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Abstract—We take a glimpse at the relation between WNM-
algebras (algebraic models of the well-known Weak Nilpotent
Minimum logic) and quasi-Nelson algebras, a non-involutive
generalisation of Nelson algebras (models of Nelson’s constructive
logic with strong negation) that was introduced in a recent
paper. We show that the two varieties can be related via the
twist-structure construction, obtaining a new representation for
a subvariety of WNM-algebras that includes the involutive ones
(i.e. NM-algebras). Our results imply, in particular, that every
pre-linear quasi-Nelson algebra is a WNM-algebra; we thus
generalize the known result that the class of pre-linear Nelson
algebras coincides with that of NM-algebras (models of Nilpotent
Minimum logic).

Index Terms—weak nilpotent minimum, quasi-Nelson,
monoidal t-norm, twist representation

I. INTRODUCTION

Monoidal t-norm logic (MTL), the logic of left-continuous
t-norms, is among the most prominent systems in the mathe-
matical fuzzy logic literature. MTL was introduced in [12], and
the same paper [12, Sec. 3] considers certain axiomatic exten-
sions of MTL that result from imposing stronger requirements
on the negation connective. Among these, a weak negation
function on the real interval [0, 1] determines weak nilpotent
minimum logics, and a strong (involutive) negation defines
nilpotent minimum logic (NML). Algebraic models of MTL
as well as those of the above-mentioned extensions (called
respectively MTL-algebras, WNM-algebras and NM-algebras)
have been studied extensively, and several representation re-
sults are known.

Nelson algebras are the algebraic models of Nelson’s con-
structive logic with strong negation [19], a system obtained
by adding a new involutive negation to positive intuitionistic
logic.
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Structurally, NM-algebras and Nelson algebras are closely
related. Indeed, Busaniche and Cignoli [9] proved that if one
adds the pre-linearity equation

(x⇒ y) ∨ (y ⇒ x) ≈ 1

to Nelson algebras, one obtains precisely the variety of NM-
algebras.

From a methodological viewpoint, this result is particularly
interesting, for it entails that every NM-algebra (as a Nelson
algebra) can be represented as a special binary power (called a
twist-structure) of a (pre-linear) Heyting algebra (i.e. a Gödel
algebra), and also as a (dis)connected rotation of a Gödel
algebra (see [8], [18]).

(Dis)connected rotations have been generalized in [10] to
account for some non-involutive structures (see also [2]). With
a similar purpose, the twist-structure construction has been
recently extended to a non-involutive setting [23], [24]. The
twist construction, when applied to pairs of Heyting algebras,
determines the class of quasi Nelson-algebras.

In the present paper we focus on the interplay between the
pre-linearity equation and the non-involutive twist-structure
construction. In particular, we prove that pre-linear quasi-
Nelson algebras correspond precisely to the class of (non-
involutive) twist-structures over pairs of Gödel algebras. As
a class of abstract algebras, the latter is a proper subvariety of
WNM-algebras.

II. NM, WNM AND (QUASI-)NELSON

We assume familiarity with basic results of universal alge-
bra [7], residuated lattices [14] and fuzzy logics [16]. Although
we shall be dealing exclusively with algebras, it is important
to keep in mind that every variety considered here is the
algebraic counterpart (in the strong sense of [6]) of some
substructural/fuzzy logic. Thus, virtually all algebraic results
stated in the next sections have a straightforward logical
counterpart.

A commutative integral bounded residuated lattice (CIBRL)
is an algebra A = 〈A;∧,∨, ∗,⇒, 0, 1〉 of type 〈2, 2, 2, 2, 0, 0〉
such that:

(i) 〈A; ∗, 1〉 is a commutative monoid,
(ii) 〈A;∧,∨, 0, 1〉 is a bounded lattice (with order ≤),
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(iii) a∗b ≤ c iff a ≤ b⇒ c for all a, b, c ∈ A (residuation).
The unary negation operation is defined by ¬a := a⇒ 0 for
all a ∈ A. Notice that the negation of every CIBRL A satisfies
the properties postulated in [12] for a weak negation, that is,
¬ is order-reversing, ¬1 = 0 and a ≤ ¬¬a for all a ∈ A.

An MTL-algebra is a CIBRL that additionally satisfies the
pre-linearity equation introduced in the preceding Section.
MTL-algebras are thus said to be pre-linear, suggesting the
well-known result that every MTL-algebra is isomorphic to a
subdirect product of linearly ordered ones. The same applies
to the subvarietes of MTL-algebras introduced below, and
entails in particular that the lattice reduct of every such algebra
is distributive. WNM-algebras are the subvariety of MTL-
algebras defined by the weak nilpotent minimum equation:

¬(x ∗ y) ∨ ((x ∧ y)⇒ (x ∗ y)) ≈ 1.

In turn, NM-algebras are obtained from WNM by adding the
involutive equation ¬¬x ≈ x (or, equivalently, just ¬¬x ≤ x).
Thus NM ⊆ WNM ⊆ MTL ⊆ CIBRL (all inclusions being
proper).

Moving to the realm of Nelson logics, a quasi-Nelson
algebra (QN-algebra) is defined as a CIBRL that satisfies the
Nelson equation:

(x⇒ (x⇒ y)) ∧ (¬y ⇒ (¬y ⇒ ¬x)) ≈ x⇒ y.

