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Abstract—This paper considers the problem of planning the
collection or delivery of perishable goods. The purpose is to
design a number of routes for each day over a given planning
horizon while satisfying constraints on route duration, customer
service time windows, and customer visit requirements. The
objective function of the problem is to maximize the number of
nodes visited for collection or delivery. The problem is formulated
as a fuzzy version of the Team Orienteering Problem with Time
Windows. Time window constraints are not considered hard since
some tolerance is allowed. A fuzzy approach that considers fuzzy
constraints is used to model and solve this problem. The solution
approach uses the TOPTW iteratively to solve the periodic
routing and applies a GRASP-VNS hybrid algorithm to find the
routes for each consecutive day within the planning horizon.

Index Terms—Perishables, GRASP-VNS hybrid, TOPTW,
PVRPTW, Fuzzy Time Windows, Fuzzy TOPTW

I. INTRODUCTION

The supply chain facilitates the transformation from raw
materials to products and the distribution of those products to
customers. Both processes incorporate tactical and operational
planning, and transport and logistics play an important role
in business development. The efficiency of the supply chain
and therefore of the industry depend on the planning of
routes that collect the raw materials for production and those
that distribute the processed goods. The arrival of the goods
arriving to the production centres and the distribution to final
customers are usually treated independently. In transportation
routing planning, the firm collects or distributes a set of
products from source nodes (i.e., supply points, factories,
warehouse,...) to end nodes (i.e., demand points, customers,
retail locations,...).

The development of efficient transportation planning is
influenced by the characteristics of goods. For example, per-
ishable goods items have short lead and pick up times and
must be distributed or collected as quickly as possible due
to lost quality. Most perishable freights must be conserved,
refrigerated and discarded if a specified time interval has
passed. The frequency of pickups and deliveries must be
daily or a few days at most. In general, the objective is to
reduce costs, but companies must also use their resources
efficiently to better serve their customers and ensure product

quality. For those organizations that have a limited fleet of
vehicles but without capacity limitations, the challenge is to
find new approaches to make food collections and deliveries
with limited periods and time constraints.

The focus of this work is to meet the challenge of man-
aging periodic collection and delivery of perishable goods in
disseminated service areas. These planning routing problems
are inspired by real applications, especially the collection of
agricultural and livestock products for the elaboration of other
products (milk, yogurts, cheeses, ”fourth range” products), and
the distribution of these products, processed or unprocessed.

In general, the problems of planning collection and distri-
bution routes have been addressed with the Vehicle Routing
Problem (VRP) model and its variants. The VRP [1] optimizes
the sequence of nodes to be visited on a set of routes by a
collection or delivery trucks. The optimal sequence takes into
account the distances between each pair of nodes, the service
time and other restrictions imposed on the routes, such as the
restrictions on the duration of the route and the delivery and
collection time windows.

These problems involve a single period, i.e. pickups and
deliveries begin and end in the same planning period, usu-
ally a day. However, in real-world applications that concern
us, periodic collection and delivery operations have to be
planned in a given temporal horizon of several days. Given
the characteristics of perishables, the collection and delivery in
established periods is mandatory. For example, dairy products
are collected on farms every few days, and are used for the
preparation of cheeses and yogurts, as well as the distribution
of these processed products at points of sale. In general, these
problems have been treated with VRP variants, called the
Periodic Vehicle Routing Problems (PVRP) [2]. The PVRP
requires that each customer be visited in multiple periods of
a planning horizon. Such periods can be specified as a given
frequency for the visits (e.g. every two days), a given number
of visits within the planning horizon (e.g. twice a week),
or of a fixed set of periods (e.g. Tuesday and Thursday or
Wednesday and Friday).

Another variant introduced to solve vehicle route planning
problems is called Routing Problems with Profits or Orien-
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teering Problems (OP) [3]. In this variant the visit to each
node has a certain profit and not all nodes have to be visited.
The OP is a combination of choosing a subset of nodes to be
visited and determining the shortest path between the selected
nodes, so as to maximize the total profits collected from these
nodes [4]. While the OP considers only obtaining a path, the
Team Orienteering Problem (TOP) considers set of routes [5].

