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Abstract—With the proliferation of the Internet of Things
(IoT), employing Received Signal Strength (RSS) as a metric to
determine the location of a target (e.g., person or mobile device)
is of great interest in terms of cost and ease of implementation.
Indeed, RSS measurements can be easily obtained for most off-
the-shelf devices, such as WiFi- or ZigBee compatible devices or
sensors. This paper deals with the indoor localization problem in
wireless sensor networks (WSNs) and proposes a new approach
for radio signal propagation modelling and localization estima-
tion, that accounts for the imperfection of RSS measurements
and the reliability of RSS sources by using the Dempster-
Shafer Theory (DST). In the signal propagation modelling, key
information regarding the geometry of indoor environment that
is divided into zones separated by walls (zoning), are considered.
Based on the number of walls, the RSS irregularities are
estimated using different distance intervals, which are weighted
by a probability density determined experimentally. To estimate
the location of a target node, the PCR6 rule is used to combine
the belief masses of the positions obtained from the probability
density. In order to evaluate the performance of the proposed
approach, an experimental WSN has been deployed in a living
apartment. The obtained results demonstrate that the proposed
approach improves the localization accuracy compared to the
case without zoning. Moreover, the obtained localization mean
error proves the feasibility of a precise localization of humans in
indoor environments in the case of Ambient Assisted Living and
Social Robotics applications.

I. INTRODUCTION

Context awareness is a key feature that makes smart systems
able to self-adapt their services to users and environmental
changes. Location is a centric attribute of users’ context,
which can also be exploited to better estimate and understand
the other contextual attributes such as activities, interactions,
emotions, mental states, etc. Developing high precision local-
ization techniques for indoor environments has witnessed a big
interest in particular for Ambient Assisted Living and Social
Robotics applications. Several surveys have been published
recently, which report the main approaches of the literature
[1] [2] [3] [4] [5]. Most of these approaches propose to
exploit wireless communication techniques such as Radio Fre-
quency Identification Device (RFID), Bluetooth Low Energy
(IBeacon), Zigbee/6lowpan, WiFi, Visible Light (Lifi) [2],
and recently LoRa, Sigfox, NB-IoT [6], which support long-
range, low power and low throughput communications but
can enable more possibilities and complementarity between

indoor as well as outdoor applications. The Received Signal
Strength (RSS) is the most commonly used metric for de-
veloping indoor localisation methods [7]. This metric is of
great interest in terms of cost and ease of implementation.
RSS measurements can be easily obtained from any node
of any kind of wireless communication network and do not
require neither transmission scheduling or synchronization at
the node level. Generally, to estimate the position of a target
node in a WSN, RSS-based indoor localization techniques
exploit the RSS measurements received from emitter nodes
straightly or the distances between emitter nodes and the target
node (receiver node) estimated from propagation models. In
geometric techniques such as trilateration and triangulation,
the distances between the emitter nodes and the target node
are used to estimate the position of the target node. However,
the wide fluctuation of radio signals in indoor environments
makes the prediction of the RSS very challenging. The main
problem in estimating the distance between the nodes is related
to the fact that the RSS measured in an indoor environment is
nonlinear with distance. In addition, RF signals are subject to
interference and attenuation effects due to several phenomena
such as multipath, reflection, channel fading, deflection and
diffraction. These effects are increased when the indoor envi-
ronment is highly furnished and separated by different types
of walls.

