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Abstract—Fuzzy rule interpolation (FRI) predicts an
accountable outcome of a possible course of action in
sparse fuzzy rule base system (FRBS). However, in real
life, we encounter some situations where the antecedent
has to be predicted to obtain a desired consequent of
FRBS. In this situation, inverse fuzzy rule interpolation
(IFRI) or backward fuzzy rule interpolation (BFRI)
is used to get the desired outcome. Here a geometry
based inverse fuzzy rule base interpolation (GIFRI)
is suggested. The mathematical detail of the proposed
method is elaborated and its geometrical interpretation
is given with the help of fuzzy geometry. It is to
be noted that the proposed method ensures that the
inverse of the inverse is the original one.

Index Terms—Fuzzy rule base interpolation, Inverse
rule base interpolation, backward rule base interpola-
tion, Transformation of fuzzy point, Multi-dimensional
rule base interpolation

I. Introduction
Fuzzy Rule Interpolation (FRI) in a sparse fuzzy rule

base system was introduced by K,ócy an Hirota (KH) [1]
in 1993. In the subsequent years, the KH method has been
improved and generalized by several researchers in [2]–[5].
The existing methodologies on FRI are mainly divided
in two groups. The methodologies which belong to the
first group [6]–[12], deduce the conclusion directly from
the given rule base whereas the methodologies of second
group obtain the conclusion in two steps. In the first step,
an auxiliary rule is obtained from the given rule base and
the conclusion is drawn using that auxiliary rule.

Solid cutting method [15], [16], fixed point law (FPL),
fixed value law (FVL) [17]–[19], least square method (LS)
[13] and polar cut method (PC) [14] are among few of the
methodologies which belong to second group.

In literature, only two type of inverse fuzzy rule interpo-
lation (IFRI) or backward fuzzy rule interpolation (BFRI)
methods exist. Baranyi et al. [22] were first to propose a

two steps inverse interpolation process. In the first step,
an inverse rule base (IRB) is constructed from the given
rule base. In the second step, required missing antecedent
is obtained by using the driven IRB. Backward fuzzy rule
interpolation (BFRI) has been proposed by Jin et al. [20],
[21] based on scale and move transformation.

To describe the method proposed by Baranyi et al. [22],
let us consider a rule base with two antecedents (x1, x2)
and one consequent y which is given in form of Table I.
We have to predict the missing antecedent x1 to obtain
a desired consequent y = b∗ for given x2 = a∗2. In the
first step, an auxiliary inverse rule base (AIRB) of the
given rule base (Table I) is obtained as Table II with the
assumption that x1 is the missing antecedent. This AIRB
consists of eight rules with four unknown antecedents am1,
am2, am3 and am4. The antecedents am1, am2 can obtained
by interpolating the inverse model but am3 and am4 have
to obtained by extrapolation. From the geometry of the
AIRB it can be concluded that the AIRB can be effectively
reduced to inverse rule base (IRB) which contain only
four rules (see Table III) where bmin = min{b1, b2, b3, b4}
and bmax = max{b1, b2, b3, b4}. In the second step, the
required antecedent x1 = a∗1 for the desired y = b∗ and
given x2 = a∗2 can obtained from the reduced inverse rule
base presented in Table III by using any interpolation
technique. The same approach is extended to obtain

TABLE I
Forward Rule Base

x2 x1 = a11 x1 = a12
a21 b1 b2
a22 b3 b4

the inverse rule base for multi-antecedents case also. The
method illustrated above has considered that each of the
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TABLE II
Inverse Rule Base

x2 y = b1 y = b2 y = b3 y = b4
a21 a11 a12 am1 am2
a22 am3 am4 a11 a12

TABLE III
Reduced Inverse Rule Base

x2 y = bmin y = bmax

a21 d1 d2
a22 d3 d4

antecedents xi have only two possible values ai1 and ai2.
But, when the antecedent xi has n number of possible
values then the given rule base has to divided into (n− 1)
sub-rule bases and for each sub-rule base we have find the
inverse rule base. In this case, this method faces a very
high computational difficulties.

The method proposed by Jin et al. [20], [21] is based
on scale and move transformations of fuzzy numbers. In
this method, the antecedents and consequent are repre-
sented by their generalized representative value and spread
lengths. This is also a two stage technique. In the first
step, an auxiliary rule is obtained from the given rule
base and the observation. In the second step, the required
conclusion is obtained from the auxiliary rule which goes
through necessary scale and move transformation.

