approximated set are sufficient
to include such classes in the upper approximation. Therefore,
extensions of the basic rough set concept have been proposed,
by relaxing strong inclusion requirement and admitting of
tolerance. A significant approach to overcome the problems
appearing in practical applications of the Pawlak’s rough
set theory is the variable precision rough-set model (VPRS)
introduced by Ziarko [9], [10]. The VPRS model allows certain
level of misclassification when determining the approximation
of sets. This is particularly important when generating large
indiscernibility classes of elements of a universe. The idea of
relaxation that was proposed by Ziarko for crisp rough sets
has been then applied in the framework of fuzzy rough sets
and studied by many authors, see, e.g., [11]–[21].

However, another significant issue in application of the
standard fuzzy rough set approach is the complexity of gen-
erated families of fuzzy similarity classes, in the case of
large decision tables with many values of fuzzy attributes.
Furthermore, determination of similarity between elements of
a universe is not unambiguous as in the case of crisp sets. The
calculated degrees of similarity can be values in the interval
[0, 1]. They also depend on the chosen fuzzy T-norm and
implication operators. Having many free parameters, which is
a characteristic of the fuzzy set theory, can lead to problems
of interpretation of the obtained results, when determining the
fuzzy rough approximations.

In order to avoid these drawbacks, we introduced [22] the la-
beled fuzzy rough set approach, which does not use a standard
similarity relation for determining fuzzy similarity between all
pairs of elements of a universe. Instead, we try to discover
characteristic (representative) elements of the universe that
share the same combinations of “active” linguistic values of
attributes.
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In this paper, we go a step further by putting the idea
of fuzzy linguistic labels into the variable precision fuzzy
rough set model which is expressed in a unified parameterized
form. The hybrid approach consists of two stages. Firstly,
we determine fuzzy partitions of the universe with respect to
condition and decision attributes, respectively. By assuming
a required similarity level β, we can obtain the families
of positive, boundary, and negative linguistic values for all
elements of the universe. We find out which elements of
the universe have the same combination of positive linguistic
values of attributes. Such elements have the same linguistic
label and constitute characteristic elements of a corresponding
similarity class. In the second stage, we apply a tolerance level
ε to determine positive area of classification and to generate
a system of fuzzy decision rules.

We should start by giving the definition of a fuzzy decision
system, together with the labeled fuzzy description of infor-
mation systems. Next, we recall the unified variable precision
fuzzy rough set model, and introduce fuzzy linguistic labels
into the approximation of fuzzy sets. The approach will be
illustrated by computational examples of analysis of fuzzy
information systems.

II. FUZZY DECISION SYSTEMS

In a real-world application, a decision model of a human
operator is usually expressed in the form of a decision table.
For the sake of a formal analysis, we prefer to use a more
general notion of information system. Hence, each row of a
decision table corresponds to an element of a finite universe.
The elements of the universe are characterized by condition
and decision attributes. Since we want to use attributes with
linguistic values in decision systems, we define a fuzzy deci-
sion system FDS which is expressed as a 4-tuple [22]

FDS = 〈U,A,V, f〉, (1)

where:

U – is a nonempty set, called the universe,

A – is a sum of two sets of fuzzy attributes: A = C
⋃
D,

C denotes condition attributes, D – decision attributes,
V – is a set of linguistic values of attributes, V =

⋃
a∈A Va,

Va is the set of linguistic values of an attribute a ∈ A,
f – is an information function, f : U × V→ [0, 1],

f(x, V ) ∈ [0, 1], for all x ∈ U , and V ∈ V.

We connect every fuzzy attribute ai ∈ A, where i =
1, 2, . . . , z, with a family of its linguistic values: Ai =
{Ai1, Ai2, . . . , Aizi}. Let us assume that the membership
degrees of elements x ∈ U in all linguistic values of fuzzy
attributes will be assigned by an expert.

In a fuzzy decision system, every element x of the
universe U is described by fuzzy condition attributes
C = {c1, c2, . . . , cn}, and fuzzy decision attributes D =
{d1, d2, . . . , dm}. We denote by Ci = {Ci1, Ci2, . . . , Cini}
the family of linguistic values of the i-th condition attribute

ci, and by Dj = {Dj1, Dj2, . . . , Djmj} the family of lin-
guistic values of the j-th decision attribute dj , where i =
1, 2, . . . , n , j = 1, 2, . . .m, respectively. Any element x ∈ U
has a membership degree in every linguistic value of all fuzzy
attributes. Membership degrees are values in the interval [0, 1].