In this paper we propose to address a problem of plan-
ning routes for the collection or distribution of perishables
where nodes can only be visited at certain times during the
planning period within specified time windows. One of the
main contributions of this work is the use of a series of
TOPTW as a simpler model instead of the PVRPTW, given
the characteristics of the periodicity of visits to the nodes
in the planning horizon expressed as a frequency. Another
contribution is that the time windows to visit the nodes (farm,
customers) are not hard, a realistic situation which occurs in
many real cases. Therefore, we use a Fuzzy Approach to model
and solve this problem considering fuzzy constraints.

Given the complexity of these problems, with instances of a
certain size, the use of heuristics and metaheuristics approach
is appropriate. Thus, for experimentation and obtaining results,
a hybrid metaheuristic to solve TOPTW with fuzzy time
window constraints is used. The proposed method combines
the Greedy Randomized Adaptive Search Procedure (GRASP)
and Variable Neighbourhood Search (VNS).

The rest of the paper is organized as follows. Section II
provides a description of the periodic routing problem under
study. Section III formulates the fuzzy model associated with
time window constraints, TOPTW with fuzzy constraints. In
Section IV explains the fuzzy approach to solve the problem.
The solution approach proposed for this problem is based
on a metaheuristic GRASP-VNS hybrid described in Section
V. In Section VI the computational experiments and the
corresponding results analysis are described. Finally, some
concluding remarks and future works are given in Section VII.

II. PROBLEM DESCRIPTION

This section provides a description of the Periodic Routing
Problem with Time Windows for perishables that is considered
in this study. This problem deals with the design of several
routes for each day of a certain planning horizon T = {1, ..., t}
of t days. For each day of the planning horizon each vehicle of
a fleet of m vehicles follows a route. The routes start and end
in the same production plant. Accordingly, a feasible solution
of the problem is a set of m routes for each day within the
planning horizon carried out by the vehicles of the fleet, where
a feasible route is a sequence made up of nodes (farms or
customers) to be visited by a vehicle. The objective function
of the problem seeks to maximize the number of nodes visited
during the planning horizon.

The Periodic Routing Problem with Time Windows for
perishables can be formally specified on a complete directed
graph G = (V,A). The definition of G includes V =
{v0, v1, ..., vn} as the vertex set, and A = {(vi, vj) : vi, vj ∈
V, i 6= j} is the arc set. The vertex set contains the n nodes

(farms or customers) and the production plant as v0. For each
arc (vi, vj) ∈ A a travel time tij ≥ 0 is known. The production
plant, v0, has a time window [e0, l0] that represents the total
interval time for the collection or distribution operation of one
day. Each node vi ∈ V , i 6= 0, has its own collection or
service time ci ≥ 0, a time window [ei, li], and a score si
that represents the amount of collected or distributed products
of node (farms or customers) vi. The maximum duration of
every route is represented by W . This limit is determined by
the maximum working time of the truck drivers in a working
day. A two day limit is placed on the collection or delivery of
a products to ensure its quality. The problem under study sets
scores si equal to 1 and the vehicles have unlimited capacity.
Therefore there is no limit on vehicle collection or delivery
since the total weight and volume is less than capacity of the
trucks.

To summarize, the Periodic Routing Problem with Time
Windows for perishables consists of designing m feasible
routes for each day of the planning horizon that will be
accomplished by the fleet of trucks that collect or deliver
perishables while maximizing the number of nodes visited.