Suppose the rule base R = {R̃i} and observation Õ are
given as follows:

R̃i : If xk is Ãik, k ∈ {1, 2, . . .M} then y is B̃i (1)
Õ : x1 = Ã∗1, . . . xl =?, . . . xM = Ã∗M then y is B̃∗ (2)

For simplicity let us consider that each Ãk is triangular
fuzzy set Ãk(ak0, ak1, ak2). After obtaining the auxiliary
rule R̃(Ã1, Ã2, ...ÃM , B̃), the measure of scale transforma-
tion between Ãk and Ã∗k is given as:

sAk
= a∗k2 − a∗k0
a′k2 − a′k0

(3)

The unknown parameter sAl
is then obtained from the

relation given as follows:

sAl
= M × sB −

M∑
k=1,k 6=l

sAk
(4)

Using these scale measures sk, we obtain other rule
R̃†(Ã†1, Ã

†
2, ...Ã

†
M , B̃

†) from which we obtain the required
Ã∗l using move transformation as follows. Here Ã†k is given
as 

a†k0 = a′k0(1+2sAk
)+a′k0(1−sAk

)+a′k0(1−sAk
)

3

a†k1 = a′k0(1−sAk
)+a′k0(1+2sAk

)+a′k0(1−sAk
)

3

a†k2 = a′k0(1−sAk
)+a′k0(1−sAk

)+a′k0(1+2sAk
)

3

(5)

The move transformation parameters mAk
between Ãk

and Ã∗k is given as follows

mAk
=


3(a∗k0−a

†
k0)

a†
k1−a

†
k0

if a∗k0 ≥ a
†
k0

3(a∗k0−a
†
k0)

a†
k2−a

†
k1

otherwise
(6)

The unknown parameter mAl
is then obtained from the

relation given as follows

mAl
= M ×mB −

M∑
k=1,k 6=l

mAk
(7)

Then the required antecedent Ã∗l is obtained through move
transformation of Ã†l with parameter mAl

.
We can see that in Equations (4) and (7) the factor M

is multiplied in the consequent dimension y which gives a
biased emphasis on the consequent dimension without any
valid geometrical significance.

Geometry based linear fuzzy rule base interpolation
(GLFRI) is proposed by Das et al. [24] which associates
the FRI technique to classical interpolation technique
with a complete geometrical interpretation. In the present
study, GLFRI is generalized for multi-antecedent case
which is named as generalized geometry based linear fuzzy
rule base interpolation (GGLFRI). Also, a technique for
inverse-GGLFRI (IGGLFRI) is proposed. The geometrical
and analytical interpretation of proposed inverse-GGLFRI
(IGGLFRI) is in the same line of GGLFRI. In IGGL-
FRI, the resultant rule R̃ is projected to the unknown
antecedent axis xm (say) to obtain a resultant prediction
Ãm of the required antecedent xm. Then required an-
tecedent A∗m obtained from Ãm through some geometrical
transformations [23].

There are a few advantages in using the proposed
GGLFRI and IGGLFRI. The methods are complement
of each other in the sense that the conclusion B̃∗ ob-
tained from GGLFRI can also be used as a desired out-
put in IGGLFRI. That is if B̃∗ is output of GGLFRI
for the observation (Ã∗1, Ã∗2, ...Ã∗N ) then Ã∗m can also be
obtained as output of IGGLFRI corresponding to the
input (Ã∗1, Ã∗2, ...Ã∗m−1, ?, Ã∗m+1, ...Ã

∗
N , B̃

∗). Also, it is to
be noted that the inverse interpolation technique generates
unique antecedent and there is no need to obtain auxiliary
rule base in the process.

In the next section, a few basic definitions on fuzzy
points which are related to the proposed method are given.
The proposed forward and inverse methods are described
simultaneously in two different stages. In the first stage,
the proposed method is described for single input and
single output rule base system which is given in section III.
The proposed method is generalized for multiple inputs
and single output case in section IV. Finally, section V
concludes our work.



II. Preliminaries
Definition 2.1: (Fuzzy Points [23]): A fuzzy set P̃ (a, b)

at (a, b) ∈ R2 is called a fuzzy point (FP) if its membership
function µ((x, y) | Ã) follows the properties:

1) µ((x, y) | P̃ ) is upper semi-continuous,
2) µ((x, y) | P̃ = 1 if and only if (x, y) = (a, b), and
3) the alpha-cut P̃ (α) is a compact and convex subset

of R2, for all α ∈ [0, 1].
Note 1: Support P̃ (0) of the FP P̃ (a, b) can be repre-

sented as: P̃ (0) = ∪α∈[0,1],
θ∈[0,2π]

{Pα, θ} where µ(Pα, θ | P̃ ) = α

and θ is the angle between the lines through (a, b) parallel
to x-axis and the line joining Pα, θ and P (a, b).

Definition 2.2: (Same and Inverse Points of FP
[23]): Let P̃1(a, b), P̃2(c, d) be two fuzzy points at P̃1(a, b)
and P̃2(c, d) respectively. Then Pα, θ1 and Pα, θ2 are same
points of P̃1 and P̃2 where P̃1(0) = ∪α∈[0,1],

θ∈[0,2π]
{Pα, θ1 } and

P̃2(0) = ∪α∈[0,1],
θ∈[0,2π]

{Pα, θ2 }.

