
FDBSCAN-APT: A Fuzzy Density-based Clustering
Algorithm with Automatic Parameter Tuning

Alessio Bechini∗, Martina Criscione∗, Pietro Ducange∗, Francesco Marcelloni∗, Alessandro Renda∗†
∗ Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
† Department of Information Engineering, University of Firenze, Via di S. Marta 3, 50139, Firenze Italy

Email: {alessio.bechini, pietro.ducange, francesco.marcelloni}@unipi.it, martina.c090@gmail.com, alessandro.renda@unifi.it

Abstract—Density-based clustering algorithms represent a con-
venient approach when the number of clusters is not known
in advance and their shapes are arbitrary. Nevertheless, they
are highly sensitive to the input parameter setting, especially
when clusters’ borders are close to each other, or even overlap.
In this paper we propose FDBSCAN-APT, a fuzzy extension
of the DBSCAN algorithm. FDBSCAN-APT is able to discover
clusters with fuzzy overlapping borders and relies on the auto-
matic setting of input parameters thanks to the definition of a
novel heuristic based on the statistical modelling of the density
distribution of objects. An extensive experimental analysis carried
out on synthetic datasets shows that FDBSCAN-APT always
finds reasonable parameter configurations and produces good
clustering results in a variety of challenging scenarios.

Index Terms—Fuzzy Clustering, Density-based Clustering, Au-
tomatic parameter setting

I. INTRODUCTION

Among clustering algorithms, density-based methods are
well suited to produce a partition when the shapes of cluster
are arbitrary and no assumption can be made on the number of
clusters, and\or when the ability to handle noise and outliers is
required. The most popular density-based clustering algorithm
is DBSCAN, which was proposed in [1]. DBSCAN uses a
minimum density level, defined as the minimum number of
objects (MinPts) within a radius (ε), to discover clusters as
areas of high density, separated from one another by areas
of low density [2]. In particular an object x is defined as
a core object when at least MinPts objects lie in its ε-
neighborhood, i.e. at a distance less than or equal to ε from x.
A non-core object y that lies in the ε-neighborhood of a core
object, is defined as a border object. Finally, an object z that
satisfies neither the core condition nor the border condition, is
marked as noise or outlier. The clustering process in DBSCAN
is based on two concepts: density reachability and density-
connectedness. Let x1 and xn be two objects; then, xn is
density reachable from x1 if x1 is a core object and there
exists a chain of core objects such that xi+1 is directly density-
reachable from xi, that is, xi+1 lies within the ε-neighborhood
of xi. Two objects x1 and x2 are density-connected if there
exists a core object x3, such that both x1 and x2 are density

This work was partially supported by the Italian Ministry of Education and
Research (MIUR) in the framework of the CrossLab project (Departments of
Excellence).

reachable from x3. The notion of density connectedness is
used in DBSCAN to find connected dense regions as clusters.

The original DBSCAN algorithm is not able to capture
clusters with overlapping borders [3]. To enhance DBSCAN
with this capability, fuzzy extensions of the algorithm have
been proposed in the last years [3]. A notable example of
fuzzy extension (FuzzyBorder), which represents the starting
point of our work, relaxes the constraint on the neighborhood
size for the definition of fuzzy borders by defining two distance
thresholds: εmin is considered for the evaluation of the core
condition, while εmax determines the maximum distance from
a core object for which a border object can be assigned to
a cluster. The two distance thresholds let us decouple the
identification of core objects and the membership assessment
of border objects and allow us modelling clusters with fuzzy
overlapping borders.

However, as usual in clustering algorithms, DBSCAN and
its extensions require the user to specify a set of input param-
eters that determine the behaviour and affect the outcome of
the algorithms themselves. The importance of the choice of pa-
rameters in a density-based clustering algorithm can be easily
understood by observing the example dataset (square1) shown
in Fig. 1. Four clusters originate from four Gaussian distribu-
tions and their borders slightly overlap. In classical DBSCAN,
a low value of the ε parameter would allow the algorithm to
spot out four clusters, but border objects, characterized by a
lower density, would not likely be included in clusters and
would be labeled as outliers. On the other hand, high values
of the ε parameter would likely result in the improper fusion
of the four clusters into a single cluster. By introducing a
further distance threshold for border objects, namely εmax, the
FuzzyBorder algorithm enhances the original DBSCAN with
the capability of broadening cluster borders without affecting
the core regions. Nevertheless, the choice of the two distance
thresholds remains an open issue. Sometimes, even in the
clustering literature, the parameter choice has been addressed
through the optimization of an external validation measure,
which requires the knowledge of the class labels. Although
this approach may be useful to demonstrate the existence of
an adequate parameter configuration, it becomes unworkable
in real clustering applications, where the availability of labels
cannot be assumed.