In our considerations, we impose the following requirements
on all linguistic values:

∃Aik (Aik ∈ Ai, µAik
(x) ≥ 0.5) , (2)

power (Ai(x)) =

ni∑
k=1

µAik
(x) = 1. (3)

Our motivation for introducing the requirements (2), and (3)
comes from generalization of the properties of crisp decision
systems, in which every element x ∈ U has a unique value of
each attribute. In fuzzy decision systems, an element x ∈ U
can possess more than one value, but we assume that there is
always a dominating linguistic value.

In analysis of a crisp decision model, the basic operation
consists in comparing elements of the universe with the help
of an indiscernibility relation which is reflexive, symmetric,
and transitive. In the case of a fuzzy decision model, similarity
between elements of the universe is evaluated by using a fuzzy
similarity relation. However, the obtained degree of similarity,
in the interval [0, 1], depends on the form of selected fuzzy
connectives. Therefore, there is no unique way of determin-
ing the fuzzy rough approximations. Moreover, for a large
universe, one gets a vast number of fuzzy similarity classes
generated with respect to condition, and decision attributes,
respectively. As the interpretation of results becomes hardly
in such a case, an alternative approach to analysis should be
considered, which is based on a simpler method of classifying
the elements of a fuzzy information system. In contrast to
the standard method, a human operator neither uses a fuzzy
similarity relation nor performs a detailed comparison of
elements to each other. Instead, he or she rather tries to find
out characteristic elements, that correspond to labels that are
tuples of dominating (active) linguistic values of attributes.
We can imagine that every label is represented by an ideal
element (prototype) with membership degree equal to 1 in
selected linguistic values of considered fuzzy attributes. The
human operator assesses the similarity of elements x ∈ U to
a limited subset of such ideal elements, in order to discover
characteristic elements that have a certain level of similarity
to the labeled prototypes.

We will obtain the characteristic elements from the decision
table, basing on the membership degree of particular elements
x ∈ U in the linguistic values of attributes. In order to distin-
guish the linguistic values, we apply a similarity threshold β
which satisfies the inequality

0.5 < β ≤ 1 . (4)

A selected value of the parameter β will be used as a
similarity threshold for classifying particular linguistic values
of attributes.



Given a fuzzy information system FDS, we define [23] for
any element x ∈ U , and any fuzzy attribute a ∈ A:
the set V̂a(x) ⊆ Va of positive linguistic values

V̂a(x) = {V ∈ Va : f(x, V ) ≥ β}, (5)

the set Va(x) ⊆ Va of boundary linguistic values

Va(x) = {V ∈ Va : 0.5 ≤ f(x, V ) < β}, (6)

and the set qVa(x) ⊆ Va of negative linguistic values

qVa(x) = {V ∈ Va : 0 ≤ f(x, V ) < 0.5}. (7)

Due to the constraints (2) and (3), the sets V̂a(x), Va(x),
and qVa(x) have the following properties [23]:

(P1) card
(
V̂a(x)

)
≤ 1,

(P2) card
(
Va(x)

)
≤ 2,

(P3) card
(

qVa(x)
)
< |Va| .

Now, every element x ∈ U can be described with the help
of a combination of those linguistic values that are positive for
that particular element. In this way, we determine the linguistic
labels for all elements of the universe. In the following, we
consider linguistic labels generated with respect to a subset of
fuzzy attributes P ⊆ A.

Formally, the set of linguistic labels L̂P (x) is equal to
the Cartesian product of the sets of positive linguistic values
V̂p(x), for all p ∈ P :

L̂P (x) =
∏
p∈P

V̂p(x). (8)

It should be noted, due to property (P1), that each el-
ement x ∈ U can possess at most one linguistic label:
card

(
L̂P (x)

)
≤ 1. By inspecting the decision table, the

family LP of linguistic labels for the entire universe U will
be generated. It is obvious that the number of linguistic labels
in the family LP can be only decreasing when the similarity
threshold β is increased.
Furthermore, we denote by:

LP (x) — the linguistic label for an element x ∈ U ,
LP — the set of linguistic labels for the universe U ,
LP — a particular linguistic label from the set LP .

When inspecting the decision table, we can also discover
elements x ∈ U which have a common linguistic label LP (x).

By XLP , we denote the subset of the elements x ∈ U that
correspond to a linguistic label LP ∈ LP , for selected fuzzy
attributes P ⊆ A:

XLP =
{
x ∈ U : LP (x) = LP

}
. (9)

The subset XLP is called the set of characteristic elements of
the linguistic label LP .