Also, Pα, θ1 and Pα, θ+π2 are inverse points of P̃1 and P̃2.
Definition 2.3: (Fuzzy Line Segment [23]): Fuzzy line

segment (FLS) L̃P1P2 joining two fuzzy points P̃1 and P̃2
can be defined by its membership function as:

µ((x, y) | L̃P1P2) = sup{α : where (x, y) lies on the line
joining same points u ∈ P̃1(0) and v ∈ P̃2(0)

where µ(u | P̃1) = µ(v | P̃2) = α } (8)

In other words we can describe L̃P1P2 as:

L̃P1P2 = ∪α∈[0,1],
θ∈[0,2π]

{lα, θ : where lα, θ is the line joining

Pα, θ1 and Pα, θ2 with µ(lα, θ | L̃P1P2) = α } (9)

Expansion and contraction of fuzzy point is defined in
the following. The expression µ((x, y) | Q̃) = f(x−a, y−b)
of the membership function µ((x, y) | Q̃) of a FP Q̃(a, b)
is considered to define expansion/contraction of FP.

Definition 2.4: Expansion/Contraction of FP [24]:
Expansion/Contraction of Q̃(a, b) with membership func-
tion µ((x, y) | Q̃) = f(x − a, y − b) by a set parameters
t = {t1, t2...tm} and s = {s1, s2...sm}, where ti, si ≥ 0 in
m different regions D = {D1, D2...Dm} is defined in the
following way:

((x, y) | Q̃′) =


f( x−a

ti
, y−b

si
), if (x, y) ∈ Di and ti, si > 0

1, if (x, y) = (a, b) ∈ Di, ti = 0 and/or si = 0
0, if (a, b) 6= (x, y) ∈ Di, ti = 0 and/or si = 0
f(x− a, y − b), elsewhere

(10)
Example 2.1: Let us consider the fuzzy point Q̃(5, 5)

with membership function defined as follows:

µ((x, y) | Q̃) =
{

1−
√

( x−5
2 )2 + ( y−5

2 )2, if ( x−5
2 )2 + ( y−5

2 )2 ≤ 1
0, elsewhere

Fig. 1. Expansion/Contraction of Fuzzy Point

Then, the expansion/contraction of Q̃(5, 5) in regions D =
{D1, D2, D3, D4} with set of parameters t = {t1, t2, t3, t4}
and s = {s1, s2, s3, s4}, where D1 = {(x, y) | x ≥ 5, y ≥ 5},
D2 = {(x, y) | x ≤ 5, y ≥ 5}, D3 = {(x, y) | x ≤ 5, y ≤
5} and D4 = {(x, y) | x ≥ 5, y ≤ 5}, is defined by its
membership function as follows:

µ((x, y) | Q̃′) =



1−
√

( x−5
2×t1

)2 + ( y−5
2×s1

)2,

if ( x−5
2×t1

)2 + ( y−5
2×s1

)2 ≤ 1 and (x, y) ∈ D1

1−
√

( x−5
2×t2

)2 + ( y−5
2×s2

)2,

if ( x−5
2×t2

)2 + ( y−5
2×s2

)2 ≤ 1 and (x, y) ∈ D2

1−
√

( x−5
2×t3

)2 + ( y−5
2×s3

)2,

if ( x−5
2×t3

)2 + ( y−5
2×s3

)2 ≤ 1 and (x, y) ∈ D3

1−
√

( x−5
2×t4

)2 + ( y−5
2×s4

)2,

if ( x−5
2×t4

)2 + ( y−5
2×s4

)2 ≤ 1 and (x, y) ∈ D4

0, elsewhere

Few classes are explained through the above diagram (see
Figure 1).

III. Proposed Method: Single Input-Single
Output

Suppose the given knowledge base R = {R̃i} contains n
rules. The rules R̃i are of single input-single output type
which are given in the following form:

R̃i : if x = Ai then y = Bi (11)

A. Forward FRI System with Single Input-Single Output:
In GLFRI [24], each rule R̃i is considered as an or-

dered pair of the antecedent Ãi and consequent B̃i, i.e.
R̃i = (Ãi, B̃i). Different type of t-norms can be used in this
purpose. In this study ‘min’-norm (see Equation (12)) is
used. Then the rule R̃i = (Ãi, B̃i) represents a fuzzy point
in the antecedent-consequent plane. The rules or fuzzy
points R̃i, R̃i+1 are joined through their same points to
obtain a collection of fuzzy line segments L̃i,i+1 (see Figure
2 and Equation (8)). Then a resultant rule R̃ is obtained
as convex combination R̃ = q

p+q R̃i ⊕
p
p+q R̃i+1 of adjacent

rules R̃i and R̃i+1 of the observation x = Ã∗, correspond-
ing to which we have to find the required consequent B̃∗
(see Figure 2). Here, the vertical line passing through core



a∗ of Ã∗ intersects the line segment joining the cores of R̃i
and R̃i+1 at ration p : q internally. Next, the resultant rule
R̃ is decomposed in antecedent (x)- consequent(y) axes to
obtain the resultant antecedent Ã and B̃ (see Figure 3)
respectively. Then the expansion/contraction parameters
γ, δ are calculated between Ã and Ã∗ and with the same
parameters γ, δ resultant consequent B̃ is transformed into
required conclusion B̃∗ (see Figure 4). In the following, the
method is illustrated with an example.