Although several heuristics have been proposed for param-

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

Fig. 1. Dataset square1 as a scenario of critical parameter setting.

eter setting, to the best of our knowledge a fully automatic
tuning procedure has not been described in the literature,
and an analysis in the context of fuzzy DBSCAN algorithm
has never been carried out as well. In this work we propose
FDBSCAN-APT, a Fuzzy Density-based Clustering Algorithm
with Automatic Parameter Tuning, an extension of the existing
FuzzyBorder algorithm [3]. In FDBSCAN-APT proper values
of the threshold distance parameters εmin and εmax are
automatically inferred from data through the definition of a
novel heuristic based on the statistical modelling of the density
distribution of objects. To this aim, for each object x we define
a data structure to store the list of objects in a large enough
neighborhood of x, along with their distance from x itself.
Information in such data structures can be promptly exploited
to estimate proper values of εmin and εmax , and to obtain a
final partition with the fuzzy DBSCAN procedure. Notably, the
proposed heuristic can be applied also to the crisp DBSCAN
algorithm to estimate a single parameter ε.

The rest of the paper is organized as follows: Section
II discusses relevant related works. Section III provides the
details of our proposed approach. Section IV describes the
experimental study. Section V shows and discusses the exper-
imental results, while Section VI draws some conclusion.

II. RELATED WORKS

In this section we first recall the most significant contri-
butions related to the issue of parameter setting in density-
based clustering algorithms, and then we describe the main
idea behind FuzzyBorder DBSCAN, an algorithm proposed
in [3], which inspired our approach.

A. The issue of parameter setting in density-based clustering
algorithms

Along with the proposal of the DBSCAN algorithm, authors
in [1] proposed a first heuristic to determine the parameters
ε and MinPts . The heuristic is based on the definition of a
function k -dist that associates each object in the dataset with
the distance from its k -th nearest neighbor. The distribution
of such distances provides information about the density
distribution of the dataset: by plotting distance values after

sorting them in descending order, a user should be able to
identify the index of the first “valley” associated to a distance
threshold εk. This valley theoretically divides noise objects
(high k -dist values) from objects within clusters (low k -dist
values). By setting ε = εk and MinPts = k + 1, the core
condition will be verified for all the objects with a k -dist
value less than or equal to εk. Nevertheless, according to the
authors, the identification of such index could benefit from
an assumption about the percentage of noise objects in the
dataset, but, in general, it requires user interaction, since the
automatic detection of the “valley”, or “elbow”, is difficult.
Furthermore, authors observe that k -dist graphs are somehow
insensitive to the value of k for k ≥ 4: the problem of setting
parameters ε and MinPts can indeed be solved by fixing
MinPts and estimating ε with a visual analysis of the k -dist
graph. To the best of our knowledge, no methods have ever
been proposed to automatically determine a proper value of
the distance threshold parameter from the k -dist graph.

In [4], the authors of DBSCAN delve into the issue of
how to specify k. They state that, for ‘reasonable’ values
of k (e.g. ≤ 10 in 2D space), the respective k -dist graphs
do not significantly differ from each other and the results of
DBSCAN obtained with respective (k, εk) pairs are similar as
well. Indeed the clustering algorithm is deemed rather stable
across the choice of k, provided that it takes into account the
dimensionality of the problem. As a heuristic, they propose to
set k = 2 ∗ dimension − 1, and MinPts = 2 ∗ dimension
accordingly. The same heuristic is recommended in [5], with
the remark that very large or high dimensional datasets, or
datasets characterised by a lot of noise or duplicates may
require higher values of minPts . As it concerns εk, it seems
most appropriate to choose it as low as possible according to
the k -dist graph.

The recently proposed approaches DSets-DBSCAN [6] and
KNN-DBSCAN [7] exploit the information from preliminary
dominant sets clustering and k-nearest neighbors, respectively,
to make DBSCAN parameter-free. The combination of the two
algorithms, however, increases the complexity of the overall
clustering. The AA-DBSCAN approach [8] aims to deal with
multi-density datasets: first, it builds a density layer tree, and
subsequently it finds clusters with an approximate adaptive ε
distance for each layer.