Observe that there may be elements x ∈ U which do not
have a positive linguistic value for some attributes, especially
for a higher value of the similarity threshold β. It may be

necessary to discard such “weak” elements, to assure that
the obtained labeled similarity classes retain the property
of covering sufficiently the universe U . By removing any
elements x ∈ U that do not have a linguistic label, we get
a restricted universe U ′ ⊆ U . In other words, it should be
required that every element of the universe is a characteristic
element of some linguistic label.

Any linguistic label LP (x) ∈ LP can be given in the form
of an ordered tuple of positive linguistic values, for p ∈ P :

LP (x) =
(
V̂p1 , V̂p2 , . . . , V̂p|P |

)
. (10)

By aggregating the membership degrees of positive linguis-
tic values for all attributes p ∈ P , the resulting membership
degree of x in the linguistic label LP (x) can be determined:

µLP (x)(x) = aggr
(
µV̂p1

(x), µV̂p2
(x), . . . , µV̂p|P |

(x)
)
. (11)

A suitable aggregation operator aggr can be based on a
distance measure between the element x ∈ U and an ideal
element (prototype), which corresponds to the linguistic label
LP (x). Depending on the metric selected for expressing the
distance, we can apply different operators, such as min or
ave (arithmetic mean).

By calculating the membership degree in a linguistic label
LP (x) for all x ∈ U , we get a fuzzy similarity class L̃P (x)

L̃P (x) = {µLP (x)(x1)/x1, . . . , µLP (x)(xN )/xN}. (12)

In analysis of an information system given in the form of
a decision table, two families of linguistic labels ought to be
generated: LC for the condition attributes C, and LD, for the
decision attributes D, respectively.

Linguistic labels can be also used to distinguish selected
paths in a flow graph which represents a fuzzy information
system [23], [24].

Although, the full example will be presented and discussed
in Section IV, we want to demonstrate in advance the use of
selected concepts in calculations.

A. Illustrative Example

We consider a fuzzy decision system given in Table I. Pos-
itive linguistic values of all attributes, found for the similarity
threshold β equal to 0.55, were bolded.

The element x1 corresponds to a linguistic label LC(x1) =
(C12, C23, C33), obtained with respect to the condition at-
tributes: c1, c2, and c3. For x5, and x10, we get the same
linguistic labels: LC(x1) = LC(x5) = LC(x10). So, the first
linguistic label LC1 = (C12, C23, C33) is connected with the
set XLC

1
= {x1, x5, x10} of its characteristic elements.

Using the aggregation operator min in (11), the membership
degree in LC1 can be calculated for every x ∈ U , e.g.:

µLC
1

(x1) = min(0.80, 0.75, 0.90) = 0.75,

µLC
1

(x2) = min(0.10, 0.35, 0.15) = 0.10,

µLC
1

(x5) = min(0.75, 0.80, 1.00) = 0.75,

µLC
1

(x10) = min(0.90, 0.75, 0.70) = 0.70.

Finally, we get the fuzzy similarity class L̃C1



L̃C1 = { 0.75/x1, 0.10/x2, 0.00/x3, 0.00/x4, 0.75/x5,
0.00/x6, 0.00/x7, 0.00/x8, 0.00/x9, 0.70/x10}.

III. PARAMETERIZED APPROXIMATION OF CRISP AND
FUZZY SETS

The basic procedure of the rough set theory consists in
finding classes of elements of a finite universe which cannot be
discerned with respect to a subset of attributes. In the standard
(crisp) rough set approach proposed by Pawlak [25], the
attributes of elements can only have crisp values. By checking
relationship between the classes of indiscernible elements, we
can discover inconsistency in the decision table and determine
redundant attributes.

Formally, the classes of indiscernible elements are produced
by an indiscernibility (equivalence) relation R ⊆ U ×U . Any
crisp subset of an universe U can be described with the help
of the obtained indiscernibility classes.

Having granules of information in the form of indiscernibil-
ity classes, we are able to classify the elements of any subset
A of the universe U . This is done by distinguishing between
the full accordance and partial accordance of indiscernibility
classes with the considered subset A. In consequence, we have
two variants of approximation of the subset A.

