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Abstract—In this paper, an approach to the identification of
hybrid systems is discussed. It is based on the incremental
fuzzy C-regression clustering. Based on the distance between the
current measurement and the hyperplane of the local model,
local models are updated. If necessary, a new local model is
constructed. To increase the robustness and prevent false local
models, the data are kept in the buffer temporarily. The approach
produces good results as shown in two examples. The first
example can be modelled as a piecewise affine dynamical system
and the second one as a switched dynamical system.

Index Terms—Incremental clustering, Fuzzy C-regression clus-
tering, Hybrid systems, Local model, Stream data, Identification.

I. INTRODUCTION

In the last two decades we have witnessed an enormous

increase in the volume of the data generated. In the time of

IOT, there are sources that generate huge amounts of data. The

data come not only from industry, telemetry, traffic, financial

trading and e-commerce but also from a variety of web based

facilities, social networks, and an immense number of smart

devices. Very often we speak about streaming data that has to

be processed on the fly. Finding some patterns in the data can

find possible applications not only in control, modelling and

fault detection/diagnosis but also in non-technical area where

data mining, artificial intelligence, security, and safety are key

buzzwords.

Such data need to be processed sequentially and incre-

mentally on a record-by-record basis or over sliding time

windows to obtain the information about the behavior instanta-

neously. This has sparked an increased interest in the on-line

identification of nonlinear models that combine fuzzy logic

and neuro-fuzzy networks, as presented, for example, in [1]–

[19]. Essentially, these methods are based on various fuzzy

clustering algorithms, but they are modified and extended

for processing the data streams [20]–[22]. The extension of

the Gustafson-Kessel clustering algorithm for data stream

clustering is presented in [23] and [24], in [25] the recursive

method based on the Gath-Geva clustering algorithm is given,

while an evolving clustering method (ECM) is proposed in

[2]. Much attention has been given to an evolving algorithm
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that adapts the structure of Takagi-Sugeno fuzzy model (eTS)

[1]. Similar approaches can be found in the evolving fuzzy

control systems [26]–[31]. The identification of a fuzzy model

in general requires the partitioning of the input-output space

in the first phase and the estimation of local-linear parameters

in the second phase. The partitioning can be done either using

some a priori knowledge or, more efficiently, by implementing

a clustering algorithm. Combining the latter with a changeable

model structure results in an evolving paradigm, in which the

rule base of the fuzzy model is updated when a new data sam-

ple from the stream is available; the estimation of the clusters

parameters is calculated by the recursive clustering algorithm

[32] in which subtractive clustering is used as presented in

[33], [34]. The self-tuning of membership functions in which

the parameters are adjusted automatically is presented in an

extended Takagi-Sugeno model (exTS [35] and in eTS+ [36]).

This enables the detection of clusters of various shapes. The

algorithms differ from the algorithm proposed in [1] regarding

the calculation of the fuzzy covariance matrix and in the

adaptation of cluster centers.

Describing a nonlinear system is also possible by utilising a

hybrid system model. In this context, we refer to a hybrid sys-

tem in the sense of [37] where we deal with a continuous-time

or a discrete-time system whose dynamics change abruptly

switching between different modes of operation. Some authors

also refer to such system as “switched systems” but technically

the latter term describes a subclass of hybrid systems where

switching or mode change is done arbitrarily (from an external

source) while in some hybrid systems these changes are a

consequence of the internal state. Hybrid systems enable the

description of a nonlinear systems with arbitrary accuracy.

Hybrid systems can be viewed as a special case of fuzzy

systems where only one (local) model contributes to the output

of the system. This detail is very important when discussing

the interpretability of fuzzy systems – whenever the same

variable is shared in the antecedent part and the consequent

part of a fuzzy model, either the interpretability of the local

model is problematic or the global model does not have a

good fit [38]. This can be avoided using different approaches:

excluding problematic variables from the consequent part [39],

excluding them from the antecedent vector, by choosing very

narrow (unnormalised) membership functions which results in
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very flat normalised membership functions in a large area of

input space, or by using the so called zones of isolation and

interpolation zones within membership functions [40]. Hybrid

systems do not suffer from these problems as they do not allow

blending the local models, and therefore a particular (local)

model is used in a certain time (or in a certain region of the

state space) – there is no difference between the current local

and the current global model. The interpretability can therefore

not be an issue.