Example 3.1: Suppose a rule base R is given by:

R =
3⋃
i=1
{R̃i : Ãi → B̃i}, where Ã1(2, 3, 4), Ã2(7, 8, 9),

Ã3(13, 14, 15), B̃1(2, 3, 4), B̃2(8, 9.5, 11) and B̃3(13, 14, 15)
are triangular fuzzy numbers respectively. Then the mem-
bership function of fuzzy rule R̃i is given in following
equation:

µ((x, y) | R̃i) = min{µ(x | Ãi), µ(y | B̃i)}, i = 1, 2, 3
(12)

If a conclusion B̃∗ corresponding to an observation
Ã∗(9.5, 11, 12.5) has to be drawn from the given rule base
R, then the following steps are followed.

First a vertical line l : x = 11, through the core a∗ = 11
of Ã∗ is drawn which intersects the line segment LR2R3 at
(11, 11.75). The point (11, 11.75) divides the line segment
LR2R3 into p : q = 1 : 1 ratio internally.

So, the intermediate rule R̃ is obtained as a convex
combination of the rules R̃2 and R̃3 with the above
mentioned ratio, i.e. R̃ = 1

2 R̃2 ⊕ 1
2 R̃3 (see Figure 2).

The intermediate antecedent Ã obtained from inter-
mediate rule R̃ is Ã(10, 11, 12). But the observation
Ã∗(9.5, 11, 12.5) is an expanded fuzzy set of Ã(10, 11, 12)
with parameters γ = 11−9.5

11−10 = 1.5 and δ = 12.5−11
12−11 = 1.5

(see Figure 3).
So, to obtain R̃∗ the intermediate rule R̃ is also ex-

panded with set of parameters t = {t1 = 1.5, t2 = 1.5, t3 =
1.5, t4 = 1.5} and s = {s1 = 1.5, s2 = 1.5, s3 = 1.5, s4 =
1.5} in regions D = {D1, D2, D3, D4} respectively, where
D1 = {(x, y) | x ≥ 11, y ≥ 11.75}, D2 = {(x, y) | x ≤
11, y ≥ 11.75}, D3 = {(x, y) | x ≤ 11, y ≤ 11.75} and
D4 = {(x, y) | x ≥ 11, y ≤ 11.75}.

Now, for ti = si, i = 1, 2, 3, 4, R̃∗ is an uniformly
expanded fuzzy rule of R̃ (see Figure 4). Then the final
conclusion B̃∗(9.875, 11.75, 13.625) is being drawn from R̃∗

using following equation:

µ(y | B̃∗) = sup
x
{µ(x, y | R̃∗)}

B. Inverse FRI System with Single Input-Single Output:
Suppose we need to predict an antecedent Ã∗ for a

desired output B̃∗ based on the given knowledge base R.
In this case also, we propose to apply the same geometry
based concept for interpolation which is mentioned above.
The advantage of the proposed method is that there is an
exact matching of arguments through forward and reverse
process of interpolation. The first two steps of inverse

interpolation technique are same, i.e., converting rule R̃i
to fuzzy point R̃i and joining R̃i and R̃i+1 as a collection
of lines L̃i,i+1 remain same. In the next step we have to
find out in which ratio p : q the core of B̃∗ situated in
between its adjacent rules R̃i and R̃i+1. Then we find out
the resultant rule R̃ = (Ã, B̃) as a convex combination
of the rules R̃i and R̃i+1 in the similar manner (see figure
5). The resultant Ã and B̃ are obtained by projecting R̃ in
their respective dimension. It might happen that resultant
B̃ is an/a expanded/contracted variation of given B̃∗ (see
figure 6). In the next step, the transformation parameters
γ, δ between desired consequent B̃∗ and resultant con-
sequent B̃ are obtained. Finally, we obtain the required
antecedent Ã∗ by transforming Ã with parameters γ, δ.
The same has been illustrated step by step in the following
with an example.

Example 3.2: Suppose, we have to predict an antecedent
Ã∗ corresponding to a given output B̃∗(10, 11.5, 13) based
on the knowledge base R given in Example 3.1.

Then for inversion of the desired consequent
B̃∗(10, 11.5, 13) into corresponding antecedent, we
first draw a vertical line l1 : y = 11.5, through the core
b∗ = 11.5 of B̃∗, which intersects the line segment LR2R3

at (10.67, 11.5).
The point (10.67, 11.5) divides the line segment LR2R3

into p : q = 2 : 2.5 ratio internally. So, the resultant
rule R̃ is obtained as a convex combination of R̃2 and
R̃3 with the above ratio, i.e. R̃ = 2.5

4.5 R̃2 ⊕ 2
4.5 R̃3. The

intermediate consequent B̃ is obtained from intermediate
rule R̃ as B̃(10.22, 11.5, 12.78).

