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Abstract—In multi-criteria decision making (MCDM) methods,
if decision makers (DMs) are not able to treat the precise data in
order to define their preferences, the intuitionistic fuzzy set (IFS)
theory enables them. Therefore, the IFS attributes are connected
with the degree of membership and non-membership functions.
In this work we propose a new version of the intuitionistic fuzzy
PROMETHEE II (IF-PROMETHEE II) method aiming and
solving the MCDM problems. A distance and similarity measures
are employed to measure the deviations between alternatives
on intuitionistic fuzzy sets. We propose to apply the distance
and the similarity measure between alternatives to determine
the preference matrix. Then, a ranking algorithm is applied
to indicate the order of superiority of alternatives. Finally, a
practical example is provided for an application of organization
evaluations.

Index Terms—Intuitionistic fuzzy sets (IFSs), Multi-criteria
decision making, PROMETHEE II, Intuitionistic Fuzzy Distance
Measures, Intuitionistic Fuzzy Similarity Measures.

I. INTRODUCTION

Different life problems can have many solutions (alterna-
tives) and can be resolved based on different criteria (at-
tributes). Hence, numerous methods of multi-criteria Decision
Making have been proposed since 1971 and for each method
many versions can be found.
Multi-criteria decision making methods are applied in medical
diagnosis [1], [2] and engineering systems [3], [4]. Methods of
MCDM are applied in crisp domain, then extended to be used
with fuzzy sets and their generalizations such as intuitionistic
fuzzy sets (IFSs) [5]–[7] interval valued fuzzy sets, type-2
fuzzy sets, etc. PROMETHEE is presented in literature with
many versions. The first version deals with crisp values where
information is certain and complete. The other versions deal
with fuzzy sets type-1 and its generalizations where informa-
tion is incomplete, imprecise and uncertain.PROMETHEE is
very known methods, defined using intuitionistic fuzzy sets
in [8]–[11]. The combination of the PROMETHEE method
and the fuzzy set theory is applied to many applications
in addition to energy planning [9], [12]. Rani and Jain [8]
developed the intuitionistic PROMETHEE technique for multi-
criteria decision making problems based on entropy measure.

Murat et al. (2015) used PROMETHEE I and PROMETHEE
II to evaluate performance in schools. PROMETHEE method
uses preference function to rank alternatives. The measures of
similarity, which have the same role of distance measures, are
rarely used. Some researches proposed or applied similarity
measures. Safari et al. [13], [14] exposed a decision making
method using a similarity measure. [15] exposed an intu-
itionistic fuzzy similarity measure and applied it on TOPSIS
method for air-conditioning system selection problem. [7],
[16], [17] presented a resolution of decision making problems
using similarity measures between intuitionistic fuzzy sets and
between interval valued intuitionistic fuzzy sets.
In addition, methods of weight are important tools to give
importance to some criteria among others. Hence, to find
the appropriate alternative. Methods of weight are neglected
using intuitionistic fuzzy sets, only three methods are found
in literature [18], [19], [20] and [21].
Our aim is to present and compare some distance measures
used in PROMETHEE II under intuitionistic fuzzy environ-
ment and to propose the application of similarity measures
in preference function instead of distance measures used in
literature [11], [22]. The remaining of this paper is organized
as follows: In section 2, some preliminaries about IFSs,
distance measures and similarity measures are presented. In
section 3, PROMETHEE method under intuitionistic fuzzy
sets is exposed. In section 4, PROMETHEE approach using
intuitionistic fuzzy sets and similarity measures is proposed.
In section 5, the proposed approach is applied to assessment
and evaluations of some organizations and in section 6 a
conclusion is deduced.

II. PRELIMINARIES

In this section, We present basic definitions of intuitionistic
fuzzy sets and similarity measures between IFSs proposed in
literature.

A. Definition of Intuitionistic fuzzy sets (IFSs)

IFSs are introduced by Atanassov [23], [24] who defined
a membership degree µ, a non-membership degree ν and a
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degree of hesitation π of an element x ∈ A where A is a set
in the discourse universe X .