III. THE FUZZY MODEL FORMULATION

This section presents the mathematical formulation of the
problem under study, namely the Periodic Vehicle Routing
Problem with Time Windows (PVRPTW) for perishables
products. The problem is formulated by means of a Mixed
Integer Programming (MIP) problem. The mathematical for-
mulation of the problem corresponding to each day of the
planning horizon is stated as a TOPTW model in order to
facilitate its resolution. This problem is tackled repeatedly
to provide high quality solutions of the periodic problem in
the planning horizon. It is not necessary to visit all of the
nodes, and each node has an associated score, which is used
to calculate the objective. Further, in the corresponding model,
the time windows constraints are considered fuzzy; i.e. we
consider flexible time windows where a certain tolerance is
acceptable. The fuzzy Approach to address the model with
fuzzy constraints is presented in the next section.

The components of the TOPTW model are as follows:

Parameters:
i, j are indices that represent the production plant and

nodes, i = 0, 1, ..., n, j = 0, 1, ..., n.
k is an index that represents a route; k = 1, 2, ...,m,

where m is the number of routes.
si is the score associated with the visited of the nodes

i; i = 1, 2, ..., n. In order to maximize the number
of nodes visited, the score is 1 point for each node.

ci is the collection or service time of nodes i; i =
1, 2, ..., n.

tij is the travel time between nodes i and j; i, j =
0, 1, ..., n.

Wk is the maximum duration time for each route k
considering travel, collection or services time and
waiting times.



ei, li represent the opening and closing times of a node i,
respectively; i = 1, 2, ..., n.

Decision variables:

Xk
ij is a binary variable that is set equal to 1 if vehicle

k goes from farm i to j, and Xk
ij = 0 otherwise.

Y k
i is a binary variable that is set equal to 1 if node i is

visited by vehicle k, and Y k
i = 0 otherwise.

Zk
i is a real variable that represents the start time of the

collection or services at node i
The Team Orienteering Problem with Fuzzy Time Windows

(TOPFTW) constraints is formulated as follows:

Maximize:
m∑

k=1

n∑
i=1

siY
k
i (1)

Subject to:
m∑

k=1

n∑
j=1

Xk
0j =

m∑
k=1

n∑
i=1

Xk
i0 = m (2)

m∑
k=1

Y k
i ≤ 1 i = 1, 2, ..., n (3)

n∑
j=0

Xk
ji =

n∑
j=0

Xk
ij = Y k

i k = 1, ...,m, i = 1, 2, ..., n (4)

Zk
i + ci + tij − Zk

j ≤M(1−Xk
ji) k = 1, ...,m, i, j ∈ i, j = 0, 1, ..., n (5)

Zk
i + ti0 ≤Wk k = 1, ...,m, i = 1, 2, ..., n (6)

Zk
i ≥f ei k = 1, ...,m, i = 1, 2, ..., n (7)
Zk
i ≤f li k = 1, ...,m, i = 1, 2, ..., n (8)

Xk
ij ∈ {0, 1} k = 1, ...,m, i, j = 0, 1, ..., n (9)

Y k
i ∈ {0, 1} k = 1, ...,m, i = 1, 2, ..., n (10)
Zk
i ≥ 0 k = 1, ...,m, i = 1, 2, ..., n (11)

Firstly, the mathematical expression (1) represents the ob-
jective function of the problem: the total collected o delivered
score. Secondly, constraints (2) specify that each route starts
and ends at a production plant. Constraints (3) establish that
every node (farm or customer) is visited at most once. The
set of constraints (4) and (5) establish the connectivity and
timeline of each route by the flow conservation rule and the
subtour elimination, and M is a large constant in the Big-
M method. Constraints (6) guarantee the maximum duration
for each route. The time windows constraints are specified by
constraints (7) and (8). Finally, constraints (9), (10), and (11)
define the variables domains. Note that symbols ≥f in (7) and
≤f in (8) denote that constraints are fuzzy.