But the conclusion B̃∗(10, 11.5, 13) is a contracted
fuzzy set of B̃(10.22, 11.5, 12.78) with parameters γ =
11.5−10.22

11.5−10 = 0.85 and δ = 12.78−11.5
13−11.5 = 0.85.

So, to obtain final R̃∗, the intermediate rule R̃ is
also contracted with the set of parameters t = {t1 =
0.85, t2 = 0.85, t3 = 0.85, t4 = 0.85} and s = {s1 =
0.85, s2 = 0.85, s3 = 0.85, s4 = 0.85} in regions D =
{D1, D2, D3, D4} respectively, where D1 = {(x, y) | x ≥
10.67, y ≥ 11.5}, D2 = {(x, y) | x ≤ 10.67, y ≥ 11.5},
D3 = {(x, y) | x ≤ 10.67, y ≤ 11.5} and D4 = {(x, y) | x ≥
10.67, y ≤ 11.5}.

Then the final conclusion Ã∗(9.82, 10.67, 11.52) is being
drawn from R̃∗ using following equation:

µ(y | Ã∗) = sup
y
{µ(x, y | R̃∗)}

Note 2: If we consider B̃∗ = 1̃1.75 in the inverse FRI
model as given conclusion then we will get the same
antecedent Ã∗ = 1̃1 as a result which implies that the
above mentioned forward and inverse methods are com-
plementary to each other.

IV. Proposed Method: FRI System with
Multiple Inputs and Single Output

Suppose the given knowledge base R consists of n
number of rules. Each rule R̃i have N inputs and single



Fig. 2. Resultant rule in FRI Fig. 3. Observation and resultant rule Fig. 4. Obtaining final conclusion in FRI

Fig. 5. Intermediate rule for inverse interpolation Fig. 6. Observation and resultant rule in inverse interpolation

output which are given as follows:

R̃i : if x1 = Ãi1, x2 = Ãi2, . . . xN = ÃiN then y = B̃i
(13)

The above method GLRFI is generalized for the case of N
antecedents and single consequent. We propose to visualize
fuzzy rules as ordered pair R̃i(Ãi1, Ãi2, . . . ÃiN , B̃i) of an-
tecedents and consequent. Geometrically, each antecedent
and consequent may be considered as individual fuzzy set
in Euclidean space along respective antecedent and conse-
quent axes. Then the fuzzy rules can considered as fuzzy
points in the antecedents-consequent geometrical space.
Different type of t− norms can be taken to construct the
fuzzy point. ‘min’ t-norm is used in this study to perform
the cross product of the fuzzy sets for its simplicity and
linearity.

A. Forward FRI System with Multiple inputs-Single Out-
put

Suppose we have to find the conclusion B̃∗ based
on the given knowledge base R corresponding to an
observation Ã∗ = (Ã∗1, Ã∗2, . . . Ã∗N ). In general, it is

not possible to find two rules R̃k and R̃k+1 such
that the core (a∗1, a∗2, . . . a∗N ) of the given observa-
tion Ã∗ = (Ã∗1, Ã∗2, . . . Ã∗N ) lies in between the cores
(a1k, a2k, . . . aNk) and (a1k+1, a2k+1, . . . aNk+1) of R̃k and
R̃k+1 respectively, i.e. (a1k, a2k, . . . aNk+1) ≤ (a∗1, a∗2) ≤
(a1k+1, a2k+1, . . . aNk+1). But it is always possible to
find 2N number of covering rules R̃t1 , R̃s1 ; R̃t2 ,
R̃s2 . . . R̃rN

, R̃sN
such that a1t1 ≤ a∗1 ≤ a1s1 , a2t2 ≤ a∗2 ≤

a2s2 . . . aNtN ≤ a∗N ≤ aNsN
.

Geometrically, R̃t1 , R̃s1 ; R̃t2 , R̃s2 ;...R̃tN , R̃sN
are ad-

jacent rules in the x1, x2, . . . xN antecedent dimensions
respectively. If we assume that p1 : q1, p2 : q2,...pN : qN
are the ratios with which the cores a∗1 and a∗2,...a∗N lie
in between a1t1 , a1s1 ; a2t2 , a2s2 ,...aNtN , aNsN

respectively,
i.e. qi

pi+qi
aiti + pi

pi+qi
aisi

= a∗i for i = 1, 2, . . . N . Then N

intermediate rules R̃∗i are obtained as convex combination
of the rules R̃ti , R̃si

respectively, i.e. R̃∗i = qi

pi+qi
R̃ti ⊕

pi

pi+qi
R̃si

, for i = 1, 2, . . . N .
Now it is to be noted that the antecedents

(Ã∗i1, Ã∗i2, . . . Ã∗iN ) of R̃∗i do not coincide with



the given observation (Ã∗1, Ã∗2, . . . Ã∗N ). But we
need to find the conclusion corresponding to
the observation (Ã∗1, Ã∗2, . . . Ã∗N ). To achieve this
requirement we first find the constants λ1, λ2, . . . λN
such that the core of (Ã∗1, Ã∗2, . . . Ã∗N ) coincides
with the core of

∑N
i=1 λi(Ã∗i1, Ã∗i2, . . . ÃiN ), i.e.