Identification of hybrid systems is not a new technique,

some approaches (under different names) can be traced

decades back [41]–[43]. In recent years the identification of

hybrid systems has been an active research area [37], [44]–

[51].

The approach adopted in this paper is based on the in-

cremental fuzzy C-regression clustering [52]. A very simple

identification approach is proposed that is evolving in its nature

which means that based on a simple test a new local model can

be constructed, the parameters of a local model updated, the

measurement can be buffered or discarded. The hallmarks of

the approach are simplicity of use, easy tuning of a low number

of parameters, and high level of robustness to the change of

most of design parameters.

II. LOCAL MODEL NETWORK VS. HYBRID SYSTEM

Many approaches that deal with the modelling of nonlinear

systems (see e.g. the references given in the introduction)

assume that the output of the system y can be modelled using

a local model network

y =

m
∑

j=1

µj(uuup)yj(uuu) (1)

where uuup ∈ R
q , uuu ∈ R

r, µj ∈ [0, 1] gives validity of

the respective local model output yj , i.e. µj(uuup) defines the

regions in the space of uuup where the local models are valid.

The validity function µj is constructed so that the partition of

unity is fulfilled in the convex set C that includes the whole

region of interest of uuup. In the context of Takagi-Sugeno fuzzy

models, q-element vector uuup represents antecedent variables,

r-element vector uuu represents consequent variables, µj(·)
define membership functions, and m is the number of rules in

the rule base. Eq. (1) can be seen as a mapping from uuup and

uuu to y. According to the nature of the system, the variables in

uuuT
p = [up1, . . . , upq] that define the partitioning of the input-

output space are not necessarily the inputs included in the

regression vector uuu.

The functions yj(uuu) can take an almost arbitrary form

although linear or affine functions are often used for the sake

of simplicity. In our case, affine functions will be utilized:

yj(uuu) = θj0+θj1u1+θj2u2+. . .+θj,rur j = 1, . . . ,m (2)

where the r-element vector uuuT = [u1, u2, . . . , ur] has been

introduced. To simplify further derivations, we shall also

use the augmented vector uuuT
e = [1, u1, u2, . . . , ur] and the

corresponding vector of parameters θθθ
T
j = [θj0, θj1, . . . , θj,r].

Combining Eqs. (1) and (2) we obtain

y =

m
∑

j=1

µj(uuup)uuu
T
e θθθj (3)

The idea behind the hybrid systems is essentially the same.

They also make use of a large number of local models. The

difference between the hybrid systems and the aforementioned

local model networks is that in a hybrid system only one local

model is active at a particular time. To use the same notation

as in (3) the output of the hybrid system can be given as:

y = uuuT
e θθθj j = 1, . . . ,m (4)

All the models are numbered by integers j, and when j

changes we often speak about the sudden (abrupt) change of

the mode of operation. The switching can be done in one of

the following ways:

• The mode of operation is obtained from a particular

partition of some “input” space. This is actually the space

that corresponds to the space of uuup which means that the

mapping from uuup to j is unique. This means we can still

use Eq. (3) but with the limitation of binary validities (0

or 1).

• The mode of operation is governed by some (external)

quantity(ies) or signal(s). This quantity (if known) can

be included in the vector uuup and again Eq. (3) still holds.

• The mode of operation can change according to time

(schedule). Technically, the system then becomes linear

(or affine) time-varying and therefore no longer a hybrid

system in the classical sense.

Hybrid systems can be seen as a subset of the nonlinear

systems described by (3). In this paper we will tackle the

problem of hybrid system identification where an approach

originally developed for local model networks [52] will be

adapted for hybrid systems.

III. INCREMENTAL C-REGRESSION FOR IDENTIFICATION

OF HYBRID SYSTEMS

A. Fixed number of local models

Incremental C-regression [52] is an approach based for

local model networks identification. A unique property of this

technique is that a cluster prototype is not some finite compact

set as assumed usually, but a hyperplane in the space of uuup.

But the method goes a step further and assumes that the local

model used in the consequent of the fuzzy rules also play

the role of the prototype. This makes the system much less

complex, the number of parameters reduces enormously. The

approach is based on the distances between the measurements

and the hyperplanes of the individual local model prototypes.

The difference from the original method in [52] is that we do

not adopt here the principle of fuzzy (distributed) local model

updates but only update the winning local model. The winner

is obtained by finding the minimal distance:

d2jk =
(

yk − uuuT
ekθθθj

)2
j = 1, . . . ,m (5)



over all the m local models that exist at a particular time k.