OPTICS (Ordering Points To Identify the Clustering Struc-
ture) [9] overcomes the problem of setting global parameters;
it stems from the observation that density-based clusters are
monotonic with respect to the ε value [2]. OPTICS creates
an ordering of the objects that represents the density-based
clustering structure of the dataset. This ordering is equivalent
to the partitions obtained for a wide range of values of the
distance threshold parameter ε up to a ‘generating distance’
εgen . To reach its goal, OPTICS evaluates two attributes for
each object: the core-distance, i.e. the distance for which the
core condition is satisfied, and the reachability-distance, i.e.
the smallest distance such that it is directly density-reachable
from a core object. Starting from an arbitrary object in the
dataset, the algorithm expands any found cluster by analysing

(and storing) objects in a specific order such that clusters
of higher density are finished first. The order is determined
according to the reachability distance. However, OPTICS does
not explicitly produce a partition of the dataset.

B. Background on FuzzyBorder DBSCAN

The FDBSCAN-APT algorithm stems from the FuzzyBor-
der solution, inheriting from it the capability of detecting clus-
ters with fuzzy borders. The FuzzyBorder algorithm relaxes
the constraint on the distance threshold ε and defines a new
membership function, depicted in Figure 2. The parameters
MinPts , εmin and εmax must be set by the user in the
initialization step.

0 min max

Distance between two objects

0.00

0.25

0.50

0.75

1.00

M
em

be
rs

hi
p

de
gr

ee

Membership function

Fig. 2. The function for the fuzzy membership of an object to the neighbor-
hood of another object.

Let x, y and d(x, y) be a core object, a border object, and the
distance between the two, respectively; the fuzzy membership
of an object y to the neighborhood of x, namely µx(y), is
defined as follows:

µx(y) =


1 if d(x, y) < εmin
εmax−d(x,y)
εmax−εmin

if εmin ≤ d(x, y) ≤ εmax

0 if d(x, y) > εmax

The core-condition in the FuzzyBorder algorithm is consistent
with DBSCAN: only objects within εmin are considered for
the evaluation of the neighborhood cardinality and the deter-
mination of core objects. The cluster membership assessment
of border objects in FuzzyBorder, instead, is different from
DBSCAN: a border object can belong to a cluster even if
it lies at a distance higher than εmin , but lower than εmax ,
from its closest core object. The algorithm allows an object
to belong to the border of multiple clusters (optionally with a
degree lower than 1), thus it yields a data grouping in clusters
possibly with fuzzy overlapping borders.

III. THE PROPOSED ALGORITHM

The pseudocode for FDBSCAN-APT is reported in Algo-
rithms 1, 2, 3, 4 and it is described in the following.

FDBSCAN-APT requires the user to specify the following
parameters: minPts , εgen , and α. Similarly to DBSCAN,
minPts represents the minimum number of objects required
to lie within a threshold distance from an object p to define p
as a core object. Unlike traditional DBSCAN, such threshold
distance is not given as an input parameter, but it is automat-
ically inferred from data. For this purpose, the user is just
required to specify a value for εgen , a generating radius that

Algorithm 1 FDBSCAN-APT(D, εgen , minPts , α)
Given: D - input dataset
Given: εgen - generating radius
Given: minPts - minimum number of objects to define a core
Given: α - coefficient for fuzzy border. Default = 1

1: pList = ∅
2: for p ∈ D do
3: p.neighbors = distanceQuery(p, pList , εgen)
4: for n ∈ p.neighbors do
5: n.neighbors = n.neighbors ∪ {(p, dist(p, n))}
6: pList = pList ∪ {p}
7: (ε̂min ,ε̂max) = parametersEstimation(pList ,minPts, α)
8: Clusters = applyFuzzyDBSCAN(pList , ε̂min , ε̂max ,minPts)
9: return Clusters

Algorithm 2 parametersEstimation(pList , minPts , α)
Given: pList - list of objects
Given: minPts - minimum number of objects to define a core
Given: α - coefficient for fuzzy border. Default = 1

1: kDistList = ∅
2: for p ∈ pList do
3: sort(p.neighbors) by the distance from p
4: p.εcore = distance of minPts-th point far from p
5: kDistList = kDistList ∪ {p.εcore}
6: gmm = GaussianMixtureModel(n components = 2)
7: (µH , σH , wH), (µL, σL, wL) = gmm .fit(kDistList)
8: ε̂min = µH + 2 ∗ σH
9: ε̂max = α ∗ ε̂min ∗ µL

µL−µH
10: return (ε̂min , ε̂max)

defines a neighborhood that easily contains more than minPts
objects for most objects in the dataset. Finally, α is a real
number greater than 1 that can be used to fine-tune the degree
of fuzziness of cluster borders.