QN-algebras have been introduced only recently [23], [24],
whereas Nelson algebras (N-algebras) have been around for
more than four decades. N-algebras are precisely the involutive
QN-algebras (i.e. those that satisfy ¬¬x ≈ x, or equivalently
¬¬x ≤ x). Thus N ⊆ QN ⊆ CIBRL (all inclusions proper).

The relationship between NM-algebras and Nelson algebras
has been investigated in previous papers, a standard reference
being [9]. There it is proved that the variety of NM-algebras
coincides with the subvariety PN of Nelson algebras satis-
fying the pre-linearity equation. In the non-involutive setting
(moving from Nelson to quasi-Nelson algebras on the one
side, and from NM to WNM-algebras on the other), it is not
difficult to produce a (linearly ordered) WNM-algebra that
does not satisfy the Nelson equation (see Example 4.6 below).
Denoting by PQN the variety of QN-algebras satisfying the
pre-linearity equation, we thus have WNM 6⊆ PQN (a fortiori,
WNM 6⊆ PN). This raises the following questions.

First: does the converse inclusion (PN⊆WNM) hold?
Second: how can one describe the class WNM∩N (or, more

generally, WNM∩QN)?
As we are going to see, the answer to the first question is

that, indeed, one has PN⊆WNM, and even PQN⊆WNM.
These observations (having seen that NM⊆N) entail the
above-mentioned result that NM=PN.

The latter question brought to our attention an equational
condition (only involving the ∧ and ¬ operations: see Propo-
sition 4.7) that, as far as we know, has never been singled out
in the context of WNM-algebras.

We obtained both the above-mentioned results thanks to
the twist representation of (quasi-)Nelson algebras. This per-
spective, which is new for WNM-algebras, led us to other

interesting insights and questions, which we are going to
recount in the next sections.

III. TWIST-STRUCTURES AND ROTATIONS

The twist-structure is a method for constructing an N-
algebra (extended in [23], [24] to QN-algebras) as a subalgebra
of a special product of two Heyting algebras. In fact, twist-
structures yield a representation theorem: every (quasi-)Nelson
algebra arises in this way. We proceed to expound the details
of the construction, restricting our attention (since we are in
a pre-linear setting) to pre-linear Heyting algebras factors,
known as Gödel algebras in the fuzzy literature (from now
on G-algebras).

Let:

G+ = 〈G+,≤+;∧+,∨+,→+,¬+, 0+, 1+〉
G− = 〈G−,≤−;∧−,∨−,→−,¬−, 0−, 1−〉

be both G-algebras, and n : G+ → G− and p : G− → G+ be
bounded lattice homomorphisms, additionally satisfying the
following requirements: n · p = IdG− and IdG+

≤+ p · n.
Define an algebra G+ ./ G− = 〈G+ ×G−;∧,∨,→,¬, 0, 1〉
as follows: for all 〈a+, a−〉, 〈b+, b−〉 ∈ G+ ×G−,

1 = 〈1+, 0−〉
0 = 〈0+, 1−〉

¬〈a+, a−〉 = 〈p(a−), n(a+)〉
〈a+, a−〉 ∧ 〈b+, b−〉 = 〈a+ ∧+ b+, a− ∨− b−〉
〈a+, a−〉 ∨ 〈b+, b−〉 = 〈a+ ∨+ b+, a− ∧− b−〉
〈a+, a−〉 → 〈b+, b−〉 = 〈a+ →+ b+, n(a+) ∧− b−)〉.

The residuated operations are given by the following terms:

x⇒ y = (x→ y) ∧ (¬y → ¬x)
x ∗ y = x ∧ (y ∧ ¬(x⇒ ¬y)).

Component-wise, these give us 〈a+, a−〉 ⇒ 〈b+, b−〉 =
〈(a+ →+ b+) ∧+ (p(b−) →+ p(a−)), n(a+) ∧− b−)〉, and
〈a+, a−〉 ∗ 〈b+, b−〉 = 〈a+ ∧+ b+, (n(a+) →− b−) ∧−
(n(b+) →− a−)〉. Also observe that the lattice order ≤ on
G+ ./ G− is given, for all 〈a+, a−〉, 〈b+, b−〉 ∈ G+ × G−,
by 〈a+, a−〉 ≤ 〈b+, b−〉 iff (a+ ≤+ b+ and b− ≤− a−).

The algebra G+ ./ G− may not even be a CIBRL, but we
can obtain a quasi-Nelson algebra by considering the following
subalgebra. Let:

D(G+) = {a+ ∈ G+ : ¬+a+ = 0+}

be the set of dense elements of G+, and consider a lattice
filter ∇ ⊆ G+ such that D(G+) ⊆ ∇. One can then show
that the set Tw(G+, G−, n, p,∇) = {〈a+, a−〉 ∈ G+ ×G− :
a+ ∧+ p(a−) = 0+, a+ ∨+ p(a−) ∈ ∇} is the universe of a
subalgebra of G+ ./ G−. We call the corresponding algebra
A = Tw〈G+,G−, n, p,∇〉 a QN twist-structure1.

1A technical observation that will be useful in proofs: the requirement
a+ ∧+ p(a−) = 0+ entails that n(a+) ∧− a− = n(a+) ∧− np(a−) =
n(a+ ∧+ p(a−)) = n(0+) = 0−.



The algebra A with the operations 〈∧,∨, ∗,⇒, 0, 1〉 is a
CIBRL and a QN-algebra [24, Thm. 2]; moreover, every QN-
algebra arises in this way.