(a∗1, a∗2, . . . a∗N ) =
∑N
i=1 λi(a∗i1, a∗i2, . . . aiN ).

Then the intermediate rule R̃ is calculated as R̃ =
N∑
i=1

λiR̃
∗
i .

The intermediate antecedent Ã = (Ã1, Ã2, . . . ÃN ) and
consequent B̃ are obtained from R̃ by taking the projection
of R̃ in the axes x1, x2, . . . xN and y respectively. Now
it may be seen that A∗i are expanded/contracted fuzzy
numbers of Ãi respectively. The corresponding parame-
ters γi, δi of expansion/contraction are then calculated.
Thus the final conclusion B̃∗ is obtained by expand-
ing/contracting B̃ with parameters λ, δ where λ, δ are
the weighted convex combination of the parameters γi, δi
with weights λi respectively, i.e. γ =

∑N
i=1 λiγi∑N
i=1 λi

and

δ =

N∑
i=1

λiδi∑N

i=1
λi

.

The proposed method is furthermore explained with the
following Algorithm 1 and Example 4.1.

Example 4.1: Suppose a rule base R is given by:

R =
8⋃
i=1
{R̃i : if x1 = Ã1i, x2 = Ã2i, x3 = Ã3i, x4 =

Ã4i then B̃i}, where R̃1(2̃, 7̃, 5̃, 4̃, 3̃), R̃2(6̃, 1̃0, 8̃, 6̃, 6̃),
R̃3(1̃0, 4̃, 6̃, 2̃, 5̃), R̃4(1̃2, 8̃, 1̃0, 6̃, 1̃0), R̃5(7̃, 8̃, 7̃, 5̃, 6̃),
R̃6(1̃4, 1̃0, 6̃, 8̃, 8̃), R̃7(7̃, 5̃, 8̃, 8̃, 7̃) and R̃8(1̃5, 1̃2, 9̃, 1̃0, 1̃1)
are cross products of triangular fuzzy numbers with one
unit length in each spreads.

Suppose a conclusion corresponding to an observation
Ã∗(5̃, 9̃.5, 8̃.5, 5̃.5) has to be drawn from the given rule base
R.

The core 5 of Ã∗1 = 5̃ lies between the cores 2 and 6 of
the first antecedents Ã11 = 2̃ and Ã21 = 6̃. So, the adjacent
rules of the observation Ã∗ corresponding first antecedent
Ã∗1 are R̃1 and R̃2. Similarly, the adjacent rules of the
observation Ã∗ corresponding to Ã∗2,Ã∗3 and Ã∗4 are R̃2,
R̃4; R̃7, R̃8 and R̃4, R̃5 respectively. The ratios at which
the core 5 of Ã∗1 = 5̃ lies between the cores 2 and 6 of
Ã11 = 2̃ and Ã21 = 6̃ is p1 : q1 = 3 : 1. Similarly, the ratios
corresponding to the other antecedents are calculated as
p2 : q2 = 1 : 3, p3 : q3 = 1 : 1 and p4 : q4 = 1 : 1.

So, the intermediate rules R̃∗1, R̃∗2, R̃∗3 and R̃∗4 are cal-
culated as R̃∗1(5̃, 9̃.25, 7̃.25, 5̃.5, 5̃.25), R̃∗2(7̃.5, 9̃.5, 8̃.5, 6̃, 7̃),
R̃∗3(1̃1, 8̃.5, 8̃.5, 9̃, 9̃) and R̃∗4(6̃.5, 9̃, 7̃.5, 5̃.5, 6̃).

The constants λ1, λ2, λ3, λ4 by solving the equation
given in line 10 of Algorithm 1 is obtained as λ1 =
1.7, λ2 = 2.7, λ3 = −0.15, λ4 = −3.4.

Algorithm 1 Algorithm of GGLFRI
Require: Given rule base R with n rules and observation

Ã∗(a∗1, a∗2, . . . a∗N ).
1: for i = 1 to N do
2: for j = 1 to n do
3: Find tki and ski so that aitk

i
≤ a∗i ≤ aisk

i
, aitk

i
=

max
l
{ail : ail ≤ a∗i }, aisk

i
= min

l
{ail : ail ≥ a∗i }.

4: Find ti so that D(a∗, ati) = min
k
{D(a∗, atk

i
)}.

5: Find si so that D(a∗, asi
) = min

k
{D(a∗, ask

i
)}.