The entry point of our procedure is Algorithm 1, in which
instances of the input dataset are read and analyzed sequen-
tially. For each instance p we store the set of neighbors in
pList within εgen (p.neighbors), along with their distance
from p (distanceQuery, line 3), and we add it to the list of
collected objects (pList). Likewise, the neighbors set of each
object n in p.neighbors is updated with a tuple given by the
newly read object p and the distance between p and n.

When all instances have been analyzed, the procedure
parametersEstimation (Algorithm 2) exploits the previously
computed distances (stored in elements of pList) to estimate
proper values of εmin and εmax . Finally, the applyFuzzyDB-
SCAN procedure (Algorithm 3) performs the clustering as in
the FuzzyBorder algorithm [3]. Notably, no further distance
computation is needed, as all the required information is
already available for each object in the relative neighbors
data structure. The core condition for an object p is simply
evaluated by comparing its core-distance (p.εcore) with the
estimated ε̂min (line 5). The set of objects that lie in the ε̂min -
neighborhood of p, which are considered for cluster expansion
(Algorithm 4), and the set of objects that lie at a distance
between ε̂min and ε̂max , considered for the fuzzy border
assessment, are immediately available from neighbors via the
getMinSet and getMinMaxSet procedures, respectively.

Algorithm 3 applyFuzzyDBSCAN(pList , ε̂min , ε̂max ,minPts)
Given: pList - list of objects
Given: ε̂min - radius for identification of core objects
Given: ε̂max - radius for identification of border objects
Given: minPts - minimum number of objects needed to define a

core, as in DBSCAN
1: C = 0
2: Clusters = ∅
3: for p ∈ pList do
4: mark p as visited
5: if p.εcore > ε̂min then
6: label p as outlier
7: else
8: C = nextCluster
9: add p to C as core object

10: Clusters = Clusters ∪ expandCluster(p, getMinSet(p,
ε̂min), C, ε̂min , ε̂max)

11: return Clusters

Algorithm 4 expandCluster(p, pMin, C, ε̂min , ε̂max)
Given: p - object marked as visited, just recognized as core point
Given: pMin - set of objects in the ε̂min -neighborhood of p
Given: C - cluster
Given: ε̂min - radius for identification of core objects
Given: ε̂max - radius for identification of border objects

1: borders = getMinMaxSet(p, ε̂min , ε̂max)
2: for s ∈ pMin do
3: if s is not visited then
4: mark s as visited
5: if s.εcore ≤ ε̂min then
6: add s to C as core
7: pMin = pMin ∪ getMinSet(s, ε̂min)
8: borders = borders ∪ getMinMaxSet(s, ε̂min , ε̂max)
9: else

10: borders = borders ∪ {s}
11: borders = borders \ C
12: for b ∈ borders do
13: add b to C as border object with membership µbc where c is

the nearest core of C
14: return C

A. Parameter Estimation: Gaussian Mixture Model

The parameters estimation procedure aims to determine
proper values of εmin and εmax parameters, and it is described
in Algorithm 2. For each object p we evaluate its core distance
p.εcore (line 4), which is defined as the distance which makes
p a core object. Given k = MinPts − 1, it is evaluated as
the distance from its k-th nearest neighbor. Note that such a
distance may be undefined for objects with less than minPts
objects in its εgen -neighborhood: in this case, we simply do
not account for their contribution to the estimation of ε̂min

and ε̂max . As noted since the proposal of DBSCAN [1],
the knowledge of all core distances (kept in kDistList in
Algorithm 2) can be particularly helpful in identifying a proper
value for the distance threshold parameter.

The idea behind our approach for automatic parameter
setting stems from the analysis of the unidimensional array
of all core distances, and relies on the following assumptions:

• the density distribution of the dataset is assumed to be
unimodal, i.e. all clusters have roughly the same density
of objects.

• values in kDistList can be modeled as a mixture of
two unidimensional Gaussian components: the first one
models the contribution of cluster objects within a high
density region (roughly speaking, core objects); the sec-
ond accounts for the contribution of border objects, and
is affected by the presence of noise and outliers.