A = {〈x, µA(x), νA(x)〉 |x ∈ X} (1)

with the conditions: 0 ≤ µA(x) ≤ 1, 0 ≤ νA(x) ≤ 1, 0 ≤
µA(x) + νA(x) ≤ 1
and πA(x) = 1− µA(x)− νA(x)

III. INTUITIONISTIC FUZZY DISTANCE MEASURES
PROPOSED IN LITERATURE

In this section, we present some distance measures, existing
in literature, between tow IFSs A and B.

A. Definition 1

Atanassov [24] proposed the following distance measures:
• Hamming Distance

dH1(A,B) =
1

2n

n∑
i=1

[|µA − µB |+ |νA − νB |] (2)

• Euclidean Distance

dE(A,B) =

√√√√ 1

2n

n∑
i=1

(µA − µB)2 + (νA − νB)2 (3)

• [24] present these distances using the max operator

J1(A,B) = max
i
|µA (xi)− µB (xi) | (4)

Where i = 1, 2, . . . , n and J1 defines the Hamming
distance between fuzzy sets

J2(A,B) = max
i
|νA (xi)− νB (xi) | (5)

Where i = 1, 2, . . . , n

J(A,B) =
1

2
(J1(A,B) + J2(A,B)) (6)

B. Definition 2

Szmidt and Kacprzyk [25] interpreted the precedent mea-
sures (2, 3) by a geometric perspective. Thus, they concluded
that the hesitation degree must be taken into consideration to
compute euclidean and hamming distances and proposed these
measures. We recall that the hesitation degree is computed by
this formula: πA(x) = 1−µA(x)−νA(x) with 0 ≤ πA(x) ≤ 1.
• Hamming Distance

dh2(A,B) =
1

2n

n∑
i=1

[|µA(xi)− µB(xi)|+

|νA(xi)− νB(xi)|+ |πA(xi)− πB(xi)|]
(7)

• Euclidean Distance

qIFS(A,B) =
1√
2n
×

√∑n
i=1 [(µA(xi)−µB(xi))2+(νA(xi)−νB(xi))2+(π(A,B))2]

(8)

Where π(A,B) = πA(xi)− πB(xi)

C. Definition 3

In the real space R, for any two intervals A = [a1, a2] and
B = [b1, b2], the Hausdorff distance H(A,B) is defined as:

Hd(A,B) = max{|a1 − b1|, |a2 − b2|} (9)

Based on the definition of Hd(A,B), Hung and Yang [26]
proposed Hausdorff distance IFSs A and B defined in [0,1]
by this formula:

dHd(A,B) =
1

n
n∑
i=1

max(|µA(xi)− µB(xi)|, |νA(xi)− νB(xi)|)

(10)

Using the dHd(A,B) definition, the authors proposed some
similarity measures between IFSs in [26].

D. Definition 4

Grzegorzewski [27] proposed the following formulas for
Euclidean and Hamming distances for IFSs based on Haus-
dorff metric.
• Hamming Distance

dh(A,B) =
1

n

n∑
i=1

max

(|µA(xi)− µB(xi)|, |νA(xi)− νB(xi)|) (11)

• Euclidean Distance

dEh(A,B) =

√√√√ 1

n

n∑
i=1

max (µ(A,B)2, ν(A,B)2) (12)

Where µ(A,B) = µA(xi) − µB(xi)and ν(A,B) =
νA(xi)− νB(xi)

E. Definition 5

Wang and Xin [28] proposed the following distance mea-
sures:

d1(A,B) =
1

n

n∑
i=1

[
|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|

4

+
max(|µA(xi)− µB(xi)|, |νA(xi)− νB(xi)|)

2
] (13)

IV. SIMILARITY MEASURES BETWEEN INTUITIONISTIC
FUZZY SETS FROM LITERATURE

Some existing similarity measures between tow IFSs A and
B of n elements are presented in table I [29].
Notation The following notations are used to simplify the
formulas of similarity measures:
µiA = µA(xi) and µiB = µB(xi)
νiA = νA(xi) and νiB = νB(xi)
∆i
µ = µiA − µiB , ∆i

