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Abstract—This work aims to introduce a methodology for
resting-state brain activities detection by a consumer-grade EEG.
From one hand, an adaptive noise reduction methodology based
on non-linear Principal Component Analysis Neural Network is
adopted. On the other hand, a Neuro-Fuzzy model (i.e., Fuzzy
Relational Neural Network) is considered for brain activities
detection since a combination of neural networks and fuzzy
technology enhances the performance of control, decision-making
and data analysis systems. Experiments are made on a corpus
containing the activation strength of the fourteen electrodes of
an EEG headset for eye state detection. We proved that by using
the noised signals, the proposed methodology permits to obtain
a high rate of classification accuracy.

Index Terms—Neuro-Fuzzy Models, Non-Linear Principal
Component Analysis, Brain-Computer Interface, Signal Denois-
ing, Signal Detection

I. INTRODUCTION

Electroencephalography (EEG) is the most studied non-
invasive Brain Computer Interface (BCI) that permits a direct
communication between a brain and an external device [1]. In
Computer Science and Bioengineering, BCI is mainly used for
supporting people with handicap as in the cases of acquisition
and interpretation of EEG/Neural data can control the moves
of a wheelchair, or replay some vocal synthesis, or also control
a Home Automation System [2]. Nowadays, users can control
EEG rythm changes through meditation, can do image classifi-
cation based on EEG response to visual pulse, or can monitor
their focus level. Recent investigations have been devoted to
neural interface in gaming [3], for tracking emotions [4] and
for military scenarios [5]. In [6] a self-adaptive autonomous
online learning through a general type-2 fuzzy system for the
motor imagery (MI) is introduced. The model is based on a
decoding of a BCI and navigation of a bipedal humanoid robot
in a real experiment, using electroencephalography (EEG)
brain recordings. Moreover in [7] a generalized EEG-based
Neural Fuzzy system to predict driver’s drowsiness was pro-
posed. In particular, the authors introduced a generalized EEG-
based Self-organizing Neural Fuzzy system to monitor and
predict the driver’s drowsy state with the occipital area. In
[8], the authors investigate how the eye state (open or closed)
can be predicted by EEG. They tested 42 different Machine
Learning algorithms on their performance to predict the eye
state after training with a labelled corpus. The best-performing

classifier, KStar, produced a classification error rate of only
2.7% which is a 94% relative reduction over the majority
vote of 44.9% classification error. In this paper we introduce
a classification methodology for EEG signals recorded by a
commercial Emotiv Epoc headset 1. The approach is based
on an adaptive noise reduction methodology and a Neuro-
Fuzzy model for detection. As in [8] we collected a corpus
containing the activation strength of the fourteen electrodes of
the EEG headset for eye state detection. The experimental
results highlight that the methodology permits to obtain a
high rate of accuracy in classification. The paper is organized
as follows. In Section II, some concepts about the EEG
headset are introduced. In Section III, we describe the noise
reduction technique, in Section IV the Fuzzy Relational Neural
Network model and, in Section V some experimental results
are discussed. Finally, conclusions and future remarks are
outlined in Section VI.

II. EMOTIV EPOC+

Nowadays, Human–Computer Interaction (HCI) devices are
used for interfacing with computers for different purposes
as data entry, control or communication. An EEG has direct
correlations with user intentions, thereby enabling in a simple
way a direct Brain-Computer Interface (BCI) communication
[9]. The Emotiv EPOC+ is a personal EEG device that allows
for detecting emotions and face expressions and can be used
for contextual brain research and BCI applications. The device
permits to acquire high-quality raw EEG data captured by
electrodes and the communication take place via bluetooth
4.0. The Emotiv EPOC+ has 14 channel where every single
channel read the potential difference below the skin. The
location of the electrodes is shown in the Figure 1. Emotiv
EPOC+ is a consumer-grade EEG device and it is ease of use
for simple tasks as data entry, control or communication.

III. ADAPTIVE NOISE REDUCTION

In digital signal processing, one of the main pre-processing
steps is the Noise Reduction (NR). NR can improve the quality
of the signals and the performance in successive steps as in
the pattern classification. Most of the approaches known in

1http://www.emotiv.com
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Fig. 1. Emotiv EPOC+ channels location.

literature are based on filtering (e.g., Wiener, Kalman filter),
that perform appropriately when the spectral properties of the
noise free signals and the noise are known. Improvements
can be obtained adopting an adaptive filtering. In this case,
by using a learning methodology, the noise reduction can be
obtained directly on the signals without any information on
the behaviour and the spectral properties of the signals. In this
work, the noise reduction is obtained by an adaptive approach
based on a Neural Network (NN). In particular we adopt a sin-
gle layer feedforward NN based an Hebbian type learning rule
for accomplishing a non-linear Principal Component Analysis
(PCA) [10], [11] . Noise reduction is obtained after a compres-
sion and decompression (reconstruction) of the raw data. The
adaptive approach is based on the robust generalization of the
variance maximisation in classical PCA, where the objective
function f(t) is assumed to be a valid cost function, such as
ln cosh(t). The general algorithm is described in Figure 1. In
particular, the input pattern is obtained collecting q samples
xn = [x(n), x(n+ 1), . . . ., x(n+ (q − 1))] of the source
noise signal x(n) = [x(1), . . . , x(K)] with n = 1, . . . ,K and
q < K. The weight matrix W is adopted for the compression
and decompression of the signal.