In order to visually convey the idea, the k -dist graph for
dataset square1 is reported in Fig. 3. The histogram of the
kDistList values evaluated on 100 bins is plotted on the right,
sharing the axis of k-dist values with the k -dist graph.

Fig. 3. The k -dist graph for square1 dataset. On the right, the histogram of
the kDistList values is reported, and the Gaussian Mixture Model fitting is
superimposed. Best viewed in color.

The GaussianMixtureModel-based algorithm (lines 6 and 7)
evaluates the parameters of the two Gaussian components that
best fit the kDistList array with the expectation-maximization
algorithm. Each component is fully described by three param-
eters, µ, σ and w, which represent the mean, the standard
deviation and the weight of the component, respectively. In
Fig. 3 the Gaussian fitting is superimposed to the histogram:
the high density component (µH , σH and wH) is displayed
with a solid red line, and the low density component (µL, σL
and wL) is displayed with a solid black line.

Under the assumption that the high density Gaussian com-
ponent models the contribution of dense cluster objects, we
can estimate the value for εmin in terms of its parameters,
according to the following equation (line 8):

ε̂min = µH + 2σH (1)

By adopting such value we implicitly establish that the core
condition will be met by approximately 98% of the high
density Gaussian distribution. The ε̂min value estimated for
square1 dataset is reported in Fig. 3 as a horizontal dashed
line. Notably, according to the Gaussian fitting, we can express
a lower bound and an upper bound reasonable values of εmin :
horizontal solid lines in Fig. 3 delimit such “elbow” and are
drawn at values µH + σH and µH + 4σH .

The value of the radius ε̂max cannot be inferred directly
from the low density Gaussian component, since it models the

contribution of border objects but in general it may be affected
by noise and outliers. In general, being it unrelated to the
core condition, this parameter just influences the extension of
cluster borders. When εmax is set equal to εmin , FDBSCAN-
APT traces back to the crisp traditional DBSCAN algorithm;
higher values of εmax increase the degree of overlap of cluster
borders and reduce the capability of detecting outliers. Hence,
the following heuristic is proposed for estimating the value of
εmax (line 9):

ε̂max = α · ε̂min ·
µL

µL − µH
(2)

It is expressed as a function of ε̂min and its value is determined
by two coefficients: α is a real number greater than or equal
to 1 and can be set by the user if an assumption can be
made about the degree of overlap of clusters or about the
percentage of noise. The second coefficient is strictly greater
than 1 since it holds µL, µH > 0 and µL > µH . Notably, when
a dataset is affected by noise, the contribution of noise will
tend to increase the value of µL, resulting in a low value of
the coefficient. On the other hand, in the absence of noise, the
low density Gaussian just models the contribution of border
objects: the value of µL will be closer to the value of µH , thus
resulting in a high value of the coefficient. In other words,
the heuristic aims to avoid an improper inclusion of noise
objects in cluster borders. When noise detection is not a prime
concern, high εmax values can be used, adequately tuning the
α parameter accordingly. For the purpose of our analysis, α
is set to the default value of 1.

B. Computational Complexity

The regionQuery procedure is the most influential term in
the analysis of the computational complexity of DBSCAN-
based algorithms. In FDBSCAN-APT it is implemented as
distanceQuery in Algorithm 1. As highlighted in [1], [3], [9],
when no index support is provided, the complexity of each
regionQuery is O(n), resulting in an overall complexity of
O(n2). It can be reduced to O(n log n) if a spatial indexing
structure is adopted. As for the space complexity, the definition
of neighbors data structure for each object of the dataset
implies a cost of O(n2).

IV. EXPERIMENTAL SETUP

An experimental study has been performed on several syn-
thetic datasets to verify whether FDBSCAN-APT can generate
reasonable clustering results. Since ground truth labels are
available, the quality of the FDBSCAN-APT outcomes can
be assessed by means of an external measure. In this work we
adopt the Adjusted Rand Index (ARI) [10], upper-bounded by
1: the higher its value, the better the clustering result.

The goodness of the heuristics for the automatic parameters
tuning is evaluated by exploring, with a grid search, the bi-
dimensional parameter space defined by εmin and εmax . For
what concerns εmin , we explore ten evenly spaced values in
the range [µH +σH , µH +4σH]. As per εmax , we explore the
first five multiples of each εmin value.