ν = νiA − νiB and ∆i
π = πiA − πiB



TABLE I
SIMILARITY MEASURES BETWEEN IFSS

Authors IFSMs
Park et al. [30] SP = 1− 1

n

∑n
i=1 |∆i

π | (1)
Mitchell [31] Smod(A,B) = 1

2
(ϕµ (A,B) + ϕΦ (A,B))(14)

where ϕµ(A,B) and ϕΦ(A,B) denote respectively the similarity measures between the low
membership functions µA and µB and the high membership functions ΦA = 1 − νA and
ΦB = 1− νB as follows:

ϕµ(A,B) = Spd(µA(xi), µB(xi)) = 1− 1
p√n

p
√∑n

i=1 |∆i
µ|p

ϕΦ(A,B) = Spd(ΦA(xi),ΦB(xi)) = 1− 1
p√n

p
√∑n

i=1 |∆i
ν |p

Liang and Shi [32] Spe (A,B) = 1− 1
p√n

p
√∑n

i=1 (ϕµAB (xi) + ϕνAB (xi))
p (15)

where ϕµAB (xi) =

∣∣∣∆iµ∣∣∣
2

and ϕνAB (xi) =
∣∣∣ 1−νA(xi)

2
− 1−νB(xi)

2

∣∣∣
Zhang and Fu [33] SZF (A,B) = 1− 1

2n

∑n
i=1 (|δA(xi)− δB(xi)|+ |αA(xi)− αB(xi)|) (16)

where: δA(xi) = µA(xi) + πA(xi)µA(x) and αA(xi) = νA(xi) + πA(xi)νA(xi)

Hung and Yang [34]: Sw1(A,B) = 1
n

∑n
i=1

min(µA(xi),µB(xi))+min(νA(xi),νB(xi))
max(µA(xi),µB(xi))+max(νA(xi),νB(xi))

(17)

Spk3(A,B) = 1−
∑n
i=1 |µA(xi)−µB(xi)|+|νA(xi)−νB(xi)|∑n
i=1(|µA(xi)+µB(xi)|+|νA(xi)+νB(xi)|)

(18)

Chu et al. [35] SpC2
= 1−

[∑n
i=1 wj

(
δ1{

|∆iµ|

max(µi
A
,µi
B

)
}p + δ2{

|∆iν |
max(νi

A
,νi
B

)
}p + δ3{

|∆iπ|
max(πi

A
,πi
B

)
}p
)] 1

p
(19)

It is considered that 0
0

= 0

Luo and Ren [36] SR = 1− 1
3n

n∑
i=1

(
|µ2
A(xi)− µ2

B(xi)|+ |ν2
A(xi)− ν2

B(xi)|+ |m2
A(xi)−m2

B(xi)|
)

(20)

mA(xi) =
µA(xi)+1−νA(xi)

2
and mB(xi) =

µB(xi)+1−νB(xi)
2

Hung et al. [37] Spl (A,B) =
2

1
p−Lp(A,B)

2
1
p

(21)

where Lp(A,B) = 1
n

∑n
i=1 dp(IA, IB) and dp(IA(xi), IB(xi)) = (|µA − µB |p + |νA −

νB |p)1/p, p ≥ 1

Fan et al. [38] SL(A,B) = 1−
∑n
i=1|SA(xi)−SB(xi)|

4n
−
∑n
i=1|µA−µB |+|νA−νB |

4n
(22)

where SA(xi) = µA − νA and SB(xi) = µB − νB
Hong et al. [39] SH(A,B) = 1−

∑n
i=1|µA−µB |+|νA−νB |

2n
(23)

Chen et al. [40] SC(A,B) = 1 − |2(µA(xi)−µB(xi))−(νA(xi)−νB(xi))|
3

×
(

1− πA(xi)−πB(xi)
2

)
−

|2(νA(xi)−νB(xi))−(µA(xi)−µB(xi))|
3

×
(
πA(xi)−πB(xi)

2

) (24)