Lower approximation R(A), and upper approximation R(A)
of a set A ∈ U are defined [25] as:

R(A) = {x ∈ U : [x]R ⊆ A} , (13)

R(A) = {x ∈ U : [x]R ∩A 6= ∅} , (14)

where [x]R denotes an indiscernibility class that contains the
element x ∈ U .

In definitions (13), and (14) two different operations: set
inclusion and intersection are applied. However, we proposed
[26] alternative definitions of crisp rough approximations
which turned out to be better suited for introducing a gen-
eralized unified form of approximations in the framework of
fuzzy rough sets.

For an indiscernibility relation R, lower approximation
R(A), and upper approximation R(A) of a crisp set A are
defined [26] as follows

R(A) = {x ∈ U : ∀S ⊆ [x]R ∧ S 6= ∅ , S ⊆ A} , (15)

R(A) = {x ∈ U : ∃S ⊆ [x]R ∧ S 6= ∅ , S ⊆ A} . (16)

In a similar fashion, we can also base the definitions on
the notion of membership in a set. Given an indiscernibility
relation R, the lower approximation R(A) and upper approx-
imation R(A) of a crisp set A are defined [26] as follows

R(A) = {x ∈ U : ∀ y ∈ [x]R , y ∈ A} , (17)

R(A) = {x ∈ U : ∃ y ∈ [x]R , y ∈ A} . (18)

We either require membership of all elements, or accept
membership of even a single element, in the case of the lower
(17), and the upper (18) approximations, respectively.

Hence, the formulae (15), and (16), as well (17), and
(18), differ only in the used quantifier, which highlights two

ideal cases of approximation, generated by the indiscernibility
relation R.

The definitions of crisp set approximations in the form given
above are important for developing a consistent fuzzy rough
set model. This is because there are usually several ways of
performing an operation on fuzzy sets. Therefore, applying a
single fuzzy connective instead of two different is crucial for
creating a uniform variable precision fuzzy rough set model.

Discussion of the uniform parametric approximation of sets
should be started with analysis of the case of crisp sets and
relations. To this aim, we recall the idea of the variable
precision rough set model (VPRS) proposed by Ziarko [10].
We express it [27], basing on the notion of inclusion degree
INCL(A,B) of a nonempty crisp set A in a crisp set B

INCL(A,B) =
card(A ∩B)

card(A)
. (19)

In the following, we refer to an extended VPRS model [9]
with asymmetric bounds l and u for an admissible inclusion
error. The lower limit l and the upper limit u satisfy the
following requirement:

0 ≤ l < u ≤ 1 . (20)

By applying the limits l and u limits, we express the u-lower
and l-upper approximation of any subset A of the universe U
by means of the indiscernibility relation R.

The u-lower approximation of A by R is a set defined as
follows

Ru(A) = {x ∈ U : INCL([x]R, A) ≥ u} , (21)

and the l-upper approximation of A by R is a set

Rl(A) = {x ∈ U : INCL([x]R, A) > l} . (22)

Definitions (21) and (22) are expressed using the same
notion of inclusion degree. They correspond to definitions (15),
and (16), which can be perceived as special cases.

The uniform parametric variable precision crisp and fuzzy
rough set models should be based only on the degree of
set inclusion as the fundamental notion. In the generalized
approach, the notion of rough inclusion function, introduced
in [28], proved to be useful. It is defined on the Cartesian
product of the powersets P(U) of the universe U

ν : P(U)× P(U)→ [0, 1] . (23)

It is assumed that the first parameter represents a nonempty
set. Furthermore, the rough inclusion function should be
monotonic with respect to the second parameter

ν(X,Y ) ≤ ν(X,Z) for any Y ⊆ Z, where X,Y, Z ⊆ U.

The inclusion degree (19) satisfies the requirements to be a
rough inclusion function (23).

Now, we define lower and upper approximations of a crisp
set A, by applying the rough inclusion function ν, as follows

R(A) = {x ∈ U : ν([x]R, A) = 1} , (24)

R(A) = {x ∈ U : ν([x]R, A) > 0} . (25)



Finally, we abandon the standard interpretation of the classic
rough set model by introducing a parameterized unified form
of approximation of crisp sets [27].

Given an indiscernibility relation R, the ε-approximation
Rε(A) of a crisp set A is defined as follows

Rε(A) = {x ∈ U : ν([x]R, A) ≥ ε} , (26)

where ε ∈ (0, 1].
The ε-approximation Rε can be used for expressing every

approximation, according to the following properties:

(W1) Rε(A) = R(A) for ε = 1 ,

(W2) Rε(A) = R(A) for ε = 0+ ,

(W3) Rε(A) = Ru(A) for ε = u ,

(W4) Rε(A) = Rl(A) for ε = l+ .