IV. FUZZY OPTIMIZATION APPROACH

The problem was formulated as a optimization problem with
fuzzy inequalities in constraints in the previous section. The
literature [6], [7] offers approaches to solving these fuzzy
optimization problems. Fuzzy Linear Programming (FLP) is
a solution approach which considers the fuzzy components
included in the problem, and there are different FLP models
to choose from. In [6] a basis classification of the different FLP
models is proposed. Methodological approaches to provide
solutions to FLP models in a direct and simple way are found
in [7] and lead to solutions that are coherent with their fuzzy

nature. The formulated TOPFTW problem is a model with
fuzzy constraints. It is a case where there is a certain tolerance
in the fulfilment constraints and consequently the feasible
region can be defined as a fuzzy set. Verdegay [6] demonstrate
through the representation theorem for fuzzy sets that solutions
for a model with fuzzy constraints can be obtained using the
following auxiliary model:

Maximize z = cx

subject to Ax ≤ b+ τ(1− α) (12)
x ≥ 0, α ∈ [0, 1]

where τ = (τ1, τ2, ..., τm) ∈ <m is the tolerance level vector.
In an analogous way, we can replace the fuzzy constraints

(7) and (8) of the proposed TOPFTW model by an auxiliary
pure mathematical model that contains the following con-
straints:

Zk
i ≥ ei − τ1(1− α), k = 1, ...,m, i = 1, 2, ..., n (13)

Zk
i ≤ li + τ2(1− α), k = 1, ...,m, i = 1, 2, ..., n (14)

where τ1, τ2 ∈ < are the tolerance level or the maximum
violations in the fulfillment of time windows constraints pro-
vided by the decision maker, and α ∈ [0, 1]. Therefore using
this model allows a new solution for each value of α. The



decision maker now has a range of solutions according to the
variation in α thus this set of solutions is consistent with the
fuzzy nature of the problem.

V. SOLUTION ALGORITHMS

Two approaches to deal with the classic PVRPTW [8] can
be found In the literature. One approach first solves the prob-
lem of assigning all nodes to the days of the planning horizon,
and then solves a VRPTW for each day. The other approach
repeatedly assigns each node, obtaining partial solutions (sub-
route) for each day to which that node was assigned, this
process is repeated until all nodes are incorporated obtaining
routes for each day. The first approach considers the assign-
ment problem with a routing component with the emphasis in
assignment and the second approach a routing problem with
selection decisions involved.

In PVRPTW, the nodes have a service frequency fi and a
set Ci ⊆ T of allowed combinations of visiting days. In the
proposed problem, the Periodic Routing Problem for Perish-
ables, the nodes do not have a fixed combination of visiting
days. The nodes only have a visit frequency established within
the planning horizon, to be visited every two days.

In order to deal with the Periodic Routing Problem with
Time Windows for Perishables, the solution approach begins
by assigning all nodes to the first day of the planning horizon
and solving the routing problem associated to this day. The
routing problem to solve follows the mathematical model
presented in the previous section, the TOPTW with fuzzy time
windows constraint

The remaining nodes that have not been visited on the first
day are assigned to the second day of the planning horizon
and again the routing problem TOPTW is solved. On the
second day all the remaining nodes must be visited, so that
the planning of the first two days can be repeated along the
planning horizon.

Routing problems are difficulty to solve [9], and the routing
problem presented in this work is NP-hard. Consequently,
heuristic and metaheuristic solution approaches are appropriate
to solve the Team Orienteering Problem with fuzzy Time
Windows. In this regard, a hybrid metaheuristic that combines
GRASP (Greedy Randomized Adaptive Search Procedure)
[10] and VNS (Variable Neighborhood Search) [11] is pro-
posed to solve each routing problem associated with a day of
the planning horizon. This hybrid approach is shown in Figure
1 where maxIt is the maximum number of iterations of the
procedure.

GRASP is a multistart two-phase metaheuristic made up of a
construction phase and a improvement phase. The construction
phase produces a feasible solution and subsequently the solu-
tion is improved in next phase. The GRASP construction phase
builds a feasible solution step-by-step by adding at random
a new farm from a restricted candidate list (RCL) to the
current partial solution under construction without destroying
feasibility. The construction phase is shown in Figure 2.