V. PRESENTATION OF DIFFERENT VERSIONS OF
PROMETHEE

The Preference Ranking Organization Method for Enrich-
ment Evaluations (PROMETHEE) method [41] uses pairwise
comparisons and outranking relationships to choose the best
alternatives. The final selection is based on the positive and
negative preference of each alternative. The positive preference
indicates how an alternative is outranking all the other alterna-
tives and the negative preference flow indicates an alternative
is outranked by all the other alternatives. Many versions are
presented in literature, PROMETHEE I obtains partial ranking,
PROMETHEE II provides a complete ranking. The ranking
generated by PROMETHEE I is partial because it does not
compare conflicting actions. On the other hand, PROMETHEE
II ranks alternatives according to the net flow, which equals to
the balance of the positive and the negative preference flows.
An alternative with a higher net flow is better.

A. PROMETHEE I and II Methods From Literature

The PROMETHEE method was introduced by Vincke
(1985) and Brans et al. [41]. This method induces the prefer-
ential function to describe the preference difference between
pairs of alternatives on each criterion and describes the pref-
erence difference from the point of view of decision makers.

The values obtained by this function range from 0 to 1. The
bigger the function’s value is, the difference of the preference
becomes larger. When the value is zero, there is no preferential
difference between pair of alternatives. When the value is
one, an alternative is strictly outranking the others. In the
following, The PROMETHEE I and PROMETHEE II method
are presented.
• Step1: Determine a multi-criteria preference index as:

H(Ai, Ak) =

n∑
j=1

pj(Ai, Ak)wj (25)

Where wj is the weight of each criterion. Sometimes
weights are assigned by decision makers. pj(Ai, Ak)
determines the preference functions defined for each cri-
terion. It translates the difference between the evaluations
obtained by two alternatives into a preference degree from
zero to one. In order to facilitate the selection of a specific
preference function, authors in [42] proposed six basic
types of function:

– Usual criterion

p1(Ai, Ak) =

{
0 ∀d ≤ 0

1 ∀d > 0



– Quasi criterion

p2(Ai, Ak) =

{
0 ∀d ≤ qk
1 ∀d ≥ qk

– Criteria with linear preference

p3(Ai, Ak) =


0 d ≤ 0

d/pk 0 ≤ d ≤ pk
1 d ≥ pk

– Level criterion

p4(Ai, Ak) =


0 d ≤ qk
0.5 qk < d ≤ pk
1 d > pk

where p:preference threshold and q:indifference
threshold

– Indifference criterion

p5(Ai, Ak) =


0 d ≤ qk
d−qk

pk−d−qk qk ≤ d ≤ pk
1 d ≥ pk

– Gaussian criterion.

p6(Ai, Ak) =

{
0 d < 0

1− exp(−d2/2σ2) d ≥ 0

For each criterion, the value of an indifference threshold
q, the value of a strict preference threshold p, and the
value of an intermediate value between p and q, s, has
to be fixed [43]. In each case, these parameters have
a clear significance for the decision-maker. For two
alternatives Ai and Ak, the decision maker should select
one type of preference functions. This index values
obtained H(Ai, Ak) between 0 and 1, and represents
the global intensity of preference between the couples
of alternatives.

• Step 2: Determination of deviations based on pairwise
comparisons

dj(a, b) = gj(a)− gj(b) (26)

where dj(a, b) denotes the difference between the
evaluations of alternatives a and b on each criterion.

• Step 3: Application of the preference function:

pj(a, b) = Fj [dj(a, b)], j = 1, . . . , k (27)

where pj(a, b) is a preference function applied for
alternatives a and b. There are six types of preference
functions and the decision makers can select one of them.

• Step 4: Obtaining the preference order In this step,
ranking alternatives can be made partially or completely.
Partial ranking is obtained using PROMETHEE I, and
complete ranking is performed using PROMETHEE II.