6: end for
7: Find ratio pi : qi so that a∗i = qi

pi+qi
aiti + pi

pi+qi
aisi

.
8: Find intermediate rule R̃∗i = qi

pi+qi
R̃ti ⊕

pi

pi+qi
R̃si

.
9: end for

10: Find the constants λi (i = 1, 2, . . . N) from

(a∗1, a∗2, . . . a∗N ) =
N∑
i=1

λi(a∗1i, a∗2i, . . . a∗Ni).

11: Find the final intermediate rule R̃ =
N∑
i=1

λiR̃
∗
i .

12: for i = 1 to N do
13: Find the parameters γi = a∗i−a

∗
i

ai−ai
and δi = ā∗i−a

∗
i

āi−ai
.

14: end for
15: Find the parameters γ and δ between B̃ and B̃∗ from

γ =

N∑
i=1

λiγi∑N

i=1
λi

and δ =

N∑
i=1

λiδi∑N

i=1
λi

.

16: Obtain final conclusion B̃∗ by expanding/contracting
B̃ with parameters γ and δ.

Thus the final conclusion is obtained as 1.7×5̃.25⊕2.7×
7̃	 0.15× 9̃	 3.4× 6̃ = 6̃.075.

Each fuzzy number involved in the given rule base R
have same spread lengths with the fuzzy numbers involved
in the observation Ã∗. So, the any changes in spread
lengths which incur at line 11 of Algorithm 1, adjusted
in lines 15 and 16 of Algorithm 1 and the final conclusion
obtained as B̃∗ = 6̃.075 with spread lengths one unit in
each spread.

B. Inverse FRI System with Multiple inputs-Single Output
Let us consider that a desired output B̃∗ is required

based on the given rule base R and observation Ã∗ =
(Ã∗1, Ã∗2, . . . Ã∗m−1, ?, Ã∗m+1, . . . Ã

∗
N ) where Ã∗m is the miss-

ing antecedent. We propose to visualize this situation
similar to GGLFRI where the missing antecedent xm is
considered as effective consequent and proceed in a similar
manner. So, 2N number of covering rules R̃ti , R̃si

for
i = 1, 2, . . . N + 1; i 6= m will be obtained such that
a1t1 ≤ a∗1 ≤ a1s1 , a2t2 ≤ a∗2 ≤ a2s2 . . . aNtN ≤ a∗N ≤ aNsN

and btN+1 ≤ b∗ ≤ bsN+1 .
Then we have to find out the ratios pi : qi such that
qi

pi+qi
aiti + pi

pi+qi
aisi

= a∗i for i = 1, 2, . . . N ; i 6= m and
qN+1

pN+1+qN+1
btN+1 + pN+1

pN+1+qN+1
bsN+1 = b∗. Then N interme-



diate rules R̃∗i are obtained as convex combination of the
rules R̃ti , R̃si

respectively, i.e. R̃∗i = qi

pi+qi
R̃ti ⊕

pi

pi+qi
R̃si

,
for i = 1, 2, . . . N ; i 6= m and R̃∗N+1 = qN+1

pN+1+qN+1
R̃tN+1 ⊕

pN+1
pN+1+qN+1

R̃sN+1 .
The constants λi are obtained from re-

lation (a∗1, a∗2, . . . a∗m−1, a
∗
m+1, . . . a

∗
N , b

∗) =
N+1∑
i=1
i 6=m

λi(a∗i1, ai2, . . . a∗im−1, a
∗
im+1, . . . a

∗
iN , b

∗
i ). Then the

intermediate rule R̃ is calculated as R̃ =
N+1∑
i=1
i6=m

λiR̃
∗
i .

Thus the final conclusion B̃∗ is then obtained by ex-
panding/contracting B̃ with parameters λ, δ where λ, δ are
the weighted convex combination of the parameters γi, δi
with weights λi respectively,

i.e. γ =

N+1∑
i=1
i 6=m

λiγi

∑N+1
i=1
i 6=m

λi

and δ =

N+1∑
i=1
i 6=m

λiδi

∑N+1
i=1
i 6=m

λi

.

The proposed method is furthermore explained with the
following Algorithm 2 and Example 4.2.

Example 4.2: Suppose that we have to predict the pos-
sible antecedent Ã∗1 for a desired consequent B̃∗ = 6̃.075
and given antecedents Ã∗2 = 9̃.5, Ã∗3 = 8̃.5 and Ã∗4 = 5̃.5
from the rule base R given in Example 4.1.

The adjacent rules of the corresponding to the Ã∗2, Ã∗3,
Ã∗4 and desired consequent B̃∗ are R̃2, R̃4; R̃7, R̃8; R̃4, R̃5
and R̃2, R̃7 respectively. The ratios corresponding to the
antecedents and consequent are calculated as p2 : q2 = 1 :
3; p3 : q3 = 1 : 1; p4 : q4 = 1 : 1 and p5 : q5 = 0.075 : 0.925
respectively.