If this number m is fixed or known a priori, we denote the

winning model by an integer w (1 ≤ w ≤ m)

w = arg min
1≤j≤m

d2jk (6)

The value of w obviously depends on time k but this depen-

dence is omitted in the description.

In the next step, the parameters of the w-th local model have

to be updated. A weighted recursive least square algorithm is

used, which consists of the following steps [53]:

1) The weighted estimation error ewk at time instant

k, the error between the current output yk and the

weighted model output based on old parameter estimate

uuuT
ekθθθw,k−1, is calculated as follows

ewk = yk − uuuT
ekθθθj,k−1 (7)

2) The innovation gain vector KKKwk at time instant k is

given in the following way

KKKwk = PPPw,k−1uuuek

(

γ + uuuT
ekPPPw,k−1uuuek

)−1
(8)

where PPPw,k−1 is the estimate-error covariance matrix

at time instant (k − 1), and 0 < γ ≤ 1 stands for the

forgetting factor, which is to be selected by the user (this

value is usually between 0.95 and 1).

3) The estimate-error covariance matrix PPPwk is calculated

as

PPPwk =
1

γ

(

I−KKKwkuuu
T
ek

)

PPPw,k−1 (9)

4) The current model parameters θθθw are updated:

θθθwk = θθθw,k−1 +KKKwkewk (10)

A general approach given in this paper is not strictly con-

nected to the online parameter-estimation algorithm presented

above. Any other recursive-least-squares-based algorithm can

be used as well.

If the number of local models is fixed and a wrong guess

is taken, several problems can arise: if a too low number is

assumed, the existing local models are blended; if a too high

number is assumed, some phantom models can be constructed.

B. Adaptive number of local models

To overcome the problems just mentioned, the number of

local models have to adapt to the problem treated. For that

the incremental c-regression clustering method is used as

described next.

The algorithms starts without any local models. Based on

the data arriving from the stream, new local models can be

added, their parameters updated, local models can also be

deleted or merged. These are typical actions performed by

evolving systems. In our algorithm, when a new measurement

arrives a decision has to be taken:

• If the measurement lies “close” to an existing local

model, it is decided that the measurement belongs to

this local model. Consequently, the parameters of the

corresponding local model are updated following the

procedure given in Section III-A.

• If the measurement is “far” from the existing models but

not “very far” (meaning that it is not regarded as an

outlier), the data are put into the buffer. The contents

of the buffer are analyzed after each update of the buffer

in order to either use the data to construct a new local

model or simply discard all these data if the informational

content is not adequate.

• If the measurement lies “very far” from the existing local

models, it is decided that it is probably an outlier, and

the data are not stored anywhere.

The meaning of “close”, “far”, etc. will be quantified with

respect to the existing local models, i.e. based on the distance

d2jk given by Eq. (5). When associating a measurement at

time k with the winning (w-th) local model, we take into

account the distance d2wk between the measurement and the

local model hyperplane at this particular time. The winning

local model is denoted by w as given by (6). The mean value

of the past distances d2j is kept for each local model. It is

updated recursively upon the addition of a new measurement

to the winning local model. At time k, only d2j of the winning

local model is updated, as proposed in [36]:

d2wk =
kw − 1

kw
d2w,k−1 +

1

kw
d2wk (11)

where kw stands for the current number of samples in the w-th

local model (kw is the number of samples in the winning local

model), and index of d2w is the current time. Initialization at

time t = 0: d2j,0 = 0 for all local models.

Probably the most crucial part of an incremental system

is the decision regarding how and when a new local model

is added. When a new measurement arrives, the distances

d2jk(j = 1, 2, . . . ,m) from existing local models are calcu-

lated. If the distance of the winning model is considerably

higher than the mean of the previous distances of the data

associated with this model, i.e.,

d2wk > κmind2w,k−1 (12)

the decision is made that this particular piece of data will not

be associated with any of the existing local models. Although

being a relative (dimensionless) quantity by its definition, Eq.

(12), κmin still has to be tuned in order to achieve better

results (good results are usually obtained if κmin is in the

range of 1 to 100). By tuning κmin the trade-off between the

achieved modelling error and the number of the local models

is performed easily.