To justify the above claim, let A = 〈A;∧,∨, ∗,⇒, 0, 1〉 be
a pre-linear QN-algebra. Define the operation → by the term:

x→ y = x2 ⇒ y

where x2 = x ∗ x. Define the relation ≡, for all a, b ∈ A, by:

a ≡ b iff a→ b = b→ a = 1.

The connective → is known as the weak implication in the
literature on Nelson logics (as opposed to the strong residuated
one ⇒), and it is the connective witnessing the deduction-
detachment theorem for (quasi-)Nelson logic. One verifies
that the relation ≡ thus obtained is compatible with the
operations 〈∧,∨, ∗,→〉, which gives us a quotient A+ =
〈A/≡;∧, ∗,∨,→, 0, 1〉. Also, the algebra A+ is a G-algebra
(on which the operations ∧ and ∗ coincide). Defining the set
F (A) = {a ∈ A : ¬a ≤ a}, we have that ∇A = F (A)/≡ is a
lattice filter of A+ and that D(A+) ⊆ ∇+. To obtain a second
G-algebra factor, one considers the set ¬A = {¬a : a ∈ A}
and lets A− = ¬A/ ≡. Then A− is the universe of a
subalgebra of A+, which we denote by A−. Lastly, define
maps nA : A+ → A− and pA : A− → A+ as follows:
nA(a/ ≡) = ¬¬a/ ≡ and pA(¬a/ ≡) = ¬a/ ≡. The
tuple 〈A+,A−, nA, pA,∇A〉 satisfies the required properties
for defining a QN twist-structure Tw〈A+,A−, nA, pA,∇A〉.
The representation theorem proved in [24, Prop. 10] then states
that A ∼= Tw〈A+,A−, nA, pA,∇A〉 through the map ι given
by ι(a) = 〈a/≡,¬a/≡〉 for all a ∈ A.

Among QN-algebras, the involutive ones (i.e. N-algebras)
are precisely those algebras A such that A = ¬A. Hence
A+ = A− and nA, pA are both the identity map. Therefore,
a (pre-linear) N-algebra is determined by just a pair 〈G,∇〉.
Another prominent subvariety of QN-algebras is the class of
G-algebras itself (indeed, the Nelson equation is easily seen to
be implied by x ⇒ (x ⇒ y) ≈ x ⇒ y, which is valid on all
G-algebras). In terms of the twist representation, G-algebras
correspond precisely to those A such that A+

∼= A.
On the other hand, NM-algebras (which coincide with pre-

linear N-algebras) can be constructed from G-algebras by
employing connected and disconnected rotations. Although
the results of the present paper do not rely directly on these
constructions, it will be useful, for further discussion, to recall
the basic definitions. We begin with a special case. Let G =
〈G;∧,∨,→,¬, 0, 1〉 be a finite and directly indecomposable
G-algebra. Define:

CR(G) = {〈a, a′〉 ∈ G×G : a ∧ a′ = 0},

DR(G) = {〈a, a′〉 ∈ G×G : (a ∧ a′) ∨ ¬(a ∨ a′) = 0}.

For all 〈a, a′〉, 〈b, b′〉 ∈ CR(G) or DR(G), let:

〈a, a′〉 ∗ 〈b, b′〉 = 〈(a′ ∨ b′)→ (a ∨ b), a′ ∧ b′〉
〈a, a′〉 ⇒ 〈b, b′〉 = 〈a′ ∧ b, (a′ ∨ b)→ (a ∨ b′)〉
〈a, a′〉 ∧ 〈b, b′〉 = 〈a ∨ b, a′ ∧ b′〉
〈a, a′〉 ∨ 〈b, b′〉 = 〈a ∧ a′, b ∨ b′〉

¬〈a, a′〉 = 〈a′, a〉.

The reader will have noticed a similarity between the above-
defined operations and the operations of twist-structures intro-
duced earlier; we shall return on this below.

Denote by CR(G) and DR(G) the algebras:

CR(G) = 〈CR(G); ∗,⇒ ∧,∨,¬, 〈1, 0〉, 〈0, 1〉〉,

DR(G) = 〈DR(G); ∗,⇒,∧,∨,¬, 〈1, 0〉, 〈0, 1〉〉.

The above constructions coincide, respectively, with the well-
known connected and disconnected rotations of [8], [18].

For every finite directly indecomposable G-algebra G,
CR(G) is a finite directly indecomposable NM-algebra with
negation fixpoint 〈0, 0〉, and DR(G) is a finite directly
indecomposable NM-algebra without any fixpoint (every NM-
algebra A can have, at most, one negation fixpoint, i.e. an
element a ∈ A such that a = ¬a).

Conversely, given a directly indecomposable NM-algebra
A = 〈A;∧,∨, ∗,⇒, 0, 1〉, one defines:

G(A) = {a2 : a ∈ A}

where, as before, a2 = a ∗ a. Then the algebra G(A) =
〈G(A);∧,∨,⇒2, 0, 1〉 is a directly indecomposable G-algebra
(the operations ∧ and ∨ are the restrictions of those of A and,
for every a, b ∈ G(B), one defines a⇒2 b = (a⇒ b)2).