This paper proposes an indoor localization approach that
deals with the imperfection of RSS information obtained from
a wireless sensor networks (WSNs). The major aspects of
RSS imperfection can be either imprecision or uncertainty.
Imprecision refers to the information content and measures a
quantitative default of knowledge or measurement, (e.g., the
same distance corresponds to an interval of RSS values) [7]. In
contrast, uncertainty refers to the degree of truth of information
and characterizes how much the information conforms to the
reality, which results from a lack of information about the
sensors and their deployment conditions in the real world. The
RSS modelling methods of the state of the art often assume
that the received signal strength is proportional to the inverse
square of the distance between the transmitter node and the
receiver node and the imperfections correspond to a Gaussian
noise. However, in practice, the results of real measurements in
WSN demonstrate that the aforementioned assumption is not
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realistic [8] [9]. Therefore, it is important to take into account
the imperfection of RSS measurements more finely and model
the reliability of the RSS measurements to increase the local-
ization accuracy. In this paper, we propose to use Dempster-
Shafer Theory (DST) [36] to handle the imperfection of RSS
information and develop a robust localization technique. The
DST theory allows representing and fusing the information
provided by more or less reliable and conflicting sources on
the same hypothesis of a set called the frame of discernment.
This study is in the continuity of the research activity initiated
in [7] that employs DST and consider Non-Gaussian proba-
bility density functions to model RSS deviations, as a more
realistic option for WSN in indoor environments. In the signal
propagation modelling method proposed in this paper, key
information regarding the geometry of the indoor environment
that is divided into zones separated by walls, are considered.
Based on the number of walls crossed by the RF signal in the
indoor environment, the RSS irregularities are estimated using
different distance intervals which are weighted by a probability
density determined experimentally. After defining the frame
of discernment, which corresponds to the different positions
in the environment, a belief mass is assigned to each position
depending on the distance intervals. The position of the target
node is estimated based on the belief masses which are
combined using the the Proportional Conflict Redistribution
rule (PCR6) [39]. Unlike [7] where the Dempster rule (DR)
is used [36] to uniformly redistribute the mass resulting from
the conflict in the combination step, the PCR6 rule used in
the proposed approach is better suited to handle high conflict
between sources, generated by the use of distance intervals in
the assignment of belief masses. Moreover, in the decision-
making step, the maximum of credibility mode is preferred
to the merging mode proposed in [7] since the latter is more
complicated to implement in practice. The proposed approach
is evaluated based on experimental dataset of more than 1000
RSS samples that have been captured in a living apartment
from 11 reference positions. The obtained results demonstrate
that the proposed approach improves the localization accuracy
in terms of mean and median metrics.

The paper is organized as follows: Section II presents the
related work on RSS-based indoor localization techniques with
a focus on propagation models proposed in the literature.
Section III describes the RSS modelling method while Section
IV details the exploitation of DST and the PCR6 rule to es-
timate the most accurate position of target node. Experiments
and the obtained results are discussed in Section V. Finally,
a conclusion and future research directions are presented in
Section VI.

II. RELATED WORK

This section analyzes the main RSS-based indoor localiza-
tion techniques proposed in the literature, which can be divided
into four main categories. The first one refers to the Proximity-
based localization techniques where the target node position is
estimated by exploiting its closeness to known reference nodes
(anchors nodes). The distance between the reference nodes

and the target node are determined from RSS measurements
by using, for instance, RFID [10] or WSN [11] technologies.
Proximity-based localization techniques are easy to implement
and does not require any complex algorithms. However, their
accuracy depends mainly on the density and distribution of the
reference nodes. The second category includes the geometric
techniques such as Multilateration, Centroid and Min-Max,
which allow estimating the target node position by exploiting
the distances separating the target node and the reference
nodes; these distances are estimated using RSS measurements
and propagation model.

The third category is fingerprint-based localization tech-
niques [2] which operate in two phases. In the first phase,
called mapping phase, RSS measurements at known and fixed
locations are stored in a fingerprint database. In the second
phase, called operational phase, the RSS values measured at
the current location are compared to the ones in the fingerprint
database. The target node position is estimated either by
finding the best matching between the RSS measurements and
the pre-stored ones [30] or through inference that takes into
account the distributions of RSS measurements in the radio
map of the localization area [31] [13]. Fingerprint-based lo-
calization techniques based on deep learning architectures have
been also proposed in the latest years. In [32], Deep neuronal
networks (DNN), Deep Belief Network (DBN) and Gaussian-
Bernoulli-DBN (GB-DBN) algorithms are implemented to in-
crease the estimation accuracy and reduce generalization error
in dynamic indoor environment. Fingerprint-based localization
techniques achieve better localization accuracy compared to
proximity and geometric techniques. However, it require dense
training coverage to build fingerprint database, and implicitly,
high manual cost and efforts.

The last category include localization techniques based on
computational intelligence methods or machine-learning meth-
ods such as genetic algorithm (GA), support vector machine
(SVM), fuzzy logic (FL), and DST [7], [12], [13]. RSS
metric is used with certain classification techniques in wireless
localization through classification. SVM model is exploited in
[33] to determine the region degree membership of the target
node based on RSS measurements, and a WiFi localization
system rule-based FL is proposed in [34] to predict the location
in terms of building’s zones classification using filtered RSS
inputs.