1) Partial ranking of the alternatives: PROMETHEE I:

φ+(Ai) =
1

m− 1

∑
x∈A

H(Ai, Ak) (28)

φ−(Ai) =
1

m− 1

∑
x∈A

H(Ak, Ai) (29)

φ+(Ai) represents the positive outranking flow (or leav-
ing flow). It expresses how much each alternative dom-
inates all the others. φ−(Ai) represents the negative
outranking flow (or entering flow). It expresses how much
each alternative is dominated by all the others.

• The smaller φ−(Ai), the better the alternative. φ−(Ai)
represents the weakness of Ai. The latter is preferred to
Ak when φ+(Ai) ≥ φ+(Ak), φ−(Ai) ≤ φ−(Ak), and at
least one of the inequalities holds as a strict inequality.

• Ai and Ak are indifferent when φ+(Ai) = φ+(Ak) and
φ−(Ai) = φ−(Ak).

• Ai and Ak are incomparable otherwise.
In this partial ranking some couples of alternatives
are comparable, some others are not. Thus, we need
to calculate the net outranking flow in the following step.

2) Complete Ranking of the alternatives: PROMETHEE
II :

Φ(Ai) = Φ+(Ai)− Φ−(Ai) (30)

Where Φ(Ai) denotes the net outranking flow for each
alternative. The PROMETHEE II completes ranking as:

– Ai is preferred to Ak when Φ(Ai) > Φ(Ak)
– Ai and Ak are indifferent when Φ(Ai) = Φ(Ak).

All alternatives are now comparable, the alternative with
the highest Φ(Ai) can be considered as the best one. A
considerable part of information will be lost by taking
the difference of positive and negative outranking flows.
This information can be useful in concrete applications
for decision making.

B. Proposed PROMETHEE II Method Based on distance
Measures Between IFs

In this section, the IF-PROMETHEE method is developed
and applied to solve MCDM problems in intuitionistic fuzzy
environment. The proposed intuitionistic fuzzy PROMETHEE
II has the following steps:
• Step 1: For multi-criteria decision making problem, gen-

erate a set of alternatives A = {A1, A2, . . . , Am} and a
set of criteria C = {C1, C2, . . . , Cn}. In this step, the
evaluation values of the alternatives over the criteria are
intuitionistic fuzzy values.

• Step 2: Determine the weights (wj) of criteria
There are many definition of weights in literature [19],
[44]. In this work, the Intuitionistic Fuzzy standard devi-
ation (IF-SD) [19] is applied as:

δj =
√
S(µij) + S(νij) (31)



Where:

S(µij) =

m∑
i=1

(µij(Cj)− µ̄j(Cj))2

m

S(νij) =

m∑
i=1

(νij(Cj)− ν̄j(Cj))2

m

Where
Wj =

σj∑m
k=1 σj

(32)

where j = 1, . . . , n
• Step 3: Determine the deviations dj(Ai, Ak) based on

pairwise comparisons between i and k alternatives with
respect to criterion j.
We propose to use different distance measures (8),
(12) and (13) to determine the deviations d between
alternatives under the IFSs as:

– For benefit criteria

d(Aij , Akj) =


√

1
2n

∑n
i=1 (µA−µB)2+(νA−νB)2

if Aij ≥ Akj
0 otherwise

– For cost criteria

d(Aij , Akj) =


√

1
2n

∑n
i=1 (µA−µB)2+(νA−νB)2

if Aij ≤ Akj
0 otherwise

where i 6= k, i, k = 1, 2, . . . ,m

• Step 4: Calculate the preference function Pj(Ai, Ak)
over the jth criterion.
There are six main types of preference functions in
section V-A. We propose to use Gaussian criterion with
distance measure (8),(11) and (10).

p(Aij , Akj) =

{
0 d < 0

1− exp(−d2/2σ2) d ≥ 0

• Step 5: Calculate the Preferences Index
The preference index used the distances measures (8),(11)
and (10) witch are integrated in preference function
Pj(Ai, Ak) in step 4. We compute the preference index
Hd(xi, xk) using the criterion weighted value is given as
follows:

Hd(xi, xk) =

n∑
j=1

wj × pj(Ai, Ak), i, k = 1, 2, . . . ,m

(33)
where wj (32) are weights associated with each criteria.