In general, let G =
∏

i∈I Gi be a finite G-algebra
represented as direct product of its directly indecomposable
components Gi and let f be a (necessarily principal) filter of
its Boolean skeleton (i.e. the largest Boolean subalgebra of
G, whose universe is the set of elements that have a Boolean
complement). The generator a of f is hence a complemented
element of G, which can be written as a string of length |I|
whose components ai are either 0’s or 1’s . We then define,
for all i ∈ I , Ai = CR(Gi) if ai = 0 and Ai = DR(Gi)
if ai = 1. Finally, let A the NM-algebra

∏
i∈I Ai. As shown

in [5], every finite NM-algebra is of this form, which entails
that the finite NM-algebras are in one-to-one correspondence
with pairs of the form 〈G, f〉.

The above construction lifts to the infinite case with no extra
requirements, and it is proved in [5] that every NM-algebra
corresponds to a unique pair 〈G, f〉 where G is a G-algebra
and f is a filter of its Boolean skeleton2.

From an abstract perspective, twist-structures and rotations
are thus two different methods for associating (in a one-
to-one fashion) a Nelson algebra (resp. an NM-algebra) A
to a pair consisting of a G-algebra G and a filter of (the

2Besides recalling the representation of NM-algebras as pairs 〈G, f〉, we
will not use any result from the unpublished paper [5].



Boolean skeleton of) G. Furthermore, both methods yield
representations that can be used to establish a categorical
equivalence between the algebraic category of Nelson algebras
(resp. of NM-algebras) and a category naturally associated to
pairs of type 〈G, f〉.

It is therefore natural to ask whether this apparent paral-
lelism is grounded on a structural relation between Nelson
and NM-algebras. This is indeed the case, and the question
can be addressed both on an abstract and on a concrete level:
see Corollary 5.2 below and the subsequent observations.

IV. QUASI-NELSON AND WNM-ALGEBRAS

In the light of the twist representation result of the preceding
section, from now on we shall, whenever convenient, assume
that a QN-algebra is of the form Tw〈G+, G−, n, p,∇〉.

Lemma 4.1: Let A = Tw〈G+, G−, n, p,∇〉 be a QN-
algebra. Then A is linearly ordered if and only if both G+

and G− are linearly ordered.
Proof: if A is linearly ordered, then G+ and G− are

linearly ordered because both are isomorphic to quotients of
the lattice reduct of A. Conversely, assume G+ and G−
are linearly ordered. Then, for all 〈a+, a−〉 ∈ A, by the
requirement a+ ∧+ p(a−) = 0+, we have either a+ = 0+ or
p(a−) = 0+ (in the latter case, np(a−) = a− = 0−). Thus all
elements of A are of the form 〈a+, 0−〉 or 〈0+, a−〉 for some
a+ ∈ G+, a− ∈ G−. Note that 〈0+, a−〉 ≤ 〈a+, 0−〉 for all
a+ ∈ G+, a− ∈ G−. On the other hand, 〈0+, a−〉 ≤ 〈0+, b−〉
iff b− ≤− a− and 〈a+, 0−〉 ≤ 〈b+, 0−〉 iff a+ ≤+ b+,
for all a+, b+ ∈ G+ and a−, b− ∈ G−. Thus A is also
linearly ordered (e.g.) as follows (assuming b− ≤− a− and
a+ ≤+ b+): . . . ≤ 〈0+, a−〉 ≤ . . . ≤ 〈0+, b−〉 ≤ . . . ≤
〈a+, 0−〉 ≤ 〈b+, 0−〉 ≤ . . .

Lemma 4.1 gives us the following useful characterisation of
pre-linear QN-algebras.

Proposition 4.2: The following varieties of algebras coin-
cide:

(i) Pre-linear quasi-Nelson algebras.
(ii) The class of all twist-structures of type

Tw〈G+, G−, n, p,∇〉.
Proof: Taking our earlier considerations into account, we

only need to prove that e.g. (ii) is a subclass of (i). To do
so, we shall verify that every subdirectly irreducible algebra
in (ii) is also in (i). Consider a subdirectly irreducible QN
algebra A = Tw〈G+, G−, n, p,∇〉. By [24, Proposition 8],
we have Con(A) ∼= Con(G+). Hence the G-algebra G+ is
also subdirectly irreducible. Thus G+ is linearly ordered [17,
Lemma 3] and, by Lemma 4.1, A is also linearly ordered.
Then A satisfies the pre-linearity equation, as required.

Proposition 4.2 could be stated in a slightly more general
form. As mentioned earlier, non-involutive twist-structures
can be defined over pairs of Heyting algebras (rather
than G-algebras, which are a special case). One can then
observe that pre-linear quasi-Nelson algebras correspond
to the class of twist-structures {Tw〈G+, G−, n, p,∇〉 :
G+ is a G-algebra}, simply because the Heyting algebra G−
must be pre-linear whenever G+ is.

For the reader familiar with Nelson algebras, we mention
an easy but non-trivial consequence of Proposition 4.2: a QN-
algebra A satisfies the equation (x ⇒ y) ∨ (y ⇒ x) ≈ 1
if and only if A satisfies the (seemingly weaker) equation
(x → y) ∨ (y → x) ≈ 1, which employs the so-called weak
Nelson implication given by x→ y = x2 ⇒ y.

Lemma 4.3: Every linearly ordered QN-algebra A satisfies
the WNM equation: ¬(x ∗ y) ∨ ((x ∧ y)⇒ (x ∗ y)) ≈ 1.