In practice, the use of the RSS measurements for lo-
calization induces several difficulties in the context of an
indoor environment due to the occurrence of phenomena
of reflection, diffraction, absorption, and multipath fading
inherent to radio waves propagation. This makes it difficult
to build a reliable radio signal propagation model in the
context of an indoor environment. To model the relation
between RSS measurements and the distance between nodes,
the commonly used propagation models are: log-distance path-
loss model (LDPL), Two-ray propagation model (TRP), Log-
distance path-loss shadowing model (LDPLS). The LDPL
model [14] assumes an unobstructed LOS path through free
space between the transmitter node and the receiver node, thus



RSS is inversely proportional to the square of the distance
the distance between the transmitter node and the receiver
node. The LDPL model parameters are generally estimated in
calibration phase using regression methods whose performance
depend on the quality and quantity of the RSS measurements.
Multilateration [15], Min-Max [16], ROCRSSI and Weighted
Centroid Localization (WCL) [17] are examples of geometric
localization techniques exploiting the LDPL model to estimate
the target node position. To improve the localization accuracy,
other works apply fuzzy logic inference to distances estimated
via the LDPL model before applying geometric techniques
[18] [19]. In [20] [21], fuzzy logic inference is applied directly
on RSS measurements to weight anchor nodes positions and
the centroid algorithm is then used to estimate the target node
position. TRP model is a modified version of the LDPL model
taking into account the effect of reflection of signals. In [22],
the TRP model is used to build a WiFi RSS map to account for
absorption and reflection characteristics of various obstacles;
position estimates are then computed using Bayesian filtering
on sample sets derived by Monte Carlo sampling. Experiments
showed that the TRP model gives more accurate prediction
at long distance than the LDPL model. However, in the
context of an indoor environment where rooms are only a
few square meters in size, the two models are equivalent
[23]. Although the LDPL model is simple to use, it does
not adequately account for the propagation characteristics in
indoor environments. Thus, the LDPLS model was proposed
to characterize the variation of RSS over distance due to path
loss and shadowing effects. The latter are due to the obsta-
cles that attenuate signal power due to absorption, reflection,
scattering, and diffraction phenomena [24]. To characterize the
attenuation caused by shadowing, a zero-mean normal random
variable is generally used [14]. In [25], the authors introduce a
parameter to take into account the Non-Line-of-Sight (NLOS)
effect and a zero mean Gaussian variable to take into ac-
count the multi-path effect due to shadowing. The LDPLS
model is used for distance estimation in geometric localization
techniques such as WCL [9]. Other works exploit also the
LDPLS model in fingerprint-based localization techniques to
take into account the variability of RSS measurements [26]
[27] [28]. In [12], the authors propose a localization technique
combining the DST with the LDPLS model. Belief masses
are assigned to each position in the localization area based on
the RSS measurements and the probability the target node is
at this position. The LDPLS model where the RSS noise is
modelled as a Gaussian distribution, is exploited to calculate
this probability. Besides, DR is used to iteratively combine
the pieces of evidence whereas the maximum of credibility is
exploited as the decision-making mode. RSS noise induced by
the number and type of obstacles (walls, floors, doors, etc.)
along the transmission path is also considered in [23] [29].
In the case of the LDPLS model, assuming that LOS and
NLOS signals can be differentiated in indoor environments
is difficult to implement in practice. The previous analysis
clearly shows that the aforementioned propagation models are
highly dependent to the environment structure, and require

high manual cost and efforts in terms of the calibration phase.
Besides, in most of localization techniques proposed in the
literature, the RSS noise is assumed obeying to a Gaussian
distribution, which is not realistic.

III. RSS MODELING

In this section, a realistic modelling of the variability of RSS
measurements due to interference and attenuation phenomena
that affect signal propagation in indoor environments, is pro-
posed. The proposed modelling is an extension of our previous
work [7] where two intervals of distances I1 = [dmin, dmean]
and I2 = [dmean, dmax] are associated with each RSS mea-
surement for better accounting the RSS variability; dmin,
dmean and dmax represent the estimated minimum, mean and
maximum distance deviations respectively. The distances of
each interval are weighted by probability densities in order
to represent the imprecision on the RSS measurements. The
distance deviations estimates are obtained by interpolating the
minimum and maximum RSS measurements via the power
function for dmin and dmax, and by interpolating the average
RSS measurements via the sinus function for dmean. The
estimates obtained from the RSS measurements collected in
our experimental environment (living apartment) are shown in
Fig. 1.