In a practical applications, several values of the parameter
ε can be selected in repeated calculation of ε-approximation.
Let us consider a series of n ε-approximations of a crisp set A.
Owing to monotonicity of the inclusion function, the following
property is satisfied: Rε1(A) ⊆ Rε2(A) ⊆ . . . ⊆ Rεn(A) for
ε1 ≥ ε2 ≥ . . . ≥ εn.

With the aim of creating a unified approach to parameterized
approximation of fuzzy sets, we need to generalize the single
notion of crisp ε-approximation. In this way, we can obtain a
variable precision fuzzy rough set model in a consistent form.

First, we recall the definition of fuzzy rough set, proposed
by Dubois and Prade [1]. For a given fuzzy set A and a
fuzzy partition Φ = {F1, F2, . . . , Fn} on the universe U , the
membership functions of the lower and upper approximations
of A by Φ are defined as follows [5]

µΦ(A)(Fi) = inf
x∈U

I(µFi(x), µA(x)) , (27)

µΦ(A)(Fi) = sup
x∈U

T(µFi(x), µA(x)) , (28)

where T and I denote a T-norm operator and an implicator,
respectively. The pair (ΦF,ΦF ) is called a fuzzy rough set.

Fundamental issue in the conception of variable precision
fuzzy rough set model is the way of determining the degree
of inclusion of one fuzzy set in another fuzzy set. There
are different measures of fuzzy set inclusion (see, e.g., [11],
[29]). The crucial point of our approach consists in describing
inclusion of sets with the help of a fuzzy set rather than a
single number. To this end, we introduced [30] a notion of
a fuzzy inclusion set, denoted here by INCL(A,B), which
expresses the inclusion of a fuzzy set A in a fuzzy set B.
The set INCL(A,B) is determined with respect to elements
of the set A. Such a notion of fuzzy inclusion allows to express
precisely how one fuzzy set is included in another fuzzy set.

Implication-based inclusion set INCL(A,B) of a nonempty
fuzzy set A in a fuzzy set B is defined as follows

µINCL(A,B)(x) =

{
I(µA(x), µB(x)) if µA(x) > 0 ,
0 otherwise.

(29)

Next, we need a counterpart of the function (23) in the form
of a fuzzy rough inclusion function defined on the Cartesian
product of the families of all fuzzy subsets of F(U) in the
domain of the universe U .

να : F(U)× F(U)→ [0, 1] . (30)

The value να(A,B) should express how many elements of
the nonempty fuzzy set A belong, at least to the degree α, to
the fuzzy set B.

By applying the notion of α-cut of a fuzzy set, and general-
izing the measure of inclusion degree (19), we proposed [27]
the following form of the fuzzy rough α-inclusion function
να(A,B) of any nonempty fuzzy set A in a fuzzy set B,
which is defined for any α ∈ (0, 1]

να(A,B) =
power(A ∩ INCL(A,B)α)

power(A)
, (31)

It can be proven [27] that the implication-based fuzzy rough
inclusion function να is monotonic with respect to the second
parameter, for any α ∈ (0, 1]

να(X,Y ) ≤ να(X,Z) for any Y ⊆ Z,
where X,Y, Z ⊆ F(U) .

It is easy to check that the rough inclusion degree used
in formulae (21) and (22) is a special case of the fuzzy
rough inclusion function (31). For any nonempty crisp set A,
any crisp set B, and for α ∈ (0, 1], the implication-based
inclusion function να(A,B) is equal to the inclusion degree
INCL(A,B).

Relaxation of strong inclusion requirement in the case of
fuzzy rough approximations is a generalization of the idea
given by Ziarko for crisp rough sets. It consists in ignoring
the influence of selected elements of the approximating fuzzy
similarity classes, depending on the value of fuzzy rough
inclusion function. In consequence, membership degree of the
approximating fuzzy similarity class in the approximated fuzzy
set will be determined taking into account only part of the
elements. Hence, we get a resulting membership degree [27]
that can be expressed formally with the help of a function
called res. It is defined on the Cartesian product P(U)×F(U),
where P(U) denotes the powerset of the universe U , and F(U)
the family of all fuzzy subsets of the universe U , respectively

res : P(U)× F(U)→ [0, 1] . (32)

The function res must satisfy the following requirements:

res(∅, Y ) = 0 ,
res(X,Y ) ∈ {0, 1}, if Y is a crisp set ,
res(X,Y ) ≤ res(X,Z) for any Y ⊆ Z ,
where X ∈ P(U), and Y, Z ∈ F(U) .