A. Datasets and Parameter Setting

The datasets used in this work have been obtained from
a collection of clustering benchmarks available online1. A
description of datasets is reported in Table I. Figures 1 and 4
show the representation of the datasets in the bi-dimensional
attribute space. To evaluate the effect of noise on the proposed
approach, four additional datasets are obtained by adding 1%,
5%, 10%, 20% of noise to the banana dataset, respectively.

TABLE I
DATASETS DESCRIPTION: ALL DATASETS ARE BI-DIMENSIONAL.

Dataset Sample Clusters Noise %
square1 1000 4 0
banana 4811 2 0

banana 1 4859 2 1
banana 5 5051 2 5

banana 10 5292 2 10
banana 20 5773 2 20
cluto-t4-8k 8000 6 ∼10
cluto-t8-8k 8000 8 ∼4
aggregation 788 7 0

For all datasets the parameter MinPts is set to 4, according
to the heuristic proposed by authors in [1]. The parameter
εgen is set as the average value, over 100 repetitions, of the
distance of two objects randomly sampled from the dataset.
We have verified that for most objects in all datasets such a
value is large enough to include more than minPts objects
in the εgen-neighborhood. An alternative heuristics has been
proposed in [9] for setting the value of εgen in OPTICS.

V. RESULTS AND DISCUSSION

The k -dist graphs of each dataset, along with relative
histograms and Gaussian fitting, are reported in Fig. 5. A
visual analysis of the figures suggests that our approach allows
spotting out reasonable values (i.e. in the ‘elbow’ region)
for parameter εmin for each dataset, independently of the
noise percentage. The final parameter configurations adopted
in FDBSCAN-APT are reported in Table II.

TABLE II
AUTOMATICALLY INFERRED PARAMETER SETTING FOR FDBSCAN-APT

Dataset ε̂min ε̂max

square1 0.742 1.334
banana 0.0094 0.0158

banana noise1 0.0102 0.0132
banana noise5 0.0101 0.0123

banana noise10 0.0099 0.0124
banana noise20 0.0097 0.0128

cluto-t4-8k 5.009 7.302
cluto-t8-8k 6.901 10.561
aggregation 1.060 4.161

Figure 6 reports a comprehensive assessment of the cluster-
ing results in terms of ARI. Each image represents the results
of the grid search for a given dataset. Indeed, each pixel in
the image represents the ARI obtained by the applyFuzzyDB-
SCAN procedure with a given parameter configuration. The

1https://github.com/deric/clustering-benchmark (last visited May 2020)

(a) banana (b) cluto-t4-8k (c) cluto-t8-8k (d) aggregation

Fig. 4. Datasets used in this paper, in addition to square1 which is depicted in Fig. 1

parameter configuration automatically inferred with the heuris-
tic proposed in FDBSCAN-APT is marked as a red circle; the
best configuration among the grid search is marked as a black
cross. The last row of each image represents configurations
for a classic, crisp, DBSCAN algorithm, with εmax = εmin .
Numerical results are reported in Table III in terms of ARI for
FDBSCAN-APT, and for the best configuration over the whole
grid (Grid best) and the best configuration for crisp DBSCAN
(DBSCAN best).

Figure 6 and Table III suggest that FDBSCAN-APT always
obtains reasonable partition (ARI > 0.8), and results are com-
parable to, or even better than, the best parameter configuration
found by the grid search. It is worth underlining that grid-
based optimization, besides being computationally expensive,
requires the availability of class labels and therefore becomes
impractical in real clustering applications. Furthermore, Figure
6 shows how crucial the choice of parameters actually is: it is
evident that the range of ‘good’ parameter values for datasets
square1, cluto-t4-8k, cluto-t8-8k is quite limited. Figure 6a, for
example, confirms the observation reported in Section I: too
low values of εmin are unsuited to model the distribution of
objects in the four clusters of square1; on the other hand, high
values of εmin lead to merging of clusters, with a dramatic
drop of the ARI value. However, in the three mentioned
datasets, FDBSCAN-APT successfully spots out a parameter
configuration in the acceptable region.

The parameter tuning for the banana dataset is less prob-
lematic: as it can be observed in Fig. 4a, the inter-cluster
distance is much higher than the intra-cluster distance among
objects. Indeed a correct match with the ground truth can be
obtained by setting high values of εmin (Figures 6b, 6c, 6d
and 6e). FDBSCAN-APT, instead, finds a more conservative
parameter setting, which still leads to a correct modeling of
the two clusters. Notably, as the percentage of noise increases,
the optimal parameter configuration shifts towards a region of
lower values of εmax and, eventually (Fig. 6f), of lower values
of εmin .

