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Abstract— Based on hierarchical Multilayer Extreme Learn-
ing Machine (ML-ELM) and Fuzzy Logic theory (FL), in
this paper a Multilayer Fuzzy Extreme Learning Machine
(ML-FELM) has been developed with an application to ac-
tive classification and transport of objects using an indoors
Unmanned Aerial Vehicle (UAV). The learning approach that
follows the proposed ML-FELM is a forward two-step hier-
archical methodology. First, by stacking a number of Fuzzy
Autoencoders (FAEs), input data is projected into a feature
representation space. Each FAE is functionally equivalent to
a Mamdani Fuzzy Logic System of type-1 (T1 FLS). Finally,
in the second stage, features achieved by stacking a number
of FAEs are classified by using a Fuzzy ELM (FELM) based
on T1 FLS theory and ELM. To evaluate the effectiveness of
the proposed ML-FELM, a number of other existing machine
learning approaches were employed for the active classifica-
tion and transport of four different geometrical objects. To
further ensure the efficiency of the ML-ELM, a number of
popular benchmark data sets for classification problems are
also suggested. Based on our experimental results and compared
to other deep learning strategies, the ML-FELM not only
represents a fast machine learning approach, but also produces
a high model accuracy for image classification.

Index Terms— Multilayer Learning, Extreme Learning Ma-
chine, Fuzzy Logic, Image processing, Neural Networks.

I. INTRODUCTION

Multilayer Extreme Learning Machine (ML-ELM) is an
emerging field in computational intelligence that is gaining
more and more in popularity. This is mainly due to its ability
to provide a high trade-off between accuracy and model
simplicity in comparison to deep learning methods [1–12].
This popularity is also accredited to the ability of ML-ELM
to achieve a high feature representation while maintaining a
low computational cost for its parameter identification and
good generalisation properties. Strictly speaking, compared
to deep learning based on Gradient Descent methods, ML-
ELM does not require a greedy layer-wise training. The train-
ing of ML-ELM usually involves a hierarchical methodology
that consist of two different levels where each hidden layer
can be considered as an independent module. At first level,
an unsupervised multilayer feature encoding is carried out
by stacking a number of ELM-based autoencoders, followed
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by an ELM for supervised feature classification. In other
words, ML-ELM decomposes input data representation into
multiple layers where outputs of previous layers are used as
the input of the current one [1, 13]. That is, the parameters
of each hidden layer are randomly generated and need not
to be tuned while a feature mapping is generated [13].
As detailed in [14–21], the basic learning block of ELM
aims at determining the optimal output weights of Single-
Layer-Feedforward-Networks (SLFNs) in which the number
of hidden nodes is randomly selected. Thus, the universal
approximation capability of ML-ELM has been extended
to other Machine Learning (ML) approaches and SLFNs
such as kernel learning [5], RBF networks [2], convolutional
neural networks [6] and ridge regression [6, 7] with a large
number of applications to the solution of real-world problems
in the field of regression and classification.

In this paper, a Multilayer Fuzzy Extreme Learning Ma-
chine (ML-FELM) that is based on hierarchical ML-ELM
and fuzzy logic of type-1 is suggested for active classifi-
cation and transport of objects using an Unmanned Aerial
Vehicle (UAV). The proposed ML-FELM can be viewed as
a ML Fuzzy Logic System (ML-FLS) of either Mamdani
or Takagi-Sugeno-Kan (TSK). At first level, representation
learning is achieved by transforming the input data into
a new feature space. This is done, by stacking a number
of ELM-based Fuzzy Autoencoders (FAEs), followed by a
FELM-based classifier for feature classification. To evaluate
the performance of the proposed ML-FELM, two different
types of experiments are carried out. First a number of
data sets about classification problems is used to measure
the efficiency of the ML-FELM with respect to other ML-
ELMs. Finally, a second experiment where the ML-FELM
is implemented to guide a UAV to recognise and transport a
number of four different objects is performed.

This paper is organised as follows: Section II briefly
reviews the theory of ELM and ML-ELM as well as Fuzzy
ELM. In section II, the proposed ML-FELM is described,
while section IV, the methods and robotic platform used for
active classification and transport of objects is explained.
Section V presents the corresponding results and section VI
draws conclusions.