Value of the function res(X,Y ) is calculated for a crisp set
X and a fuzzy set Y . It expresses the resulting membership
degree in the set Y , taking into account not all elements of
the universe U , but only the elements of the set X .



If we assume the limit-based approach of Dubois and Prade,
then the function res should have the following form:

res(X,Y ) = inf
x∈X

µY (x) . (33)

However, referring only to a single value of membership
degree is not always acceptable, e.g., in the case of large
information systems. In general, we should admit of differ-
ent variants of the function res, in which many values of
membership degree are used in calculation. We follow this
assumption in definition of ε-fuzzy rough approximation of a
fuzzy set [27].

For ε ∈ (0, 1], the ε-approximation Φε(A) of a fuzzy set A,
by a fuzzy partition Φ = {F1, F2, . . . , Fn}, is a fuzzy set on
the domain Φ with membership function expressed as

µΦε(A)(Fi) = res(Sε(Fi, A), INCL(Fi, A)) , (34)

where

Sε(Fi, A) = support(Fi ∩ INCL(Fi, A)αε
) ,

αε = sup{α ∈ [0, 1] : να(Fi, A) ≥ ε} .

Membership degree µΦε(A)(Fi) is calculated by taking into
account selected elements of the approximating class Fi which
are included in A at least to the degree αε. Selection of
elements is done with the help of the crisp set Sε(Fi, A),
being support of the intersection of Fi with the α-cut of
INCL(Fi, A) (for any fuzzy set F , support(F ) is a crisp
subset of the universe: support(F ) = {x : µF (xi) > 0}).
The resulting membership µΦε(A)(Fi) is obtained using only
the elements from Sε(Fi, A) instead of the entire class Fi.

If we assume the limit-based definition (33) of the function
res, then the the ε-approximation (34) has the following
form:

µΦε(A)(Fi) = sup{α ∈ [0, 1] : να(Fi, A) ≥ ε} . (35)

Due to a single definition of fuzzy rough approximation,
we can avoid problem in interpretation of results that can
be caused by applying different fuzzy connectives as in the
standard fuzzy rough set approach. Moreover, calculation
of variable precision fuzzy rough ε-approximation can be
simplified, when fuzzy partition Φ = {F1, F2, . . . , Fn} is
obtained as a family of similarity classes corresponding to
linguistic labels discussed in Section II.

IV. EXAMPLE

A. Case I

To illustrate the details of the hybrid labeled variable
precision fuzzy rough set approach, we present analysis of a
small fuzzy information system given in Table I. The universe
U contains ten elements, which are characterized by three
fuzzy condition attributes c1, c2, c3, and one decision attribute
d1. All the fuzzy attributes have three linguistic values.

We assume the required similarity level β to be equal to
0.55. Positive linguistic values of the condition and decision
attributes are marked in Table I.

Four linguistic labels LC1 , LC2 , LC3 , and LC4 with respect to
the condition attributes C can be found. The corresponding
fuzzy similarity classes are determined by aggregating mem-
bership degrees of positive linguistic values for all attributes
C. We apply min as the operator aggr in (11).

LC1 = (C12, C23, C33),

L̃C1 = { 0.75/x1, 0.10/x2, 0.00/x3, 0.00/x4, 0.75/x5,
0.00/x6, 0.00/x7, 0.00/x8, 0.00/x9, 0.70/x10}.

LC2 = (C13, C22, C32),

L̃C2 = { 0.00/x1, 0.65/x2, 0.00/x3, 0.00/x4, 0.00/x5,
0.80/x6, 0.00/x7, 0.00/x8, 0.00/x9, 0.10/x10}.

LC3 = (C11, C21, C31),

L̃C3 = { 0.00/x1, 0.00/x2, 0.75/x3, 0.65/x4, 0.00/x5,
0.00/x6, 0.90/x7, 0.75/x8, 0.00/x9, 0.00/x10}.

LC4 = (C13, C21, C33),

L̃C4 = { 0.00/x1, 0.00/x2, 0.00/x3, 0.00/x4, 0.00/x5,
0.00/x6, 0.00/x7, 0.00/x8, 0.85/x9, 0.00/x10}.

For the decision attribute d1, three linguistic labels LD1 , LD2 ,
and LD3 are obtained.