Proof: Let A = Tw〈G+, G−, n, p,∇〉 and a, b ∈ A.
We need to ensure that ¬(a ∗ b) ∨ ((a ∧ b) ⇒ (a ∗ b)) = 1.
We can assume, without loss of generality, that a ≤ b. Then
¬(a ∗ b) ∨ ((a ∧ b) ⇒ (a ∗ b)) = ¬(a ∗ b) ∨ (a ⇒ (a ∗ b)).
As observed in the proof of Lemma 4.1, all elements of A
are of the form 〈a+, 0−〉 or 〈0+, a−〉 for some a+ ∈ G+,
a− ∈ G−. If b = 〈0+, b−〉, then a = 〈0+, a−〉 for some
a− ∈ G− such that b− ≤− a−. Then a∗b = 〈0+, (n(0+)→−
b−) ∧ (n(0+) →− a−)〉 = 〈0+, (0− →− b−) ∧ (0− →−
a−)〉 = 〈0+, 1−〉. So ¬(a∗ b) = 1, and we are done. Thus, let
us assume that b = 〈b+, 0−〉. If a = 〈0+, a−〉, we calculate
¬(〈0+, a−〉∗〈b+, 0−〉)∨(〈0+, a−〉 ⇒ (〈0+, a−〉∗〈b+, 0−〉)) =
〈p((n(0+) →− 0−) ∧− (n(b+) →− a−)), n(0+ ∧+ b+)〉 ∨
〈(0+ →+ (0+ ∧+ b+))∧+ p((n(0+)→− 0−)∧− (n(b+)→−
a−)) →+ p(a−), n(0+) ∧− (n(0+) →− 0−) ∧− (n(b+) →−
a−)〉 = 〈p((0− →− 0−) ∧− (n(b+) →− a−)), n(0+)〉 ∨
〈(0+ →+ 0+) ∧+ p((0− →− 0−) ∧− (n(b+) →− a−)) →+

p(a−), 0− ∧− (0− →− 0−) ∧− (n(b+) →− a−)〉 =
〈p((n(b+) →− a−)), 0−〉 ∨ 〈p((n(b+) →− a−)) →+

p(a−), 0−〉. Thus, we need to check that p((n(b+) →−
a−)) ∨+ p((n(b+) →− a−)) →+ p(a−) = 1+. If n(b+) ≤−
a−, we are done. Thus (recalling that G− is linearly ordered),
assume a− <− n(b+). Then n(b+) →− a− = a− (this
also holds on every linearly ordered G-algebra), and we have
p((n(b+) →− a−)) ∨+ p((n(b+) →− a−)) →+ p(a−) =
p(a−) ∨+ (p(a−) →+ p(a−)) = p(a−) ∨+ 1+ = 1+, as
required. To conclude the proof, assume a = 〈a+, 0−〉, while
b = 〈b+, 0−〉 as before and a+ ≤+ b+. We claim that
a ⇒ (a ∗ b) = 1, which is clearly sufficient to obtain the
required result. Let us compute a ⇒ (a ∗ b) = 〈a+, 0−〉 ⇒
〈a+ ∧+ b+, (n(a+) →− 0−) ∧− (n(b+) →− 0−)〉 =
〈a+, 0−〉 ⇒ 〈a+, n(b+) →− 0−〉. The last equality holds
because from a+ ≤+ b+ we have n(a+) ≤− n(b+) and
from this n(b+) →− 0− ≤− n(a+) →− 0−. We proceed
and compute 〈a+, 0−〉 ⇒ 〈a+, n(b+) →− 0−〉 = 〈(a+ →+

a+)∧+ (p(n(b+)→− 0−)→+ p(0−)), n(a+)∧− (n(b+)→−
0−)〉 = 〈p(n(b+) →− 0−) →+ 0+, 0−〉. The second compo-
nent of the last equality holds because from a+ ≤+ b+ we
have n(a+) ≤− n(b+), thus n(a+) ∧− (n(b+) →− 0−) ≤−
n(b+) ∧− (n(b+) →− 0−) = n(b+) ∧− 0− = 0−. Hence, it
remains to check that p(n(b+) →− 0−) →+ 0+ = 1+, that
is p(n(b+) →− 0−) = 0+. Observe that, since 0+ <+ b+
(we have considered case where b+ = 0+ earlier), we have
0− <− n(b+). For otherwise, since IdG+

≤+ p · n, from
n(b+) = 0− we would obtain b+ ≤+ pn(b+) = p(0−) = 0+,
against our assumptions. Then n(b+) →− 0− = 0−, which
entails p(n(b+)→− 0−) = 0+, as required.

As shown in [24, Cor. 3], a QN-algebra A is subdirectly



irreducible if and only if A has a unique co-atom. This
observation allows one to prove that (similarly to MTL, WNM
and NM-algebras) the variety of QN-algebras satisfying the
pre-linearity equation is generated by its linearly ordered
members. Thus, the result of Lemma 4.3 applies to all pre-
linear QN-algebras.

Corollary 4.4: Every pre-linear quasi-Nelson algebra satis-
fies the WNM equation.

Thus PQN⊆WNM, the inclusion being strict (as shown by
Example 4.6 below).

Corollary 4.5: The following varieties coincide:
(i) Pre-linear QN-algebras.