II. BACKGROUND THEORY

A. Extreme Learning Machine (ELM)

According to ELM theory, SLFNs with M hidden nodes
whose parameters are randomly selected (including biases)
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can approximate (learn) 0
P

0 distinct samples (xp, tp) with
zero means

PM
p=1 k yp � tp k= 0, in which xp =

[xp1, . . . , xpN ]T 2 RN and tp = [tp1, . . . , tpÑ ]T 2 RÑ .
Thus, a generalised model for SLFNs with M hidden nodes
and activation g(x) function can be defined: [14, 15]:

MX

k=1

�kgk(xp) =
MX

k=1

�kg(wk · xp + bk) = yp (1)

where wk = [wk1, . . . , wkN ]T is the weight vector connect-
ing the kth hidden node and the input nodes, and �p =
[�p1, . . . ,�pÑ ]T is the weight vector connecting the kth

hidden node to the nth output. A compact representation
is:

H(w1, . . . , wM , b1 . . . , bM , x1, . . . , xP )

=

0

B@
g(w1 · x1 + b1) · · · g(wM · x1 + bM )

...
...

...
g(w1 · xP + b1) · · · g(wM · xP + bM )

1

CA

P⇥M

� = (�1, . . . ,�M )M⇥Ñ ; T = (t1, . . . , tP )P⇥Ñ (2)

Where H is the hidden layer output matrix of an SLFN with
respect to the inputs xp. The minimum norm least-squares
solution of the linear system H� = T is unique and can be
achieved by calculating the pseudo-inverse H

† as �̂ = H†T.
In many real-world applications, M ⌧ P [15]. Hence, H is
a non-square matrix, such that one specific value for ŵk, b̂k

and �̂k need to be found as follows:

||H(ŵ1, . . . , ŵM , b̂1, . . . , b̂M )�̂ � T|| =
min

wk,bk,�
||H(ŵ1, . . . , ŵM , b̂1, . . . , b̂M )�̂ � T|| (3)

B. Fuzzy Extreme Learning Machine (FELM)

As pointed out in [16, 22], a Fuzzy Inference System (FIS)
can be interpreted as an SLFN if for a given number of dis-
tinct training samples (xp, tp) ELM can be directly applied.
In other words, the parameters of the Membership Functions
(MFs, ck, ak) are randomly generated, and based on this,
ELM is applied to determine the consequent parameters �k.
A model of an FIS with M fuzzy rules is given by:

yp(xp) =
MX

k=1

�kG(xp, ck, ak) = tp, p = 1, . . . , P (4)

in which, xp = [xp1, . . . , xpN ] 2 RN and tp =

[tp1, . . . , tpÑ ] 2 RÑ . In general, an FIS can be defined by a
number of fuzzy rules R

k of the form [23, 24]

R
k : IF xp1 is A1k AND xp2 is A2k AND . . .

IF xN is ANk THEN (y1 is �k1) . . . (yÑ is �kÑ ) (5)

where, Ask(s = 1, . . . , N, k = 1, . . . ,M) are the fuzzy sets
that correspond to the sth input variable xps in the kth rule,
where Ñ is the dimension of the pth output vector yp =
[y1, . . . , yÑ ]. When an FIS employs a TSK inference engine,

�kl (k = 1, . . . ,M, l = 1, . . . , Ñ) is a linear combination
of input variables, i.e. �kl = qkj,0 + qkj,0x1 + . . . qkj,NxN ,
otherwise if the FIS is of Mamdani type, �kl is a crisp value.
In Fuzzy Logic System theory (FLS), the degree to which
any given input xps satisfies the quantifier Ask is specified by
its Membership Function (MF) µAks(cks, ak), where usually
a non-constant piece-wise continuous MF is used [25]. By
using the symbol ⌦ for the representation of fuzzy logic
AND operations, the firing strength of each kth fuzzy rule
is

R
k(xp; ck, ak) = µAk1(xp1, ck1, ak)