Finally, we can observe how the introduction of fuzzy bor-
ders leads in many cases to accurate outcomes, which cannot
be obtained with the crisp version of DBSCAN algorithm.

This benefit is particularly relevant in scenarios in which the
border of clusters overlaps and the distribution of objects is not
perfectly uniform within a cluster, as in square1 dataset and,
possibly, in a number of real-world applications. Intuitively,
the benefit of fuzzy border decreases in presence of noise,
(cluto and noisy versions of banana dataset): for such datasets
the best parameter configuration can be always found in the
last row of the respective plot of Fig. 6, where it holds
εmin = εmax .

TABLE III
CLUSTERING RESULTS IN TERMS OF ARI. FDBSCAN-APT RESULTS ARE

REPORTED ALONG WITH THOSE OBTAINED WITH THE BEST
CONFIGURATION PARAMETER SETTING FOUND BY THE GRID SEARCH

(GRID BEST) AND WITH THE BEST PARAMETER SETTING FOR THE CRISP
DBSCAN (DBSCAN BEST).

Dataset Grid best DBSCAN best FDBSCAN-APT
square1 0.943 0.853 0.844
banana 0.986 0.967 0.916

banana 1 0.989 0.979 0.931
banana 5 0.956 0.954 0.908

banana 10 0.930 0.929 0.882
banana 20 0.866 0.866 0.840
cluto-t4-8k 0.943 0.943 0.943
cluto-t8-8k 0.898 0.898 0.903
aggregation 0.943 0.905 0.809

VI. CONCLUSION

In this paper, we have proposed FDBSCAN-APT, a fuzzy
extension of the DBSCAN clustering algorithm. Inspired to
a recently proposed fuzzy DBSCAN algorithm, FDBSCAN-
APT can discover clusters with fuzzy overlapping borders
by relaxing the constraint on the distance threshold ε and
exploiting a membership function based on two thresholds,
namely εmin and εmax . In FDBSCAN-APT the crucial issue
of input parameter setting is addressed thanks to the definition
of a novel heuristic, which is able to automatically infer from
data the reasonable values of the two distance thresholds: fixed
the value of minPts , for each object we exploit a conveniently
defined data structure to estimate the distance that let the
object satisfy the core condition. Then, the distribution of such
distances for all objects in the dataset is modelled as a mixture

(a) banana (b) banana 1 (c) banana 5

(d) banana 10 (e) banana 20 (f) cluto-t4-8k

(g) cluto-t8-8k (h) aggregation

Fig. 5. Visual representation of Gaussian Mixture Model fitting on k -dist graph data for all datasets (Fig. 3 shows the results on square1 dataset). In each
image, on the left the k -dist graph is reported; the horizontal lines are drawn at values µH+σH , µH+4∗σH (boundaries for grid search) and µH+2∗σH
(distance threshold used for εmin in FDBSCAN-APT). On the right, the histogram of the kDistList values is reported, and the Gaussian Mixture Model
fitting is superimposed. Best viewed in color.

of Gaussian functions, and the parameters of the Gaussian
components are used to estimate the values of εmin and εmax .
The effectiveness of FDBSCAN-APT in producing acceptable
clustering results is shown on five synthetic datasets and
evaluated in terms of Adjusted Rand Index. Furthermore, the
automatically inferred parameter configuration is compared to
a set of configurations obtained with a grid search over a range
of values of εmin and εmax : results show that the proposed
heuristic is effective in finding proper values for distance
thresholds, even in presence of artificially added noise. Along
with a broader experimental validation on real and big datasets,
a possible development of the proposed approach would tackle
the issue of parameter setting in multi-density datasets: this
will be the focus of our future works.

REFERENCES

[1] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” in Proc. of the 2nd Int’l Conf. on Knowledge Discovery and
Data Mining, 1996, pp. 226–231.

[2] J. Han, J. Pei, and M. Kamber, Data Mining: concepts and techniques.
Elsevier, 2011.

[3] D. Ienco and G. Bordogna, “Fuzzy extensions of the DBSCAN cluster-
ing algorithm,” Soft Computing, vol. 22, no. 5, pp. 1719–1730, 2018.