(ii) Pre-linear QN-algebras satisfying the WNM equation.
(iii) The class of all twist-structures of type

Tw〈G+, G−, n, p,∇〉.
It is useful to recall that, on a linearly ordered WNM-algebra

A, the lattice structure together with the negation determine
the other operations in the following way (see e.g. [3, p. 2]).
For all a, b ∈ A, one has a∗b = a∧b if a ≤ ¬b, and a∗b = 0
otherwise; a⇒ b = 1 if a ≤ b, and a⇒ b = ¬a∨b otherwise.
We shall often use this observation in subsequent calculations,
starting from the next Example.

Example 4.6: Let A = 〈A;∧,∨, ∗,⇒,¬, 0, 1〉 be an al-
gebra with universe A := {0, a, b, 1} such that the lattice
〈A;∧,∨, 0, 1〉 is linearly ordered as follows: 0 < a < b < 1.
The negation ¬ is defined by: ¬0 = 1, ¬1 = 0, ¬a = b = ¬b.
The operations ∗ and ⇒ are then determined by the above
prescriptions for WNM-chains. It is easy to check that A is a
WNM-algebra–this is an application of a general method for
producing WNM-chains: see [20, Definition 6.37]; in fact, A
is a DP-algebra3. Now, A does not satisfy the Nelson equation,
because

(b⇒ (b⇒ a)) ∧ (¬a⇒ (¬a⇒ ¬b)) = (b⇒ b) ∧ (¬a⇒ 1)

= 1 6≤ b = b⇒ a.

The following proposition shows that, as expected, the
lattice (or even meet-semilattice) structure of a WNM-algebra
A together with the negation determine whether A satisfies
the Nelson equation or not.

Proposition 4.7: A WNM-algebra A is a (pre-linear) quasi-
Nelson algebra if and only if A satisfies ¬¬x ∧ ¬x ≤ x.

Proof: It is shown in [22] and easy to check (using twist-
structures) that every QN-algebra satisfies ¬¬x ∧ ¬x ≤ x.
Conversely, relying on pre-linearity, we are going to show that
every WNM-chain C that satisfies ¬¬x∧¬x ≤ x. also satisfies
the Nelson equation. Observe that, on a chain, ¬¬a∧¬a ≤ a
implies a = ¬¬a or ¬a ≤ a, for all a ∈ C. As mentioned
earlier, on a WNM-chain, we have a2 = 0 if a ≤ ¬a and
a2 = a if ¬a < a. Thus, for all a, b ∈ C, if ¬a < a, then
(a2 ⇒ b) ∧ ((¬b)2 ⇒ ¬a) = (a ⇒ b) ∧ ((¬b)2 ⇒ ¬a) ≤

3DP-algebras [?] are WNM-algebras satisfying x ∨ ¬x2 ≈ 1. Using
the twist representation, it is not difficult to show that the only DP-chains
which satisfy the Nelson equation are the two-element and three-element one
(isomorphic, respectively, to the two-element Boolean algebra and the three-
element MV-algebra).

a ⇒ b, as required. Thus, assume a ≤ ¬a, which implies
(a2 ⇒ b) = 0 ⇒ b = 1. Thus (a2 ⇒ b) ∧ ((¬b)2 ⇒ ¬a) =
1 ∧ ((¬b)2 ⇒ ¬a) = (¬b)2 ⇒ ¬a. If a ≤ b, then a⇒ b = 1,
and we are done. Thus, assume b < a ≤ ¬a. Then a ⇒ b =
¬a ∨ b = ¬a. Thus, we need to show (¬b)2 ⇒ ¬a ≤ ¬a. If
¬b ≤ ¬¬b, then b < a ≤ ¬a ≤ ¬b ≤ ¬¬b. Since ¬¬b∧¬b ≤
b, we have either b = ¬¬b or ¬b ≤ b: both are against our
assumptions, for each of them implies a ≤ b. Thus ¬¬b < ¬b,
which means (¬b)2 ⇒ ¬a = ¬b⇒ ¬a. We thus need to show
¬b ⇒ ¬a ≤ ¬a. If ¬a < ¬b, then ¬b ⇒ ¬a = ¬¬b ∨ ¬a.
If ¬¬b ≤ ¬a, we are done. Thus, assume ¬a < ¬¬b. Then
b < ¬a < ¬¬b < ¬b. Using ¬¬b ∧ ¬b ≤ b again, we have
either b = ¬¬b or ¬b ≤ b: both against our assumptions.
It thus remains to consider the case where ¬b = ¬a. Then
b < a ≤ ¬a = ¬b and ¬¬b ∧ ¬b ≤ b gives us ¬¬b = b.
This means that ¬¬a = ¬¬b = b. Since a ≤ ¬¬a, this would
imply a ≤ b, against our assumptions. This completes our
proof.

We summarise our findings below:
Corollary 4.8: The following varieties coincide:
(i) Pre-linear QN-algebras.

(ii) WNM-algebras satisfying ¬¬x ∧ ¬x ≤ x.
(iii) {Tw〈G+, G−, n, p,∇〉 : G+ is a G-algebra}.

Corollary 4.8 thus identifies a subclass of WNM-algebras
that are representable via the twist construction, and this is
(as far as we are aware) the first result of this type for
WNM-algebras. Given the parallel between twist-structures
and rotations, Corollary 4.8 also suggests that a suitable
modification of the rotation construction may allow us to
give an alternative representation for this subclass of WNM-
algebras.

Subdirectly irreducibles and directly indecomposables

We end the section with a sample application of the twist
representation, which applies to (pre-linear) QN-algebras and
therefore also to those WNM-algebras that satisfy the equation
¬¬x ∧ ¬x ≤ x. We shall use the following result from [24,
Prop. 8].