LD1 = (D11),

L̃D1 = { 0.00/x1, 0.00/x2, 0.90/x3, 0.40/x4, 0.00/x5,
0.00/x6, 1.00/x7, 0.85/x8, 0.00/x9, 0.00/x10}.

LD2 = (D12),

L̃D2 = { 0.15/x1, 0.90/x2, 0.10/x3, 0.60/x4, 0.10/x5,
0.95/x6, 0.00/x7, 0.15/x8, 0.00/x9, 0.45/x10}.

LD3 = (D13),

L̃D3 = { 0.85/x1, 0.10/x2, 0.00/x3, 0.00/x4, 0.90/x5,
0.05/x6, 0.00/x7, 0.00/x8, 1.00/x9, 0.55/x10}.

In the next stage, we determine ε-approximations of the
fuzzy similarity classes L̃D1 , L̃D2 , and L̃D3 by the family of
fuzzy similarity classes obtained with respect to the condition
attributes C. We apply the R-implicator of Łukasiewicz:
I(x, y) = min(1, 1−x+ y), and assume the limit-based form
(33) of the function res.

In order to get a deeper insight into the process of deter-
mining ε-approximation, let us inspect the inclusion degree
of single similarity classes L̃C in particular similarity classes
L̃D for five different values of the parameter ε from the set
{1.0, 0.9, 0.8, 0.7, 0.65}.

We take a closer look at calculating the inclusion of the sim-
ilarity class L̃C1 in the similarity class L̃D3 . According to (29),
we get the implication-based inclusion set INCL(L̃C1 , L̃

D
3 ) =

{1.00/x1, 1.00/x2, 0.00/x3, 0.00/x4, 1.00/x5, 0.00/x6,
0.00/x7, 0.00/x8, 0.00/x9, 0.85/x10}.
For ε equal to 1.0, there is no relaxation of strong in-

clusion requirement. By seeking for the biggest α ∈ [0, 1],



TABLE I
DECISION TABLE.

c1 c2 c3 d1

C11 C12 C13 C21 C22 C23 C31 C32 C33 D11 D12 D13

x1 0.20 0.8 0.00 0.00 0.25 0.75 0.00 0.10 0.90 0.00 0.15 0.85
x2 0.00 0.1 0.90 0.00 0.65 0.35 0.00 0.85 0.15 0.00 0.90 0.10
x3 0.75 0.25 0.00 0.75 0.25 0.00 0.80 0.20 0.00 0.90 0.10 0.00
x4 0.65 0.35 0.00 0.65 0.35 0.00 0.65 0.35 0.00 0.40 0.60 0.00
x5 0.25 0.75 0.00 0.00 0.20 0.80 0.00 0.00 1.00 0.00 0.10 0.90
x6 0.00 0.00 1.00 0.00 0.80 0.20 0.00 0.90 0.10 0.00 0.95 0.05
x7 1.00 0.00 0.00 0.90 0.10 0.00 0.90 0.10 0.00 1.00 0.00 0.00
x8 0.90 0.10 0.00 0.90 0.10 0.00 0.75 0.25 0.00 0.85 0.15 0.00
x9 0.00 0.10 0.90 1.00 0.00 0.00 0.00 0.15 0.85 0.00 0.00 1.00
x10 0.00 0.90 0.10 0.00 0.25 0.75 0.00 0.30 0.70 0.00 0.45 0.55

for which να(L̃C1 , L̃
D
3 ) ≥ 1.0, we obtain αε = 0.85, and

INCL(L̃C1 , L̃
D
3 )0.85 = {x1, x2, x5, x10}. When we use the

function res defined by (33), the membership degree of L̃C1
in L̃D3 is obtained as µLD

3
(LC1 ) = 0.85.

If ε equal to 0.65 is used, then we get αε = 1.00, and
INCL(L̃C1 , L̃

D
3 )1.00 = {x1, x2, x5}.

The fuzzy rough α-inclusion function (31) can be deter-
mined as ν1.00(L̃C1 , L̃

D
3 ) =

power({0.75/x1,0.10/x2,0.75/x5})
power({0.75/x1,0.10/x2,0.75/x5,0.70/x10}) = 1.60

2.30 = 0.69.

Summarizing, the similarity class L̃C1 is included in the
class L̃D3 with the membership degree equal to 0.85, when
ε is equal to 1.0, 0.9, 0.8, and 0.7. For ε equal to 0.65, the
membership degree increases to 1, due to the relaxation of
inclusion requirement.