The improvement phase performs the solution using a
variant of Variable Neighborhood Search (VNS), the Variable

function GRASP(maxIt, sizeRCL, kmax)

1) readInput()
2) for Iter = 1,... ,maxIt do

a) solution = GRASPConstPhase(sizeRCL)
b) solution = VND(solution, kmax)
c) updateSol(solution, bestSolution)

3) return bestSolution

end GRASP

Fig. 1. GRASP

function GRASPConstPhase(sizeRCL)

1) Initialize the partialSolution with m
empty routes

2) While it is possible to visit new
nodes

a) CL = ∅
b) For each node i ∈ I

i) Find the best feasible triplet
(i, j, k) to insert this new POI
i in partialSolution according to
greedy time function f(i, j, k)

ii) Add the feasible triplets
(i, j, k) to the Candidate List
CL

c) Create the Restricted Candidate
List, RCL, with the best sizeRCL
triplets (i, j, k) from CL according
to f

d) Select a random triplet (i, j, k)
from RCL

e) Update the variables of route k
by inserting node i at position j

3) return partialSolution

end GRASPConstructPhase

Fig. 2. GRASP construction phase

Neighborhood Descent (VND). This metaheuristic method
consists in changing the neighbourhoods each time the local
search is trapped in a local optimum with respect to current
neighbourhoods. The method improves iteratively the solution
using several movement o neighborhood structures of solution
S as Nk(S) for k = 1, ..., kmax, being kmax the number
of neighborhood structures. The VND procedure is shown in
Figure 3.

GRASP is used as an outer framework for diversification,
and VND for intensification. Nevertheless, in the proposed
solution approach the value of k is used for control the size
of movements that will be described below. The initial solution
obtained by GRASP is improved by using a VND with three
movements:
• k-chain move. Take a chain of k consecutive nodes in a

route of the solution and move it to another part of the



function VND(solution, kmax)

1) k = 1
2) While (k ≤ kmax)

a) Find the best solution sol′ in
Nk(sol)

b) If (sol′ is better than sol)

i) Take sol = sol′ and k = 1

c) Else

i) Take k = k + 1

3) return solution sol

end VND

Fig. 3. ariable Neighborhood Descen (VND)

same route or in other route.
• 2-opt move. Select two edges in a route and crosses the

route over itself reordering the nodes so the crossing is
removed.

• Insertion move. Try to insert nodes that have not yet
been visited in the current solution while maintaining its
feasibility.

The neighbourhood structure of the VND is a combination
of the movements described above. The first two movements,
k − chain and 2 − opt, try to reduce the total travel time of
the solution and then the Insertion move tries to insert not
visited nodes in the solution.

VI. EXPERIMENTATION

The results of the computational experiments carried out
in this study are described in this section. The purpose of
the experiments is to solve the Periodic Routing Problem
with Time Windows for Perishables and to test the proposed
solution approach.

Complete data about the collection of perishables or dis-
tribution of this real world problem is unavailable at present.
Instead we only have access to several attributes. Accordingly,
some instances for PVRPTW [12] were adapted in order to
test the solution approach and solve the proposed problem.
These instances are p01, p07, p11, p12, and p17, and they
provide data regarding the location of nodes, time windows,
and service duration. The information about visit combination
for each node is set in order to guarantee that the product is
at least collected after two days.

The number of routes for each day of the planning horizon
and the days of the planning horizon is also introduced. Details
about the instances data used is given in Table I.

Instances Farms Routes per day Max. time per route Days

p01 48 3 500 6
p07 72 5 500 6
p11 48 3 500 6
p12 96 6 500 6
p17 72 4 500 6

TABLE I
DETAILED DATA OF INSTANCES

As regards parameters of the hybrid solution approach,
RCL size values should be set for GRASP, kmax for VND,
and the tolerance levels associated with fuzzy optimization
approach. Tolerance levels τ1 and τ2 applied in time windows
constraints are 15% of ei and li respectively, with α values
in 0.2, 0.4, 0.6, 0.8, and 1.0. Details regarding the parameter
values can be seen in Table II. The solution approach runs
1000 times for each of the instances and parameter values
set in the computational experiments. The computational ex-
periments were carried out on a machine equipped with a
Intel Core i7-3610QM CPU processor at 2.30 GHz and 16
Gb RAM.