Fig. 1. Estimates obtained in our indoor environment

The probability of measuring an RSS value v at a given
distance d is calculated using the probability density function
pd of (1):

pd (v|d) = ϕ arctan
(
αkd̃+ βk

)
+ ξ (1)

The density function parameters are estimated during the cali-
bration phase. The term d̃ corresponds to the distance deviation
that separates the transmitter and the receiver knowing the
value v, the coefficients ϕ, αk and βk, with k = {1, 2}, depend
on the bounds of the distance intervals I1 and I2 of v. The
term ξ defines the probability to measure the value v at the
distances dmin and dmax (ξ = p (d = dmin) = p (d = dmax)).



This approach has the advantage to not distinguish between
physical phenomena (reflection, diffraction, absorption etc.),
but rather to take them into account at the same time implic-
itly. The radio signal propagation in indoor environments is
strongly affected by the various obstacles, in particular the
walls separating the rooms, which is not taken into account in
our previous modelling [7]. In the present study, we propose
to model the RSS measurements using additional distance
intervals in the case where the received signal passes through
several walls. The proposed modelling is detailed in the
following subsection.

A. RSS vs number of walls

The proposed RSS modelling takes into account the pres-
ence of walls in the indoor environment considering that
this environment is divided into several rooms called here
zones separated by walls (zoning). This modelling approach
considers also that each zone is equipped with one to several
sensor nodes, which transmit signals throughout the WSN.
In order to estimate the influence of the number of walls
on the radio signal propagation, we collected set of RSS
measurements at different representative distances in the ex-
perimental environment (living apartment). Fig. 2 (a) shows
RSS measurements as a function of distance and the number
of walls separating the transmitter from the receiver. It is worth
to mention that the signal becomes more fluctuating and its
power decreases when the number of crossed walls increases.
Therefore, the signal received from a sensor located within
the same zone (living room, bedroom, ...) is less disturbed
compared to a signal coming from another zone in the case
of two similar distances separating the receiver node from
each transmitter node. The mean distance deviation estimates
dmean, depicted in Fig 2 (b) are obtained by interpolating the
mean RSS measurements using the power function by varying
the number of walls in the set 0,1,2.

Fig. 2. (a) Signal propagation according to the number of walls crossed, and
(b) mean distance estimates according to the number of walls crossed

In the same way as for the distances dmean, estimates of
distances dmin and dmax are obtained by varying the number
of walls. Fig. 3 (a) shows the distance estimates for signals
not crossing walls while fig. 3 (b) and fig. 3 (c) show distance
estimates for signals crossing respectively 1 and 2 walls.

Fig. 3. Signal propagation modeling according to number of walls in indoor
environment

B. Weighting of distance intervals
Since the distance intervals corresponding to an RSS mea-

surement are not the same inside and outside a given area
and the estimates of the deviations depend not only on the
distance but also on the number of walls crossed by the signal
received, the weighting of the distances also depends on the
number of crossed walls. Let be Z = {z1, . . . , zl} the set
of zones composing the environment, S = {s1, . . . , sk} the
set of anchor nodes and zsj the zone where the node sj
is deployed. Algorithm 1 represents the pseudo-code of the
probability densities assignment to the distances per zone for
each RSS value.

Algorithm 1 probability assignment per zone
Require: zones Z, sensors S
Ensure: // assign probability to zone zi depending on sj

for each zi do
for each sj do

if sj ∈ zi then
zone in (zi, sj)

else if zSj adjacent to zi then
zone out 1 (zi, sj)

else
zone out 2 (zi, sj)

end if
end for

end for

• zone in (zi, sj) : calculates the probability densities of
the distances between the receiver node and the anchor
node knowing that both nodes are in the same zone zi.



• zone out 1 (zi, sj) : calculates the probability densities
of the distances between the receiver node and the anchor
node, where the anchor node sj is in a zone zsj adjacent
to the zone zi where the receiver is located.

• zone out 2 (zi, sj) : calculates the probability densities
of the distances between the receiver node and the anchor
node, where the anchor node sj is in a zone that is not
adjacent to zone zi where the receiver is located.