⌦ µAk2(xp2; ck2, ak)⌦ . . .⌦ µAkN (xpN ; ckN , ak) (6)

Each fuzzy rule R
K can be normalised as

G(xp; cks, ck) = R
k(xp; ck, ak)

� MX

k=1

R
k(xp; ck, ak) (7)

Similar to [16], G is called fuzzy basis function. Thus, for
each pth input-output, Eq. (4) can be defined as

yp = �kR
i(xp; ck, ak)

� MX

k=1

�kR
i(xp; ck, ak) (8)

Consequent parameters are the linear combination of inputs
�k = xT

p,eqk, while for a Mamdani fuzzy model, xp,e = 1,
and qk = �k = [�k1, . . . ,�kÑ ]T , where qk is a weight vector
of crips values. For a TSK fuzzy model xp,e = [1 xTp ]T is
the extended version of xp.

qk =

0

B@
qk1,0 . . . qkÑ,0

...
...

qk1,N . . . qkÑ,N

1

CA

(N+1)⇥Ñ

(9)

Therefore, Eq. (4) becomes

yp(xp) =
MX

k=1

xTp,eqkG(xp, ck, ak) (10)

Where HQ = T is a compact representation of Eq. (10),
in which, Q = (q1, . . . , qM )T is the matrix of coefficients
qkj,s.

C. Interval Type-2 Fuzzy Extreme Learning Machine for

Classification (IT2-FELM)

Most of the proposed neural fuzzy network systems
of the interval type-2 and based on ELM theory have
been particularly applied to solve regression problems
[26]. Such systems usually employed Multiple-Input-Single-
Output (MISO) neural structures with a Karnik-Mendel type-
reduction layer [24, 27]. In [26], A Multi-Input-Multi-Output
(MIMO) fuzzy network based on the functional equiva-
lence between the Radial Basis Function Neural Network
(RBFNN) and IT2 FL was suggested to the solution of
classification problems [20].
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According to [26], given an input vector xp =
[x1, . . . , xN ]T , each corresponding fuzzy rule R

j in an
MIMO IT2 is described by a multi-variable Gaussian MF
µRi(xp, ysp) = µRj [x1, . . . , xn, y

s
p], s = 1, . . . , Ñ , where the

input vector xp 2 X1 ⇥ . . . XN and the implication engine
is:

µRj (xp, ysp) = µAj!Gj =
h
T

N
k1
µF j

k
(xk) ? µGj(y)

i
(11)

= [f j(~xp), f j(~xp)] (12)

where ? is the minimum t � norm that represents the
shortest Euclidean distance to the input vector xp. F

j :=
[f j(~xp), f j(~xp)] is the lower and upper membership function
(LMF, UMF) respectively. Each MF in the MIMO IT2-
RBFNN may be interval Gaussian MF with an uncertain
width �j = [�1

j ,�
2
j ] and fixed center (mean) µkj as shown

in Fig. 1:

F
j :=

8
>>>>>><

>>>>>>:

f j(xp) = exp

2

4�
NX

k=1

 
xk � µkj

2�2
j

!2
3

5

f j(xp) = exp

2

4�
NX

k=1

 
xk � µkj

2�1
j

!2
3

5
(13)

In this paper, an IT2-RBFNN of Mamdani having a product
inference rule and a singleton output space is implemented.
To reduce the associated computational load that usually
implies the implementation of karnik-Mendel algorithms, a
close-form Nie-Tan method is implemented as a direct de-
fuzzification process that employs the vertical representation
of the Footprint Of Uncertainty (FOU). As illustrated in
Fig. 2, an IT2-RBFNN using a Nie-Tan direct-defuzzification
as the output layer can be viewed as an Interval Type-2
Fuzzy Extreme Learning Machine (IT2-FELM) that does not
require a sorting process. The application of a Nie-Tan layer
represents a zero Taylor series approximation of Karnik-
Mendel+defuzzification method [22]. Moreover, a Nie-Tan
operator is equivalent to an exhaustive and accurate type-
reduction for both discrete and continuous IT2 Fuzzy Sets
(FSs) [22].
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Fig. 2: Interval Type-2 Fuzzy Extreme Learning Machine using a NieTan
algorithm for classification problems [28].