Lemma 4.9: Let A = Tw〈G+, G−, n, p,∇〉 be a pre-
linear QN-algebra. The lattice Con(A) of congruences of A
is isomorphic to the lattice Con(G+) of congruences of G+

via the maps (.)+ and (.)./ defined as follows:
(i) For θ ∈ Con(A) and a+, b+ ∈ G+, let 〈a+, b+〉 ∈

θ+ if and only if there are a−, b− ∈ G− such that
〈a+ →+ b, a−〉, 〈b+ →+ a, b−〉 ∈ A and 〈〈a+ →+

b, a−〉, 〈1+, 0−〉〉, 〈〈b+ →+ a, b−〉, 〈1+, 0−〉〉 ∈ θ.
(ii) For η ∈ Con(G+) and 〈a+, a−〉, 〈b+, b−〉 ∈

A, let 〈〈a+, a−〉, 〈b+, b−〉〉 ∈ η./ if and only if
〈a+, b+〉, 〈p(a−), p(b−)〉 ∈ η.

Proposition 4.10: Let A = Tw〈G+, G−, n, p,∇〉 be a pre-
linear QN-algebra. Then:

(i) A is subdirectly irreducible iff G+ is a subdirectly
irreducible G-algebra.

(ii) A is directly indecomposable iff G+ is a directly inde-
composable G-algebra.



Proof: Item (i) is an application of Lemma 4.9. Regarding
(ii), observe that A is not directly indecomposable iff there
are non-trivial factor congruences θ, θ′ ∈ Con(A). If this
is the case, then θ+, θ

′
+ ∈ Con(G+) are non-trivial factor

congruences of G+. Indeed, this follows from Lemma 4.9
together with the observation that G+, as a residuated lattice,
is congruence-permutable [14, p. 94]. By the same token, A
is congruence-permutable as well. Then, if η1, η2 ∈ Con(G+)
are non-trivial factor congruences, then η./1 , η

./
2 ∈ Con(A) are

non-trivial factor congruences.
Let A be a QN-algebra and a ∈ A. We say that a is a

splitting element if, for all b ∈ A, either a ≤ b or b < a. We
say that a is idempotent (with respect to the monoid operation)
if a2 = a.

Proposition 4.11: For every quasi-Nelson algebra A =
Tw〈G+, G−, n, p,∇〉, the following are equivalent:

(i) G+ (and therefore G−) has a unique atom.
(ii) A has a splitting idempotent element e such that ¬e < e,

a2 = 0 for all a < e, and b2 = b for all e ≤ b.
Proof: Regarding (i), let us preliminary observe that, if

e+ is the unique atom of G+, then n(e+) is the unique atom
of G−. Indeed, n(e+) 6= 0−, because n(e+) = 0− would
imply e+ ≤+ pn(e+) = p(0−) = 0+, against the assumption
that e+ 6= 0+. Further, for all a− ∈ G− with a− 6= 0−, we
have p(a−) 6= 0+. Indeed, p(a−) = 0+ would imply a− =
np(a−) = n(0+) = 0−, against our assumptions. Then e+ ≤+

p(a−), which implies n(e+) ≤− np(a−) = a−, as claimed.
Now, assume (i) holds, and let e+ ∈ G+ be the unique

atom of G+ (so n(e+) is the unique atom of G−). Take e =
〈e+, 0−〉, and observe that ¬〈e+, 0−〉 = 〈p(0−), n(e+)〉 =
〈0+, n(e+)〉 < 〈e+, 0−〉, (¬〈e+, 0−〉)2 = 〈0+, n(0+) →−
n(e+)〉 = 〈0+, 1−〉, and that e ∈ A. The latter holds true
because, on the one hand, e+ ∧+ p(0−) = e+ ∧+ 0+ = 0+.
On the other hand, since e+ →+ 0+ is the pseudo-complement
of e+, we have e+ →+ 0+ = 0+ (hence also a+ →+ 0+ ≤+

e+ →+ 0+ = 0+ for every a+ ∈ G+ with a+ 6= 0+). So every
non-zero element of G+ is dense, and e+ ∈ D(G+) ⊆ ∇
for any possible choice of ∇. Then e+ ∨+ p(0−) ∈ ∇, as
required. Next, observe that every element of A is comparable
with 〈e+, 0−〉. Indeed, for all 〈a+, a−〉 ∈ A, the existence
of a unique atom in G+ together with the requirement
a+ ∧+ p(a−) = 0+ entail that either a+ = 0+ or p(a−) = 0+
(in which case a− = np(a−) = n(0+) = 0−). Thus every
element of A has the form 〈a+, 0−〉 or 〈0+, a−〉 for some
a+ ∈ G+ and a− ∈ G−. Obviously 〈0+, a−〉 ≤ 〈e+, 0−〉 for
all a− ∈ G−, and observe that 〈0+, a−〉2 = 〈0+, n(0+) →−
a−〉 = 〈0+, 0− →− a−〉 = 〈0+, 1−〉, as claimed in (ii).
On the other hand, for all a+ 6= 0+, we have 〈e+, 0−〉 ≤
〈a+, 0−〉. So every element of A is comparable with 〈e+, 0−〉,
as required. Let us verify that 〈e+, 0−〉 is an idempotent.
Since n(e+) 6= 0−, we have n(e+) →− 0− = 0−. Then
〈e+, 0−〉2 = 〈e+, n(e+) →− 0−〉 = 〈e+, 0−〉, as required.
Lastly, since n(e+) ≤+ n(a+), we have n(a+) 6= 0− for all
a+ ∈ G+, so 〈a+, 0−〉2 = 〈e+, n(a+) →− 0−〉 = 〈a+, 0−〉,
as claimed.