IV. DST APPLIED FOR INDOOR LOCALIZATION

Dempster-Shafer Theory (DST), introduced by Dempster in
1967 [35] and formalized by Shafer in 1976 [36], allows repre-
senting both imprecision and uncertainty using the functions of
mass, plausibility and belief. The mass functions are defined
on all subsets of the frame of discernment and not only on
singletons as in the theory of probabilities. DST is applied in
four steps: definition of the frame of discernment, definition of
the mass functions, belief masses combination, and decision-
making.

A. Frame of discernment

In general, the mobile localization problem is to es-
timate the position of a mobile moving in the environ-
ment. In our case, the indoor localization space is repre-
sented by a set of positions constituting a grid of pos-
sible solutions or hypotheses hi for the mobile. Accord-
ingly, the frame of discernment is the finite set of mutu-
ally and collectively exclusive assumptions given by Θ =
{h1, h2, . . . , hk, . . . , hn}. The power set is defined as 2Θ =
{∅, {h1} , . . . , {hi} , . . . , {h1, h2} , . . . , {hi, . . . , hn} ,Θ}.

B. Mass Assignment

A mass function m is defined as a function of 2Θ in [0, 1].
In general, it is imposed m(∅) = 0 and a normalization of the
form: ∑

A⊆Θ

m(A) = 1 (2)

Given a mass function m, the belief (credibility) function bel
is defined as :

∀A ∈ 2Θ, bel(A) =
∑

B⊆A,B 6=∅

m(B) (3)

This function allows measuring the total confidence that we
have in a subset A. Similarly, the plausibility function pls of
2Θ in [0, 1] defined by:

∀A ∈ 2Θ, pls(A) =
∑

B∩A6=∅

m(B) (4)

This function is used to measure the maximum confidence that
we can have in a subset A.

In the context of localization in WSN, we assume that the
target node can be -at any time- at a given hi position in the
localization area. In the case where the target node is not at
the position hi, it is necessarily located at one of the other
positions hci , which correspond to the complement of hi. In
the case of ignorance, the target node may be located at any

position of Θ. Thus, let’s consider the subsets hi, hci and Θ as
the only focal elements in 2Θ. A focal element is an element
whose mass is greater than 0. The belief mass defined from
the a priori probability densities pd(v|d) is distributed over the
3 focal elements. This probability is denoted by p (sj |hi) to
better express that the RSS value v measured at position hi
corresponds to the signal coming from the source sj . Then,
based on the model proposed in [37], the belief masses mj

i (.)
attributed to the focal elements by introducing a degree of
reliability αij relative to the source sj on the hypothesis hi
are given by (5), (6) and (7).

mj
i (hi) =

αij<jp (sj |hi)
1 + <jp (sj |hi)

(5)

mj
i (h

c
i ) =

αij

1 + <jp (sj |hi)
(6)

mj
i (Θ) = 1− αij (7)

where <j ≥ 0 is a normalization factor. If it is equal to
zero, only the reliability of the source is taken into account,
otherwise the information is also taken into account. The
choice of this factor is arbitrary but to obtain the least specific
belief function possible, we take the maximum probability in
the range of distances I1 ∪ I2 defined previously for each
RSS value. The reliability parameter αij is obtained from the
distance dij between sensor sj and position hi as follows (8)
:

αij =


1 if |dij − dmean (vj)| ≤ dconf√

dconf

|dij−dmean(vj)|
if |dij − dmean (vj)| > dconf

and dij ∈ I1 ∪ I2
(8)

In the case where the distance dij /∈ I1 ∪ I2, the source sj is
eliminated and the combination is done with the rest of the
sources. Otherwise, the value of αij is calculated with respect
to a confidence distance dconf determined experimentally for
which the source sj is considered completely reliable for the
position hi.