It is extremely important not to start a new local model

immediately after deciding that the current measurement does

not belong to any of the existing local models. Thus we

prevent false local models (either as a result of outliers or

poor information content of the data). Temporary data are kept

in the buffer. When it is decided that the data in the buffer

can form a new local model, a new model is initialized based

on the data in the buffer. Several criteria can be implemented

for this, normally it is very advisable to at least require that



the data in the buffer span a unique hyperplane. For practical

purposes, it is also not recommended to form a new model

based on the nonconsecutive patches of data.

When a decision is made to construct a new local model,

the number of local models m is increased by 1, and all the

parameters defining the new local cluster have to be initialized.

The parameter vector of the local affine model that defines the

hyperplane can be obtained from the data in the buffer using

the well-known least square method for affine systems. The

initialization of other cluster parameters (PPPm, km, d2m) is also

straight-forward.

It has to be noted that the samples that fulfill condition

given by Eq. (12) can lie very far from all the existing clusters.

These samples may be outliers and, therefore, the associated

data are not used or stored. The condition for classifying a

measurement as an outlier follows the same idea as (12). If

the following is satisfied:

d2wk > κmaxd2w,k−1 (13)

the current sample is not taken into account for adapting the

current local model or adding a new local model, nor it is

stored in the buffer (κmax > κmin is a design parameter with

the recommended value of 2κmin).

The local models can easily be merged or deleted if neces-

sary although the details will not be given here. Since a local

model is represented with the hyperplane, it is easy to merge

two models if the parameters are close enough taking into

account a certain metric. Also, a local model can be deleted

if either it was based on a very low number of measurements

or these measurements are old enough to assume they are

outdated.

IV. EXAMPLES

The proposed algorithm was tested on some simulated

examples to demonstrate the main features. The first example

is a simple simulated system with a tank whose cross-section

is constant until a certain level, above this level the tank

has a higher but again constant cross-section. This example

is a simple representative of a piecewise affine system. The

second system is a control system. The idea here is to identify

the (already) controlled system. The controller with multiple

control modes is a typical example of a switched system.

As already stressed, the proposed approach has a very

attractive property that the number of design parameters is

low while the algorithm is quite insensitive to most of these

parameters. The system is also very robust with regards to the

forgetting factor, which was kept at γ = 0.98 during all tests.

The only parameter that was changing was κmin, while κmax

was always set to 2κmin.

A. Tank with piecewise-constant cross-section

The example treats the case of a tank with changing cross-

section as depicted in Fig. 1. The area of the cross-section

depends on the water level h:

A(h) =

{

A1, if h < h1

A2, otherwise.
(14)

h (t)

RH

f
in
(t)

A1

A2

h1

Fig. 1. The schematic representation of the tank used in Example in Section
IV-A.

The outlet valve is assumed linear with the hydraulic resistance

RH . The model of the system is very simple and given by an

ordinary differential equation:

A(h)ḣ = φin − 1

RH

h (15)

It is straight-forward to show that this system is an example of

a continuous-time hybrid system with two modes of operation

and the mode changes when the level in the tank h(t) crosses

h1. In our case discrete-time or sampled version of the system

will be identified. Note that the system was simulated as a

continuous-time one. Then the level was sampled with the

sampling time of 10 s. The measurement noise was added

to these samples (zero mean with the standard deviation of

0.001). This level of noise seems very low but some it causes

measurements to lie quite far from the ideal hyperplane. Other

system parameters (given without the units for brevity): A1 =
0.1, A2 = 0.4, RH = 400, h1 = 0.5.

The following form of the discrete-time local models will

be used:

hk+1 = θ1φ1k + θ2hk (16)

Although the model (16) is extremely simple, there are some

aspects of this model that require a special attention. The

underlying physical model is continuous-time, while the model

(16) is discrete-time. This transformation is not defined com-

pletely unless a certain regime is assumed between sampling

moments. This is a minor problem, however. A bigger problem

is the fact that the change between the two operating modes

of the original continuous system can occur in any moment

between taking two samples. This means that none of the two

discrete local models can describe the system if the change

of mode occurs between samples k and k + 1. This happens

even in the perfect disturbance-free case.