[4] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clustering
in spatial databases: The algorithm gdbscan and its applications,” Data
mining and knowledge discovery, vol. 2, no. 2, pp. 169–194, 1998.

[5] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN
revisited, revisited: why and how you should (still) use DBSCAN,” ACM
Transactions on Database Systems (TODS), vol. 42, no. 3, p. 19, 2017.

[6] J. Hou, H. Gao, and X. Li, “DSets-DBSCAN: a parameter-free clustering
algorithm,” IEEE Transactions on Image Processing, vol. 25, no. 7, pp.
3182–3193, 2016.

[7] A. Sharma and A. Sharma, “KNN-DBSCAN: Using k-nearest neighbor
information for parameter-free density based clustering,” in 2017 Int’l
Conf. on Intelligent Computing, Instrumentation and Control Technolo-
gies (ICICICT). IEEE, 2017, pp. 787–792.

0.0 0.2 0.4 0.6 0.8 1.0

0.
58

8

0.
63

9

0.
69

1

0.
74

2

0.
79

3

0.
84

5

0.
89

6

0.
94

7

0.
99

9

1.
05

min

min * 1

min * 2

min * 3

min * 4

min * 5

m
ax

ARI: max = 0.943

(a) square1

0.
00

72

0.
00

79

0.
00

87

0.
00

94

0.
01

01

0.
01

09

0.
01

16

0.
01

23

0.
01

31

0.
01

38

min

min * 1

min * 2

min * 3

min * 4

min * 5

m
ax

ARI: max = 0.987

(b) banana

0.
00

77

0.
00

85

0.
00

93

0.
01

02

0.
01

1

0.
01

18

0.
01

26

0.
01

35

0.
01

43

0.
01

51

min

min * 1

min * 2

min * 3

min * 4

min * 5

m
ax

ARI: max = 0.989

(c) banana 1

0.
00

77

0.
00

85

0.
00

93

0.
01

01

0.
01

09

0.
01

18

0.
01

26

0.
01

34

0.
01

42

0.
01

5

min

min * 1

min * 2

min * 3

min * 4

min * 5

m
ax

ARI: max = 0.956

(d) banana 5

0.
00

75

0.
00

83

0.
00

91

0.
00

99

0.
01

07

0.
01

14

0.
01

22

0.
01

3

0.
01

38

0.
01

46

min

min * 1

min * 2

min * 3

min * 4

min * 5

m
ax

ARI: max = 0.929

(e) banana 10
0.

00
74

0.
00

82

0.
00

89

0.
00

97

0.
01

04

0.
01

12

0.
01

19

0.
01

27

0.
01

34

0.
01

42

min

min * 1

min * 2

min * 3

min * 4

min * 5

m
ax

ARI: max = 0.866

(f) banana 20

4.
05

1

4.
37

1

4.
69

5.
01

5.
32

9

5.
64

9

5.
96

8

6.
28

8

6.
60

7

6.
92

7

min

min * 1

min * 2

min * 3

min * 4

min * 5

m
ax

ARI: max = 0.943

(g) cluto-t4-8k

5.
53

8

5.
99

2

6.
44

7

6.
90

1

7.
35

6

7.
81

8.
26

5

8.
71

9

9.
17

4

9.
62

8

min

min * 1

min * 2

min * 3

min * 4

min * 5

m
ax

ARI: max = 0.898

(h) cluto-t8-8k

0.
93

3

0.
97

5

1.
01

7

1.
06

1.
10

2

1.
14

4

1.
18

6

1.
22

9

1.
27

1

1.
31

3

min

min * 1

min * 2

min * 3

min * 4

min * 5

m
ax

ARI: max = 0.943

(i) aggregation

Fig. 6. ARI results of FDBSCAN-APT on synthetic datasets: for each dataset the best parameter configuration of the grid search is marked with a black
cross; the configuration automatically selected with FDBSCAN-APT is marked with a red circle. Best viewed in color.

[8] J. Kim, J. Choi, K. Yoo, and A. Nasridinov, “AA-DBSCAN: an approx-
imate adaptive DBSCAN for finding clusters with varying densities,”
Journal of Supercomputing, vol. 75, no. 1, pp. 142–169, 2019.

[9] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
ordering points to identify the clustering structure,” in ACM Sigmod
record, vol. 28, no. 2. ACM, 1999, pp. 49–60.

[10] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifica-
tion, vol. 2, no. 1, pp. 193–218, 1985.