The output of a IT2-FELM with a NT layer having an
uncertain [�1j ,�2j ] and fixed center is formulated as follows:

T = HNT W (14)

where HNT is the matrix for IT2 firing strengths, and �

is the weight vector in the output layer. Each input in
HNT is defined by the IT2 MF '(µ,�1j ,�2j , xp) = f j +

f j/
PM

j=1 f j +
PM

j=1 f j . where µj = (µ1j , . . . , µNj) and
W and T are

W = (w1 . . . wM )M⇥Ñ and T = (t1 . . . tP )P⇥Ñ (15)

D. Multilayer Extreme Learning Machine (ML-ELM)

Multilayer Extreme Learning Machine (ML-ELM) was
initially suggested in [1] as an alternative the reduce the
computational load that frequently results from the iterative
nature of Back Propagation (BP) learning algorithms that are
commonly employed to train Multilayer Neural Networks
(ML-NNs) [?, 2, 3]. The main advantage of an ML-ELM is
the integration of a single learning mechanism that involves
several layers for representational learning, followed by a
final layer of ELM classification [1]. The basic building
block ML-ELM is an ELM-based Autoencoder (ELM-AE,
See Fig. 8) that is stacked to build a multilayer structure
(deep structure) while performing layer by layer unsuper-
vised learning for feature representation where fine iterative
tuning is not required [29].
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An ML-ELM is a neural structure that consists of a num-
ber of L hidden layers, where for a given input X(i) =
[x(i)

1 , . . . , x(i)
N ], k = 1, . . . , N , the ith data transformation

�(i) = [�(i)
1 , . . . , �

(i)
N ] is computed using Eq. (16), and �

(i)

is the transformation vector that corresponds to the input
vector x(i)k [5, 13].

H(i)�(i) = X(i) (16)

in which, H(i) is the output matrix of the ith hidden layer
w.r.t the input X(i). Data transformation is achieved by
projecting X(i) along the decoder stage weights at each
ELM-AE. That means, at the encoder stage, each ELM-AE
generates a number of orthogonal random parameters, e.g.
random input weights and random biases in hidden nodes
for additive nodes [21, 29]. Thus, orthogonal random hidden
parameters of each ELM-AE are computed using Eq. (17).

h(xk) = g(xkA + b) = [h1(xk), . . . , hMi(xk)] (17)

in which, H(i) = [h(x1), . . . , h(xN )]T , AT A = I and bT b =
1. Hence, the ith transformation term �(i) is calculated as:

�(i) = (H(i))T
✓

I
C

+ H(i)(H(i))T
◆�1

X(i) (18)

Final representation Xfinal is defined as

Xfinal = g(X(i)(�(i))) (19)

If layer Mi = Mi+1, then g can be chosen as a linear func-
tion, otherwise g is chosen as nonlinear piecewise function
(RBFs or sigmoids). In [13], Xfinal was used as the hidden
layer output to compute the output weight vector � as [1, 13].

Xfinal
� = T (20)

by adding a regularisation factor C and using the pseudoin-
verse of the final transformation, Xfinal as the firing strength

matrix, the term � is computed as shown in Eq. (21).

� = Xfinal
✓
1

C
+ X(Xfinal)

◆�1

T (21)

Unlike the hierarchical ML ELM [1], the methodology
reviewed in this section directly uses the final data repre-
sentation Xfinal as hidden layer to calculate the weight vector
�.

III. PROPOSED MULTILAYER FUZZY EXTREME
LEARNING MACHINE (ML-FELM)

Similar to ML-ELM, the proposed ML-FELM is based on
a hierarchical learning scheme that involves two independent
learning mechanisms. First, a number of ELM-based fuzzy
autoencoders (FAE for short) is applied to extract a high
level of features, followed by an independent ELM-based
classifier/regressor that uses the final data transformation �M

as its input vector. The basic building block of the ML-FELM
is based on the FELM described in Fig. 2(a) and suggested in
[30]. According to Fig. 1(a), given a number of data samples
(xp, tp), where xp = [xp1, . . . , xpN ], k = 1, . . . N , the MF
of each jth fuzzy rule is calculated by the sum-product
composition which is given by:

R
j(xp; cj ,�j) =

LiY

j=1

µ
k,i
j (xpk); p = 1, . . . , P (22)

where Li is the number of fuzzy rules, cj = [cj1, . . . , cjN ]
and �j = [�j1, . . . ,�jN ]. In this paper, a Mamdani inference
implication is employed. That means, the output weights
used at each ith data transformation are single crisp values.
Each MF is a Gaussian function computed as follows:

µ
k,i
j (xk) = exp

 
� (xpk � cjk)2

�
2
jk

!
(23)
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where the output of each FAE is a weighted average:

ypk(xp) =
PLi

j=1 R
j(xp; cj ,�j)�

(i)
jpPLi

j=1 R
j(xp; cj ,�j)

(24)

in which, �(i)
p = [�(i)

j1 , . . . , �
(i)
jP ]. Thus, the ith data repre-

sentation matrix �(i) = [�(i)
1 , . . . , �

(i)
P ] for the input xp is:

H(i)�(i) = X(i) (25)

where each H(i) is defined as:

H(µk,i
1 , . . . , µ

k,i
Li

,�1 . . . ,�Li , x1, . . . , xP )

=

0

B@
h11 · · · h1Li

...
...

...
hP1 · · · hPLi

1

CA

P⇥Li

each hpi = R
j(xp; cj ,�j)/

PLi

j=1 R
j(xp; cj ,�j). Therefore,

�(i) is calculated as follows:

�(i) = (H(i))T
✓

I
Cfinal

+ H(i)(H(i))T
◆�1

X(i) (26)

Similar to ML-ELM, the final representation is given by
Xfinal = g(X(i)(�(i))). if Li = Li+1 for all i, the activation
function g is chosen as a linear piecewise function, otherwise
as a nonlinear piecewise function. Finally, Xfinal is fed into
an FELM classifier to calculate the output weight vector �.

Hfinal
� = T (27)

Image Segmentation 
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Original image Image after segmentation
 and filtering

Fig. 6: Image preprocessing.

and � is calculated by Eq. (28)

� = (Hfinal)†T = Hfinal
✓

1

Cfinal
+ Hfinal(Hfinal)T

◆�1

T (28)

IV. METHODS

A. Robotic Platform

In this work, a UAV Bebop2 was used to collect images
and run all the experiments (See Fig. 5(a)). The UAV
transmits the live video stream of its front facing camera
and pose information to a central computer over WiFi. As
shown in Fig. 5(a-d), a robotic arm was also constructed to
collect and transport four different objects. The output of the
proposed ML-FELM is used to control the position of the
UAV and the robotic arm. The UAV transmits images to a
central computer where active object classification and the
associated methodology used to plan the UAV trajectory to
transport each object are carried out.
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As illustrated in Fig. 5, in order to control the robotic arm,
a microcontroller Arduino one connected through Bluetooth
and was employed to open-close the final gripper of the
robotic arm. To implement the ML-FELM, control com-
mands to guide the position of the UAV, the processing
of each image and the communication between the central
computer and the robotic arm, the Robotic Operating System
(ROS) middleware using Ubuntu was used.

B. Data Collection and Preprocessing

To train the proposed ML-FELM, different data sets were
collected using the on board camera of the UAV Bebop2
(Fig. 5(a)) at different angles and positions. A final data
set of 36386 images were collected with a resolution of
856 ⇥ 480 pixels corresponding to four different objects,
i.e. box (9114 images), circle (9042 images), an irregular
shape (9050 images) and a triangle (9180 images) as shown
in Fig. 5(b). As illustrated in Fig. 6, each image collected
by the onboard camera was preprocessed to remove out the
background. This process was carried out using two OPEN-
CV built-in functions. First an HSV filter to specifically
select a color was applied to segment each object. Secondly,
a blurring kernel filter is implemented to obtain the final
image to be classified.