Parameter Values
Size of RCL sizeRCL ∈ {3, 5, 7, 10}
VND parameter kmax ∈ {2, 3, 4, 5}
Values of alpha α ∈ {0.2, 0.4, 0.6, 0.8, 1.0}
Tolerance level 1 τ1 is 15% of ei
Tolerance level 2 τ2 is 15% of li

TABLE II
THE VALUES OF THE PARAMETER FOR THE GRASP-VNS HYBRID

Table III shows the computational experiment results for
the best solutions obtained varying α. The first column of the
table includes the instance and values for α. The remaining
columns show several characteristics of the best solutions. The
second column shows the visited nodes in the planning horizon
compared with the total number of nodes in the instance.
Finally, the Execution Time column shows the computing time
to obtain the solutions measured in seconds.

Table III indicates the maximum number of visited nodes in
the solutions, and the results reveal that for some instances it
is not possible to visit all farms. The results indicated in bold
are those where all nodes were visited within the planning
horizon. Specifically, for α = 1 with no tolerance in the
time window constraints, it is not possible to visit all nodes
for instances p01, p07 and p17. However, as the tolerance
increases in the time window constraints by decreasing the α
value, the softening of the constraints allows all nodes within
the planning horizon to be visited. In the case of p11 and p12,
it is not necessary to soften the time windows constraints to
visit all nodes within the planning horizon.

VII. CONCLUSIONS AND FURTHER RESEARCH

In this study, we propose a Soft Computing approach to
deal with a Periodic Route Planning with Time Windows
of Perishables within the context of as a Team Orienteering
Problem with Time Windows with Fuzzy Time Windows
constraints (TOPFTW). The proposed approach incorporates
the assignment of customers to the planning horizon days
and a GRASP-VNS hybrid solution as a way to solve the
problem and obtain quality solutions in reasonable time. The
computational experiments results show that the proposed
approach can solve the problem by considering solutions that
are consistent with its fuzzy nature. Nevertheless, if softening
of time window constraints is not allowed, then there are some



Instances/ Best
Alphas Solutions

Visited nodes Execution Time
p01

α = 0.2 48/48 0,0028
α = 0.4 48/48 0,0032
α = 0.6 48/48 0,0044
α = 0.8 44/48 0, 0027
α = 1.0 41/48 0, 0027

p07
α = 0.2 72/72 0,0404
α = 0.4 72/72 0,0116
α = 0.6 72/72 0,0108
α = 0.8 72/72 0,0063
α = 1.0 62/72 0, 0027

p11
α = 0.2 48/48 0,0039
α = 0.4 48/48 0,0022
α = 0.6 48/48 0,0023
α = 0.8 48/48 0,0015
α = 1.0 48/48 0,0027

p12
α = 0.2 96/96 0,0039
α = 0.4 96/96 0,0022
α = 0.6 96/96 0,0023
α = 0.8 96/96 0,0015
α = 1.0 96/96 0,0027

p17
α = 0.2 72/72 0,0066
α = 0.4 72/72 0,0133
α = 0.6 72/72 0,0138
α = 0.8 71/72 0,0196
α = 1.0 68/72 0, 0027

TABLE III
COMPUTATIONAL EXPERIMENT RESULTS FOR BEST SOLUTIONS

instances where it is not possible to visit all nodes. In addition,
as time windows constraints become more flexible, the number
of visited nodes in the solutions within the planning horizon
increases.

Future research will extend experimentation considering
instances with data from a real-life case of perishables in-
dustry, specifically in the dairy industry with the problem of
collecting milk from small local farms with limited isothermal
facilities while preserving the quality of the perishable product.
The proposed solution approach can be adapted and tested
to solve the classic instances of PVRPTW. The behavior of
other metaheuristics, enhanced mechanisms in GRASP, and
neighbourhood structures in VND will also be studied.
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