C. Combination of information

In the presence of several sources of information, it is
interesting to combine the knowledge of each source in order
to extract a global knowledge about the real-world and apply a
decision-making mode. For this purpose, various combination
rules have been proposed in the literature [38]. In this paper,
we exploit the PCR6 rule [39], which is one of the most effi-
cient and widely used combination rules for solving conflicts.
PCR6 is used to distribute the mass of belief resulting from the
conflict on the focal elements involved in the conflict [40]. The
redistribution of the partial conflicting masses in a proportional
way to the hypotheses (even non singleton) in the case of two
mass functions m1 and m2, where B1, B2, C ∈ 2Θ, is given
by (9):



mpcr6(A) =
∑

B1∩B2=Am1(B1)m2(B2)

+
∑

A∩C=∅

(
m1(A)2m2(C)
m1(A)+m2(C) + m2(A)2m1(C)

m2(A)+m1(C)

)
(9)

The denominators m1 (A)+m2 (C) and m2 (A)+m1 (C) are
non-zero. Applying this rule to an RSS vector gives a mass for
each hypothesis that will be exploited for decision-making.

D. Decision-making

DST proposes several modes for decision-making [41]. The
most commonly used are the maximum of credibility, the max-
imum of plausibility and the maximum of pignistic probability.
In this study, we choose the maximum of credibility mode
which is pessimistic or cautious since an RSS vector, can be
measured in several positions of the environment as shown in
Fig. 4.

Fig. 4. Positions of the grid (*) where the target may be when it received a
vector of RSS measurements

The diagram in Fig. 5 summarizes the methodology of the
proposed approach to estimate the position of a target node in
the indoor environment.

Fig. 5. Diagram representing the localization process based on the Dempster-
Shafer Theory Theory

V. EXPERIMENTATION AND RESULTS

The experiments were carried out in a typical living apart-
ment composed of a living room, two bedrooms (one of which

is empty), a bathroom, a WC and a corridor. The dimensions of
the space are 11.80 m x 70.80 m x 2.50 m. A 6Lowpan WSN
composed of 19 TelosB sensor nodes has been deployed on
the ceiling in such a way as to cover the entire area as shown
in Fig. 6.

Fig. 6. Sensor nodes deployment plan in the experimental environment.

To evaluate the accuracy of the proposed approach, we
collected more than 1000 RSS samples in 11 different repre-
sentative positions in the apartment. We used statistical metrics
and CDF (Cumulative Density Function) curves to make this
assessment.

The results obtained in all the tests are presented in Table
I and Fig. 7. One can observe that zoning of the environment
improves localization accuracy in terms of mean, median and
standard deviation compared to the case without zoning. The
mean localization error is 1.25 m. The latter is sufficient for
Ambient Assisted Living applications since most of the RSS-
based indoor localization systems dedicated to this kind of
applications have mean accuracy from 1 m to 2 m according
to [2].

TABLE I
COMPARISON OF THE LOCALIZATION ERROR STATICS FOR ZONING AND

NON-ZONING ENVIRONMENT

zone no zone Improvement (%)
min 0.00 0.00 0
max 4.88 4.60 -6
mean 1.25 1.53 19

median 1.13 1.26 11
std 0.69 0.98 30

VI. CONCLUSION

In this paper, a new RSS-based indoor localization approach
based on the Demspter-Shafer theory is proposed to handle
the imperfection of RSS measurements and the reliability of
the RSS sources. A realistic modelling of the variability of
RSS measurements in indoor environments, is proposed. This
modelling takes into account the number of walls crossed by
the RF signal received in an indoor environment composed of



Fig. 7. Localization error CDFs comparison

zones separated by walls. The RSS irregularities are estimated
using different distance intervals which are weighted by a
probability density determined experimentally. DST theory is
used to locate the target node by assigning belief masses to
each position in the localization area based on the zoning.
The PCR6 combination rule is exploited to estimate the most
plausible position of the target node. The results, obtained
from experiments conducted in a living apartment, demon-
strate clearly that taking into account the geometry of the
environment in terms of number walls and zones crossed by
the RF signals, improves the localization accuracy. The future
research works concern the adaptation of the RSS modelling
and localization estimation approach to take into account
trajectories than individual positions and ensure by the way
the continuity of the localization from WSN to large scale
IoT environment enabled by long-range, low power and low
throughput communications networks such as LoRa, Sigfox,
NB-IoT. In this perspective, additional environmental parame-
ters will be considered such as the impact of the construction
materials used in the walls and the doors, which alter the RF
signals at different levels. In addition, the dynamics related
to the mobility of humans in the indoor environment such as
openings and closing doors will be considered also since it
has an impact on the line of sight of the RSS sources, which
become visible in other zones and must be considered in the
localization estimation process.
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