C. Methodology for Active Classification and Transport of

Objects using the ML-FELM

As described in Fig. 7, the classification and transport of
each object is divided into two main stages. First, the UAV
hovers in front of a random object while actively collecting
and processing a predefined number of images (See Fig. 6).
Each preprocessed image is fed into the ML-FELM, and
its classification outcome is stored. The probability of each
classification is obtained as the number of times the output
of the ML-FELM (YML�FELM ) is an object oi divided by
the total number of images used to identify an object .

P (c|oj) =
number of times YML�FELM is oi

number of collected images
(29)

where j = 1, . . . , C, such as C is the number of object
classes, and c the current class. Thus, the classification of
the current object is obtained with the current maximum a
posterior (MAP) estimate as:

ĉ = argmax
c

P (c|oi) (30)

If the value of ĉ is higher than a predefined threshold, then
this information is used to guide the drone to identify the
container that corresponds to the classified object. On the
contrary, this process is repeated until the value of ĉ is
satisfied. In order to determine which is the correct container,
four objects with the same shape that those objects that are
recognised and transported by the UAV are place at the top
of each container (See Fig. 7). In other words, the output of
the ML-FELM is actively used to control not only the current
position of the UAV, but also the gripper opening and closing.
In a like-manner to the first stage, a number of predefined
images are collected from the label of each container, and
then preprocessed to feed the ML-FELM. A new value of
ĉ is then computed and used to guide the UAV to the goal
destination, where the robotic arm drops the selected object.

V. RESULTS

In order to evaluate the accuracy of the proposed ML-
FELM, in this section two different experiments are sug-
gested. First a number of four popular benchmark data sets
about classification problems are suggested. Secondly, the
experimental results for active classification and transport of
objects using a UAV are presented and compared to other
ML approaches.

A. Benchmark data sets for classification Problems

As described in Table I, in this section four classification
problems are used to evaluate the ML-FELM. For the cross-
validation purposes, ten random experiments are conducted,
where for training and testing two subsets are created corre-
spondingly as indicated in Table I.



TABLE I: SPECIFICATION OF BENCHMARK CLASSIFICATION PROBLEMS.

Datasets # Attributes # Classes # Observations

Training Testing

Australian 14 2 345 345

Samitage 36 6 4,400 2,035

Abalone 8 2 2,000 2,177

Letter Recognition 16 26 10,000 10,000

TABLE II: PERFORMANCE COMPARISON FOR REAL-WORLD BENCHMARK
CLASSIFICATION PROBLEMS.

Data Models Training Testing #
Sets (%) Time (%) hidden units

Mean SD Sec Mean SD

A
us

tra
lia

n ML-FELM 83.48 0.283 3.07 87.94 0.002 [10, 10, 50]

ML-ELM 84.41 0.201 2.97 87.82 0.002 [10, 10, 50]

ML-KELM 86.88 0.303 6.21 87.12 0.001 345

FELM 85.22 0.120 2.11 86.08 0.094 540

Sa
tim

ag
e

ML-FELM 91.04 0.243 28.3 90.19 0.033 [40, 850]

ML-ELM 90.89 0.009 15.0 91.90 0.019 [50, 800]

ML-KELM 92.04 0.045 29.2 93.28 19.81 4400

FELM 93.19 0.012 15.2 89.41 0.01 500

A
ba

lo
ne

ML-FELM 58.99 0.23 4.12 57.20 0.09 [70, 70, 150]

ML-ELM 59.10 0.25 1.19 56.79 0.12 [70, 70, 150]

ML-KELM 58.80 0.54 2.54 57.62 0.05 2,000

FELM 58.11 0.67 0.01 55.86 0.61 25

Le
tte

r
R

ec
og

ni
tio

n

ML-FELM 97.89 0.230 409 93.12 0.24 [210, 210, 1900]

ML-ELM 96.01 0.190 62.3 93.42 0.66 [210, 210, 1900]