IV. FUZZY RELATIONAL NEURAL NETWORK

Neuro-Fuzzy systems integrates both Neural Networks and
Fuzzy Logic principles, capturing the benefits of both in a
single framework. In general, its inference system corresponds
to a set of fuzzy IF–THEN rules that have learning capability
in classification and approximate nonlinear functions [12]. In
this work we adopt the Fuzzy Relational NN (FRNN) model
for its classification properties [13]. FRNN is a neuro-fuzzy
model based on fuzzy relational connections and in Figure 2
the overall architecture is shown. In FRNN a fuzzy system
is designed by Fuzzy Relations (Ri

rj). It is composed by 3
different hidden layers containing the fuzzification (i.e. fuzzy
sets Ai

r) and defuzzification phases. Considering n inputs

Algorithm 1 Adaptive Noise Reduction
1: Initialize: number of output neurons N , compres-

sion/decompression matrix W = [w1, . . . ,wN ] with
small random values with Gaussian distribution, early
stopping threshold ε, learning rate µ (default = 0.0001)
and α parameter (default = 1).
Reset pattern counter k = 1.

2: Input the m− th pattern

xm = [x(m), x(m+ 1), . . . ., x(m+ (M − 1))]

where M is the number of input components .
3: Calculate the output for each neuron yi = wT

i xm. ∀i =
1, ...,M

4: Apply learning rule

wi(k + 1) = wi(k) + µkg(yi(k))ei(k)

ei(k) = xi −
I(i)∑
j=1

yj(k)wj(k)

where in the hierarchical case we have I(i) = i. In the
symmetric case I(i) = N , the error vector ei(k) becomes
the same ei for all the neurons.

5: UNTIL the number of pattern is not empty GO TO 2
6: Convergence test:

IF CT = 1
2

∑N
i=1

∑N
j=1(wij − wold

ij )2 < ε
THEN GO TO 8

7: k = k + 1; GO TO 2.
8: END

which are discretized into mi input levels by the fuzzifier
and k outputs which are obtained by the defuzzification of
M discretized levels and by using different t-norms and t-
conorms, the output of the model is [13]

fk(x) =

∑M
j=1 y

j
k

[
Tn

i=1

[
Smi
r=1(µAi

r
(xi)tµRi

rj
)sθiRj

]]
∑M

j=1

[
Tn

i=1

[
Smi
r=1(µAi

r
(xi)tµRi

rj
)sθiRj

]] (1)

where f : U ⊂ Rn → R, x = (x1, x2, . . . , xn) ∈ U , s is
the number of fuzzy rules, n the number of relation matrices,
mi is the number of input membership functions of the i-th
relation, µAi

r
is the membership function on the input space,

yjk is the apex on the output space and µRi
rj

is the weight from
the r-th input to j-th output of the j-th relation matrix [13]. For
tuning the weights, as described in [13], the learning algorithm
is based on both Back-Propagation (BP) and Pseudoinverse
matrix strategies.

V. EXPERIMENTAL RESULTS

In this Section we present some experimental results for
classifying closed and opened eyes. A tester was in a silent
room and unconscious of experiment begin time and he had
to switch between two main eyes states: closed and opened
eyes. Closed eye state has been considered when eyes was
completely closed and opened in all other ways. The eye state



Fig. 2. Fuzzy Relational Neural Network architecture.

Fig. 3. AF3 EEG signal with eye state labelling.

was manually annotated by analyzing a video recordings the
tester activities. Data are obtained by considering a sampling
rate of 128 Hz for 117 seconds. The bandwidth is 0.16–43Hz
with digital notch filters at 50 Hz and 60 Hz. Data are collected
labeling the eye state (0 eye open and 1 eye closed) of the 14
values of the electrodes (channels: AF3, F7, F3, FC5, T7, P7,
O1, O2, P8, T8, FC6, F4, F8, AF4) for each temporal sample,
in according with the recorded video. In Figure 3 we plot the
AF3 EEG signal with the corresponding eye state labeling (0
or 1). Data are pre-processed eliminating some samples with
high variance 2.

The FRNN model has been applied by using two Gaussian
membership functions for each channel and Lukasiewicz t and
s-norms for AND and OR connectives, respectively. A cross-
validation mechanism, in which training (75%), validation
(15%), and test sets (15%), is used. In Figure 4 we summarize
the results considering both confusion matrices and ROCs
curves. We note that the percentage of perfect classification
for all the data sets is around 86%. Successively, we apply for
each channel the adaptive noise reduction approach described

2Code and data can be downloaded from the Web Page of the Computa-
tional Intelligence & Smart System Lab - http://cisslab.uniparthenope.it

a)

b)

Fig. 4. Data without noise reduction: a) Confusion matrices; b) ROC curves.

in Algorithm 1. An example of noise reduction for the AF4
channel is plotted in Figure 5. In the latter case, applying
FRNN, we obtain the confusion matrices and ROCs curves of
Figure 6. In this case we observe that the percentage of perfect
classification is around 99.6% for all the data sets.

VI. CONCLUSIONS

In this work we introduced a methodology for resting-
state brain activities detection by a consumer-grade EEG.
The methodology is based on both adaptive noise reduction
and Neuro-Fuzzy models. Experiments made on a corpus
containing the activation strength of the fourteen electrodes
of an EEG headset for eye state detection proved that the
proposed methodology permits to obtain an high rate of
classification accuracy. We also stress that for this kind of
signals the adopted adaptive noise reduction methodology can
drastically improve the detection performance. In the next
future, the authors concentrate on the use of the methodology



Fig. 5. Example of noise reduction on EEG signal (AF4 channel).

for different applications as hardware control and medical
decision support (e.g., dyslexia).
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Fig. 6. Data with noise reduction: a) Confusion matrices; b) ROC curves.