We get the membership degree equal to 1 for all values of
the ε parameter, when we check the inclusion of L̃C4 in L̃D3 ,
and L̃C2 in L̃D2 .

The similarity class L̃C3 is included in the class L̃D1 with
the membership degree equal to 0.75, for ε equal to 1.0, 0.9,
and 0.8. The membership degree increases to 1.0 for ε equal
to 0.7, and 0.65.

As we see, due to a tolerant fuzzy rough ε-approximation,
additional two certain fuzzy decision rules can be obtained:
L̃C1 → L̃D3 , and L̃C3 → L̃D1 .

Superiority of our variable precision fuzzy rough model over
the standard approach would become even more visible in
the case of large information systems. Furthermore, with the
help of fuzzy linguistic labels, relative small fuzzy partitions
of the universe can be generated. If we applied a standard
fuzzy similarity relation, we would obtain 10 fuzzy similarity
classes with respect to condition, and 10 fuzzy similarity
classes with respect to decision attributes. Both determination
of approximations and interpretation of results would become
problematic in such a case, as we have to determine 100 fuzzy
inclusion sets. In contrast to this, there are only 12 fuzzy
inclusion sets to be determined, when the labeled fuzzy rough
set approach is applied.

B. Case II

In order to make the influence of relaxation of inclusion
more evident, we also provide a more complex example of
approximation in the case of larger similarity classes.

Assume that the similarity class L̃C was generated with
respect to condition attributes:

L̃C = { 0.7/x1, 0.8/x2, 0.1/x3, 0.0/x4, 0.0/x5,
0.8/x6, 0.0/x7, 0.2/x8, 0.4/x9, 0.75/x10,
0.7/x11, 0.9/x12, 0.8/x13, 0.3/x14, 0.0/x15,
0.3/x16, 0.9/x17, 0.0/x18, 0.2/x19, 0.9/x20},

and the similarity class L̃D with respect to decision attributes:

L̃D = { 0.8/x1, 0.9/x2, 0.2/x3, 0.0/x4, 1.0/x5,
0.9/x6, 0.1/x7, 0.1/x8, 0.6/x9, 0.9/x10,
0.9/x11, 0.1/x12, 0.9/x13, 0.1/x14, 0.1/x15,
0.5/x16, 1.0/x17, 0.0/x18, 0.2/x19, 1.0/x20}.

We get the fuzzy inclusion set INCL(L̃C , L̃D):

INCL(L̃C , L̃D) =
{ 1.0/x1, 1.0/x2, 1.0/x3, 0.0/x4, 0.0/x5,

1.0/x6, 0.0/x7, 0.9/x8, 1.0/x9, 1.0/x10,
1.0/x11, 0.2/x12, 1.0/x13, 0.8/x14, 0.0/x15,
1.0/x16, 1.0/x17, 0.0/x18, 1.0/x19, 1.0/x20}.

By repeating the same steps as in Example IV-A, we obtain
the following results:

µLD (LC) = 0.2 for ε = 1.00,
µLD (LC) = 0.8 for ε = 0.89,
µLD (LC) = 0.9 for ε = 0.86,
µLD (LC) = 1.0 for ε = 0.84.

Observe that the decision rule L̃C → L̃D cannot be
accepted, if we require full inclusion by setting ε to 1.00.
A slight relaxation of inclusion requirement, by decreasing
ε to 0.84, makes L̃C → L̃D a certain decision rule. This
can be easy explained, because even a few “bad” elements of
the approximating similarity class can deteriorate the resulting
inclusion degree. For a larger universe, this phenomenon has
a more negative impact on results. That is why the presented
variable precision rough set approach is so important.



V. CONCLUSIONS

The concept of fuzzy linguistic labels helps to reduce
computational complexity of the standard fuzzy rough set
algorithms. By applying a similarity threshold β, families of
fuzzy similarity classes can be obtained in a straightforward
manner. Every similarity class is connected with a subset of its
characteristic elements, which have the same fuzzy linguistic
label. A hybrid approach that combines the idea of fuzzy
linguistic labels with the concept of unified variable precision
approximation of sets turns out to be an effective tool in
practical applications, especially in the case of large fuzzy
information systems. Its most important advantage over an
ordinary noise tolerant fuzzy rough set model is the ability
to easily discover a system of fuzzy decision rules. Moreover,
it is possible to get more insight into the decision process, by
taking into account its most significant features only.
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