ML-KELM 95.01 0.290 101 94.49 0.19 10,000

FELM 95.81 0.01 19.2 92.88 0.09 2,000

The average classification accuracy of ML-FELM, ML-
ELM, ML-KELM and FELM is compared in Table I as
well as the number of fuzzy rules (hidden units for the
case of fuzzy approaches) per each problem. For all ML
structures, a two-layer feature extraction is applied, followed
by a classification FELM as shown in the last column
of Table I. The number of outputs for each FELM is
equal to the number of classes of each data set. From our
experiments, it was found the optimum value for Ci for
the Australian, Satimage, Abalone and Letter Recognition
data are [1�2

, 104, 108], [1�2
, 103, 950], [0.9, 2.4, 103] and

[10�3
, 102, 9.8] respectively. As can be noted from Table I,

although the associated computational load of ML-FELM
is higher for the treatment of large data sets, its model
accuracy is comparable and in some cases higher than that
obtained by a ML-ELM and ML-KELM. Especially ML-
FELM outperforms its single-hidden-layer counterpart the
FELM.

TABLE III: PERFORMANCE COMPARISON FOR OBJECT CLASSIFICATION.

Models Training Testing # hidden units

Mean (%) Time Mean (%)

ML-FELM 97.47 78.4s 97.30 [1740, 1600, 1600]

ML-ELM 95.32 45.1s 94.16 [1740, 1600, 1600]

ML-FELM-II 98.22 134s 97.80 [1740, 1600, 1600]

ML-KELM 94.51 62.2s 93.50 [25470, 25470, 25470]

CNN 99.97 2200s 99.12 -

B. Active Classification and transport of objects

This section is dedicated to describe the experimental
setup and results obtained for the classification and transport
of four different objects using the UAV and ML-FELM. For
cross-validation purposes, the object data set was split into
two subsets, i.e. 70% for training and 30% for testing. In
order to compare the accuracy of the ML-FELM, a ML-
ELM, ML-KELM, and a Convolutional Neural Network
(CNN) with a structure that consists of convolution(48 ⇥
48 ⇥ 32)-pooling(24 ⇥ 24 ⇥ 32)-convolution(22 ⇥ 22 ⇥
32)-convolution(20 ⇥ 20 ⇥ 64)-pooling(10 ⇥ 10 ⇥ 64)-
classifier(64000�500�4). A third ML structure that consists
of two FAEs + IT2-FELM which is used as a feature
representation classifier is also implemented as a comparison
method and that is called ML-FELM-II. It was found that
a value for Ci = [13, 17, 149] and Ci = [12, 114, 140]
provides the highest trade-off between model simplicity and
testing accuracy for the ML-FELM and ML-ELM respec-
tively. As described in Table II. The optimal configura-
tion for each ML-ELM approach follows the arrangement
[AE1/FAE1,AE2/FAE2, ELM/FELM classifier] where each
input represents the number of hidden units used by each
model. As can be noted from Table III, although the best
accuracy is achieved by the CNN, this is compensated by
the learning time and model simplicity of the ML-FELM
which is much smaller. According to the experiment results,
adding an IT2-FELM enhances he model accuracy of a ML
structure that includes two FAEs (or ML-FELM-II) as shown
in the results presented in TABLE III.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a ML-FELM that is based on the concept
of Multilayer ELM and T1 FLS theory is suggested for
active object classification and their transport. The learning
approach of the ML-FELM involves two main steps, first
a number of Fuzzy Autoencoders are stacked in order to
achieve a high feature representation of the input data.
Secondly, a FELM of Mamdani type is used for feature clas-
sification. In order to evaluate the efficiency of the proposed
ML-FELM, two different experiments were suggested. First,
a number of popular data sets about classification problems
are used to compare the performance of the ML-FELM with
respect to other existing ML-ELM methods. Secondly, an
image data set is collected to train the ML-FELM whose
optimised model is used in real time experimets to classify
and transport a number of four different objects. According
to our experiments, the ML-FELM is a fuzzy ML technique
that provides a similar trade-off between model simplicity
and model accuracy for solving classification problems and
feature representation.

Future work involves the development of new online
learning techniques for ML-FELM methods, as well as the
application of evolutionary computation. This also includes
the development of new Fuzzy Autoencoders able to provide
a high level of feature representations in the field of image
processing and classification.
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Fig. 8: Confusion matrix for the average training and testing accuracy.
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