• Step 6: Determine the leaving flow and entering flow
We compute the leaving flow Φ+(xi) and entering flow
Φ−(xi) using the the preference index Hd(xi, xk) (33):

Φ+(xi) =
1

m− 1

∑
x∈A

Hd(xi, xk), i = 1, 2, . . . ,m (34)

and

Φ−(xi) =
1

m− 1

∑
x∈A

Hd(xk, xi), i = 1, 2, . . . ,m (35)

• Step 7: Ranking the alternatives according the net flow
(36).

Φ(Ai) = Φ+(Ai)− Φ−(Ai) (36)

C. Proposed PROMETHEE II Method Based on Similarity
Measures between IFs

• Step 1-2: Same as steps of PROMETHEE II based on
distance Measures, section V-B.

• Step 3: We propose to use two similarity measures
SC (24) and SH (23) to determine the deviations dS
between alternatives defined by:

– For benefit criteria

dS(Aij , Akj) =



1−|2(µA(xi)−µB(xi))−(νA(xi)−νB(xi))|
3

×
(
1−πA(xi)−πB(xi)

2

)
−|2(νA(xi)−νB(xi))−(µA(xi)−µB(xi))|

3

×
(
πA(xi)−πB(xi)

2

)
if Aij≥Akj

0 otherwise

– For cost criteria

dS(Aij , Akj) =



1−|2(µA(xi)−µB(xi))−(νA(xi)−νB(xi))|
3

×
(
1−πA(xi)−πB(xi)

2

)
−|2(νA(xi)−νB(xi))−(µA(xi)−µB(xi))|

3

×
(
πA(xi)−πB(xi)

2

)
if Aij≤Akj

0 otherwise

where i 6= k, i, k = 1, 2, . . . ,m

• Step 4: We propose to calculate the preference function
Pj(Ai, Ak) over the jth criterion using similarity mea-
sures dS instead of distance measure d used in step 4
section V-B .

p(Aij , Akj) =

{
0 dS < 0

1− exp(−dS2/2σ2) dS ≥ 0

• Step 5: Calculate the Preferences Index
We compute the preference index Hs(xi, xk) using the
criterion weighted value is given as follows:

Hs(xi, xk) =

n∑
j=1

wj × pj(Ai, Ak), i, k = 1, 2, . . . ,m

(37)
where wj (32) are weights associated with each criteria.

• Step 6: Determine the leaving flow and entering flow
We compute the leaving flow Φ+(xi) and entering flow
Φ−(xi) using the the preference index Hs(xi, xk) (37):

Φ+(xi) =
1

m− 1

∑
x∈A

Hs(xi, xk), i = 1, 2, . . . ,m (38)

and

Φ−(xi) =
1

m− 1

∑
x∈A

Hs(xk, xi), i = 1, 2, . . . ,m (39)



• Step 7: same as step in section V-B.

D. ILLUSTRATIVE EXAMPLES

The proposed methods: IF-PROMETHEE II using distance
measures and IF-PROMETHEE II using similarity measures
are applied to MCDM problems from literature [45]. The
latter consists to select the best assessment and evaluations of
some organizations considering four alternatives: Bajaj Steel
(A1), H.D.F.C. Bank (A2), Tata Steel (A3) and Infotech
Enterprises (A4) are assessed for their performance on the
basis of following five benefit criteria (c1, c2, c3, c4, c5):
• c1: Earnings per share(EPS).
• c2: Face value.
• c3: P/C (Put Call) Ratio.
• c4: Dividend.
• c5: P/E (Price to earnings) ratio

The following intuitionistic fuzzy sets decision making matrix
(40) presents the relationship between criteria and alternatives
of data set:


C1 C2 C3

A1 [0.23, 0.587] [0.61, 0.2] [0.192, 0.63]
A2 [0.26, 0.554] [0.2, 0.61] [0.63, 0.192]
A3 [0.62, 0.197] [0.61, 0.2] [0.259, 0.56]
A4 [0.197, 0.62] [0.36, 0.454] [0.337, 0.484]

 (40)


C4 C5

A1 [0.22, 0.75] [0.196, 0.62]
A2 [0.094, 0.875] [0.62, 0.196]
A3 [0.31, 0.66] [0.227, 0.59]
A4 [0.15, 0.82] [0.332, 0.50]


E. Application of PROMETHEE II Method Using Different
Distance Measures

• Step 1: Use decision matrix (40) provided by [8] to
evaluate four organizations.