An empty tank was excited by the inflow changing sinu-

soidally between 0.5 · 10−3 and 2.5 · 10−3 with the period

of 500 s for 2000 s. Fig. 2 shows the actual level in the

tank (in black), and noisy measurements taken (blue crosses

in the upper part of the tank, red pluses in the lower part). The

proposed algorithm was run on these 201 measurements. The

only parameter that was changing in all the examples presented
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0.8

h(t)

h
1
(k)

h
2
(k)

Fig. 2. The measurements used in Example in Section IV-A.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

y(t)

correct

wrong

skipped

Fig. 3. Classification results for the Example in Section IV-A: green pluses
depict measurements correctly assigned to a local model, red crosses show
wrong classification, and black circles unassigned measurements that were
skipped.

in this paper is κmin which was set to 10. Fig. 3 shows the

results of the classification (green pluses depict measurements

correctly assigned to a local model, red crosses show wrong

classification, and black circles unassigned measurements that

were skipped).

Fig. 4 show the course of parameters as they are adapted

with time. Red line shows the parameters of the first local

model (lower part of the rank), and the blue one the parameters

of the second local model. Dotted lines show the “true”

parameters but we have to stress here that even the “true”

parameters are not constant (they depend on the change of the

input sinusoid between the two samples) but these oscillations

of the true parameters can be neglected.

In conclusion we can observe that good identification results

are obtained in this case although the system is not as benign

as it seems from the first look.

B. Control system

The case treated in this example is a control system con-

sisting of an on-off controller with a hysteresis. The model of

the plant is:

G(s) =
1

(s+ 1)2
(17)

The reference signal is a unit step at t = 0. The controller

outputs 5 in the on state, and 0 in the off state. The control

algorithm uses the hysteresis that prevents switches inside

0 500 1000 1500 2000
-100

-50

0

50

100

150

Local model #1

Local model #2

0 500 1000 1500 2000
0.7

0.8

0.9

1

1.1

1.2

Local model #1

Local model #2

Fig. 4. Adaptation of parameters of local models for the Example in Section
IV-A. Crosses show the points at which the local models are first initialized.

the ±0.1 region around the reference. The controller is again

implemented in the continuous-time fashion. This time some

zero-mean normally distributed signal acts as a disturbance

rather than being just a measurement noise. The sampling

frequency is 20 Hz, and the experiment lasts for 10 s (again

201 samples are taken). Both initial conditions of the plant are

0.

The controlled system is treated as an autonomous system

meaning that the closed-loop model is identified as a time

series. The following local model is assumed:

yk+2 = θ1 + θ2yk+1 + θ3yk (18)

This local model has similar problems than the one used

in Section IV-A: switches occur asynchronously from the

sampling which causes problems (in the vicinity of switching).

We expect to identify two modes: the mode when the on-off

controller is in the on state (denoted as the on mode), and the

mode when the on-off controller is in the off state (the off

mode).

The design parameter κmin was set to 4 in this case. Fig. 5

shows the output of the system (when there is no disturbance)

with a green line, and the output when disturbance is active

(black line). The large difference between the green and the

black line is due to the disturbance. Grey area shows the

hysteresis. Measurements are shown with blue crosses in the

off mode, and red pluses in the on mode. Fig. 6 shows the

results of the classification (green pluses depict measurements

correctly assigned to a local model, red crosses show wrong
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0

0.5

1

1.5

y(t)

y
ON

(k)

y
OFF

y(t) - no dist

Fig. 5. The measurements used in Example in Section IV-B.

0 2 4 6 8 10
0

0.5

1

1.5

y(t)

correct

wrong

skipped

Fig. 6. Classification results for the Example in Section IV-B: green pluses
depict measurements correctly assigned to a local model, red crosses show
wrong classification, and black circles unassigned measurements that were
skipped.

classification, and black circles unassigned measurements that

were skipped).

Fig. 7 show the course of parameters as they are adapted

with time. Red line shows the parameters of the first local

model (on mode), and the blue one the parameters of the

second local model (off mode). The second and the third

parameter converge to the same true value while the first one

defines the obvious difference between the two modes. The

difference seems low which is the consequence of the fact

that plant poles lie very close to 1.

Again, good results can be observed.

V. CONCLUSION

The proposed approach of using incremental fuzzy C-

regression clustering in the on-line identification of hybrid

systems shows a great potential. It is easy to implement, it

only has a few design parameters, of which all except one

were kept on the default values. Only one parameter (κmin)

is used for tuning. The approach was successfully tested on

two simple simulated examples.
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[22] E. Lughofer, M. Pratama, and I. Škrjanc, “Incremental rule splitting in
generalized evolving fuzzy regression models,” in 2017 Evolving and

Adaptive Intelligent Systems, EAIS 2017, Ljubljana, Slovenia, May 31 -
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