So, the intermediate rules R̃∗2, R̃∗3, R̃∗4 and R̃∗5 are
calculated as R̃∗2(7̃.5, 9̃.5, 8̃.5, 6̃, 7̃), R̃∗3(1̃1, 8̃.5, 8̃.5, 9̃, 9̃),
R̃∗4(9̃.5, 8̃, 8̃.5, 5̃.5, 8̃) and R̃∗5(6̃.075, 9̃.625, 8̃, 6̃.15, 6̃.075).

The constants λ1, λ2, λ3, λ4 by solving the equation
given in line 17 of Algorithm 2 is obtained as λ2 =
−0.729, λ3 = −0.339, λ4 = 0.57, λ5 = 1.59.

Thus the required antecedent Ã∗1 is obtained as −0.729×
7̃.5	 0.339× 1̃1⊕ 0.57× 9̃.5⊕ 1.59× 6̃.075 = 5̃.88.

Each fuzzy number involved in the given rule base R
have same spread lengths with the fuzzy numbers involved
in the observation A∗. So, the any changes in spread
lengths which incur at line 18 of Algorithm 2, adjusted
in lines 23 and 24 of Algorithm 2 and the final conclusion
obtained as Ã∗1 = 5̃.88 with one unit spread lengths.

V. Conclusion
The geometry based linear fuzzy rule base interpola-

tion technique has been generalized for multi-antecedents.
The same geometrical and analytical interpretations are
used to obtain the inverse generalized geometry based
linear fuzzy rule base interpolation. The proposed meth-
ods are equipped with complete geometrical visualization

Algorithm 2 Algorithm of Inverse GGLFRI
Require: Rule base R containing n rules. Observation

xi = Ã∗i (i = 1, 2, . . . N ; i 6= m) and desired consequent
y = B̃∗. We have to predict the mth antecedents Ã∗m.

1: for i = 1 to N and i 6= m do
2: for j = 1 to n do
3: Find tki and ski so that aitk

i
≤ a∗i ≤ aisk

i
and

aitk
i

= max
l
{ail : ail ≤ a∗i }, aisk

i
= min

l
{ail : ail ≥ a∗i }.

4: Find ti so that D(a′∗, a′ti) = min
k
{D(a′∗, a′

tk
i

)},
where a′ = (a1, a2, ..am−1, am+1, ...aN , b).

5: Find si so that D(a′∗, a′si
) = min

k
{D(a′∗, a′

sk
i

)}.
6: end for
7: Find ratio pi : qi so that a∗i = qi

pi+qi
aiti + pi

pi+qi
aisi .

8: Find intermediate rule R̃∗i = qi

pi+qi
R̃ti ⊕

pi

pi+qi
R̃si .

9: end for
10: for j = 1 to n do
11: Find tkN+1, skN+1 so that btk

N+1
≤ b∗ ≤ bsk

N+1
and

btk
N+1

= max
l
{bl : bl ≤ b∗}, bsk

N+1
= min

l
{bl : bl ≥ b∗}.

12: Find tN+1 from D(b∗, btN+1) = min
k
{D(b∗, btk

N+1
)}.

13: Find sN+1 from D(b∗, bsN+1) = min
k
{D(b∗, bsk

N+1
)}.

14: end for
15: Find ratio pN+1 : qN+1 so that b∗ = qN+1

pN+1+qN+1
btN+1 +

pN+1
pN+1+qN+1

bsN+1 .
16: Find intermediate rule R̃∗N+1 = qN+1

pN+1+qN+1
R̃tN+1 ⊕

pN+1
pN+1+qN+1

R̃sN+1 .
17: Find the constants λi from a∗i =

∑N+1
j=1
j 6=m

λjaji (i 6= m)

and b∗ =
∑N+1

j=1
j 6=m

λjbj .

18: Find the final intermediate rule R̃ =
∑N+1

i=1
i 6=m

λiR̃
∗
i .

19: for i = 1 to N and i 6= m do
20: Find the parameters γi = a∗i−a

∗
i

ai−ai
and δi = ā∗i−a

∗
i

āi−ai
.

21: end for
22: Find the parameters γN+1 = b∗−b∗

b−b and δN+1 = b̄∗−b∗
b̄−b .

23: Find the parameters γ and δ between Ãm and Ã∗m

from γ =

∑N+1
i=1
j 6=m

λiγi∑N

i=1
λi

and δ =

∑N+1
i=1
j 6=m

λiδi∑N

i=1
λi

.

24: Obtain final antecedent Ã∗m by expanding/contracting
Ãm with parameters γ and δ.

and analogous to classical interpolation. Moreover in the
process of obtaining conclusion, the proposed method is
able to capture the variations of the fuzziness of involved
fuzzy sets both in knowledge base and observation. Thus
the amount of uncertainty involved in given information
is well captured to obtain the unknown parameter.

The proposed method can be extended for extrapola-
tion. A detail comparison on the results obtained from
different methodologies is due for future work. Also, the
exactness of the proposed method for real life scenarios
remain to check. Behaviour of the proposed methods can



be analyzed for choice of different t− norms.
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