• Step 2: Compute the weights of criteria using Intuition-
istic Fuzzy standard deviation (IF-SD) [19]:
w = {0.1879, 0.2717, 0.2113, 0.1230, 0.2061}.

• Step 3: Determination of deviation by pairwise compari-
son
This step involves the calculation of distance measures
between alternatives by pairwise comparison. The de-
viations are obtained using different distance formulas
(8),(11) and (10) given in step 3 in section V-B. The
obtained results are shown in table II.

• Step 3: Calculate the preference index.
Calculation of the preference index of each organization
takes into account the criteria weight. It is also a value
to show the degree of preference of each organization
over another one. The index is calculated using (33). The
preference index is presented in Table III.

• Step 4: Determine the positive and negative outranking
flows of each organization (PROMETHEE I partial rank-
ing).
(a) Leaving flow and entering flow of organizations
Positive outranking flow φ+(a) shows the domination

TABLE II
DEVIATIONS BETWEEN ALTERNATIVES USING DISTANCE MEASURE (11)

WITH RESPECT TO CRITERIA Cj

Alternatives C1 C2 C3 C4 C5

A1,A2 0.9688 0.5900 0.5620 0.8743 0.5760
A1,A3 0.6100 1.0000 0.9318 0.9100 0.9694
A1,A4 0.9670 0.7484 0.8546 0.9300 0.8764
A2,A1 0.9688 0.5900 0.5620 0.8743 0.5760
A2,A3 0.6412 0.5900 0.6302 0.7843 0.6066
A2,A4 0.9358 0.8416 0.7074 0.9443 0.6996
A3,A1 0.6100 1.0000 0.9318 0.9100 0.9694
A3,A2 0.6412 0.5900 0.6302 0.7843 0.6066
A3,A4 0.5770 0.7484 0.9228 0.8400 0.9070
A4,A1 0.9670 0.7484 0.8546 0.9300 0.8764
A4,A2 0.9358 0.8416 0.7074 0.9443 0.6996
A4,A3 0.5770 0.7484 0.9228 0.8400 0.9070

TABLE III
PREFERENCE INDEX VALUE

Alternatives A1 A2 A3 A4

A1 0 0.2609 0.0807 0.1032
A2 0.0627 0 0.2511 0.2866
A3 0.1356 0.3062 0 0.0905
A4 0.1583 0.1715 0.1684 0

degree of the organization over other ones. In contrast,
negative outranking flow φ−(a) shows the domination
degree of other organizations over current one. formulas
(28) and (29) are used to calculate these two flows.
Leaving flow and entering flow of organizations are
shown in table IV.
(b) Determine the net flow value (PROMETHEE II) for

TABLE IV
PROMETHEE I FLOW

Alternatives φ+(a) φ−(a)
A1 0.4448 0.3566
A2 0.6003 0.7386
A3 0.5323 0.5002
A4 0.4982 0.4803

each organization.
Net flow values φ(A) are calculated to avoid incompara-
bility. Equation (36) is used to complete the calculation
of net outranking flow. It is presented in table V.

TABLE V
NET FLOW VALUE OF ORGANIZATIONS

Alternatives Net flow φ(A) rank
A1 0.3566 4
A2 0.7386 1
A3 0.5002 2
A4 0.4803 3

The ranking of the organizations is arranged in descending
order of net flow value. The best organization is the one having
the highest net flow value, φ(a). By using PROMETHEE II



TABLE VI
NET FLOW VALUE OF ORGANIZATIONS USING DISTANCE MEASURES

APPLIED TO AN EXAMPLE OF MCDM PROBLEM

Distance Net flow φ(Ai) Sorted
Measure A1 A2 A3 A4 Alternatives
qIFS (8) 0.3566 0.7386 0.5002 0.4803 A2 > A3 > A4 > A1

dEh (12) 0.5183 0.3188 0.3374 0.1366 A1 > A3 > A2 > A4

dHd (10) 1.5218 1.2398 0.9349 1.0700 A1 > A2 > A4 > A3

(complete ranking) method, organization A1 (Bajaj Steel) is
selected as the best alternative using distance measures dEh
(12) and dHd (10). However using formulas qIFS (8) the best
alternative is A2

The comparison between distances measures considering the
ranking lists for the IF-PROMETHEE II method, demonstrates
the influence of distance measure in MCDM problem resolu-
tion.

F. Application of PROMETHEE II Method Using Different
Similarity Measures

TABLE VII
NET FLOW VALUES OF ORGANIZATIONS USING SIMILARITY MEASURES

APPLIED TO AN EXAMPLE OF MCDM PROBLEM

similarity Net flow,φ(A) Sorted
Measure A1 A2 A3 A4 Alternatives
SC (24) 2.4428 2.1370 2.3273 2.4719 A2 < A3 < A1 < A4

SH (23) -3.7308 -3.8247 -4.1538 -4.6635 A4 < A3 < A2 < A1

The ranking of the organizations is arranged in ascending
order of net flow value. The results of IF-PROMETHEE II
using similarity measures are presented in table VII. It can be
seen that alternative A2 is ranked first using similarity measure
SC (24). However using SH (23) A4 is ranked first.
Note. It should be noted that similarity and distance measures
are dual concepts, when one increases, the other decreases.
Because of this the maximum of net flow should be taken
when a similarity measure is applied instead of its minimum
when a distance measure is applied for more information see
[14].

The results of ranking of the four organizations by IF-

TABLE VIII
COMPARISON WITH EXISTING TECHNIQUES

Technique Ranking Optimal
choice

IF-TOPSIS [45] A3 > A1 > A4 > A2 A3

IF-TOPSIS [46] A3 > A1 > A4 > A2 A3

IF-PROMETHEE [8] A3 > A2 > A1 > A4 A3

IF-PROM II using qIFS A2 > A3 > A4 > A1 A2

IF-PROME II using dEh A1 > A3 > A2 > A4 A1

IF-PROME II using dHd A1 > A2 > A4 > A3 A1

IF-PROME II using SC A2 < A3 < A1 < A4 A2

IF-PROME II using SH A4 < A3 < A2 < A1 A4

PROMETHEE II (IF-PROME II) using similarity and distance
measures are presented in table VIII in addition of those

of some methods from literature. The latter obtained A3

as better alternative and A1 or A2 second best alternatives.
However, by IF-PROMETHEE II using distance dEh and
dHd, the best alternative is A1 followed by A3 or A2 and
using distance qIFS the best alternative is A2 followed by A3.
Moreover, using similarity measure SC , the obtained results
show that the appropriate alternative is A2 followed by A3 and
using the similarity measure SH , the appropriate alternative
is A4 followed by A3. It can be concluded that appropriate
alternative can be A2, A1 or A3 as they are ranked first or
second by all methods. It should be noted that the differences
of results obtained by the proposed methods and other ones
presented in table VIII implies the important influence of
similarity and distance measures in PROMETHEE II method.

VI. CONCLUSION

In this study, we presented several intuitionistic distances
and similarity measures proposed in literature, also we de-
tailed PROMETHE II and IF-PROMETHEE II method from
literature. the approach IF-PROMETHEE II is developed for
multiple criteria decision making problems using distance and
similarity measures for computation deviations between alter-
natives It should be noted that the difference between the pro-
posed methods and other methods presented in literature can
be caused by the impact of distance and similarity measures
on the ranking of alternatives. This approach is applied for
selecting the best organizations of investment. As perspective,
possibility measures will be applied to PROMETHEE [47],
[48]. In addition, other decision making methods will be
studied and compared with proposed ones.
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