Conversely, assume (ii) holds, and let e = 〈e+, e−〉 be the
splitting element of A. Let a+ ∈ G+ be such that a+ 6= 0+.
Then there is a− ∈ G− such that 〈a+, a−〉 ∈ A. Moreover,
a+ 6= 0+ entails 〈a+, a−〉2 = 〈a+, n(a+) →− a−〉 6=
〈0+, 1−〉. Thus, it cannot be the case that 〈a+, a−〉 < e. Hence
(since e is a splitting element), e ≤ 〈a+, a−〉, which entails
e+ ≤+ a+. This shows that e+ is the unique atom of G+. As
observed earlier, it follows that n(e+) is the unique atom of
G−.

It may be worth mentioning that both Propositions 4.10
and 4.11 still hold true if we drop the pre-linearity hypoth-
esis, replacing the G-algebras G+,G− with Heyting algebras
H+,H− (Proposition 4.12 below, on the other hand, is specific
to G-algebras).

Taking into account Proposition 4.10.ii, it is clear that (either
of) the conditions in Proposition 4.11 entail that A is directly
indecomposable. This implication becomes an equivalence in
the case of finite pre-linear quasi-Nelson algebras, as the
following proposition shows.

Proposition 4.12: For every finite pre-linear QN-algebra
A = Tw〈G+, G−, n, p,∇〉, the following are equivalent:

(i) The G-algebra algebra G+ (and therefore also G−) has
a unique atom.

(ii) A has a splitting idempotent element e such that a2 = 0
for all a < e and b2 = b for all e ≤ b.

(iii) A is directly indecomposable.
Proof: We seen in Proposition 4.11 the equivalence of (i)

and (ii), together with the observation that G− has a unique
atom when G+ has a unique atom. We proceed to show that
(i) and (iii) are equivalent. We have seen in Proposition 4.10.ii
that A is directly indecomposable iff G+ is. To complete our
proof, it is sufficient to recall that directly indecomposable
finite G-algebras are precisely those having a unique atom
(see e.g. [11, p. 56-57]).

V. NELSON AND NM-ALGEBRAS

In this section we show that things are different in the
involutive setting: indeed, pre-linear Nelson algebras coincide
with NM-algebras. This result is known since at least [9], but
we present here a shorter proof that takes advantage of the
recent insight on involutive CIBRLs gained in [26].

Lemma 5.1: Every WNM-algebra satisfies the equation:

x ≈ x2 ∨ (x ∧ ¬x).

Proof: Relying on pre-linearity, we verify that the equa-
tion is satisfied by every WNM-chain C. As mentioned
earlier, on a WNM-chain we have a2 = 0 if a ≤ ¬a
and a2 = a if ¬a < a, for all a ∈ C. In the former
case, we have a2 ∨ (a ∧ ¬a) = 0 ∨ a = a. In the latter,
a2 ∨ (a ∧ ¬a) = a ∨ ¬a = a.

Corollary 5.2: Every NM-algebra is a pre-linear Nelson
algebra. Hence Lemma 4.3 entails NM=PN.

Proof: Let A be a NM-algebra. Then A is involutive and,
by Lemma 5.1, A satisfies the equation x ≈ x2 ∨ (x∧¬x). It
is shown in [26, Theorem 6.1] that, for an involutive CIBRL,
this is equivalent to being a Nelson algebra.



Corollary 5.2, together with the structural results recalled
in Section III, entails that NM-algebras are (as rotations) in
a one-to-one correspondence with pairs 〈G, f〉 where G is a
G-algebra and f a filter of the Boolean skeleton of G, and
(as twist-structures) are also in a one-to-one correspondence
with pairs 〈G,∇〉 where G is a G-algebra and ∇ a dense
filter of G. To see that the two perspectives indeed match, it
is sufficient to observe that, on every G-algebra G, the filters
of the Boolean skeleton are in one-to-one correspondence with
the dense filters4. On account of space limitations, a detailed
analysis of this result will be deferred to a future publication.

It may be worth mentioning that Example 4.6, together with
Lemma 5.1, provides an answer to a problem that was left open
in [24]: namely, whether the equation x ≈ x2 ∨ (x∧¬x) may
be proven to be equivalent, in a non-involutive setting, to the
Nelson equation. (The answer is, of course, negative.)

Another open problem mentioned in [24] can be recast (and
resolved) in the present context. As observed earlier, every G-
algebra is a (pre-linear) QN-algebra, and (by Corollary 5.2)
every NM-algebra is also a (pre-linear) QN-algebra. Thus
G∪NM⊆PQN. Indeed, in a fuzzy setting, one could mo-
tivate the introduction pre-linear QN-algebras as ‘a common
generalisation of Gödel and NM-algebras’. One might further
enquire whether this is a ‘minimal’ generalisation, in the sense,
for instance, that the variety V(G∪NM) generated by G∪NM
is precisely PQN. Also in this case the answer is negative.

Let us begin by observing that, since PQN=V(PQN), we
have V(G∪NM)⊆PQN. Thus V(G∪NM) is also a subvariety
of WNM, i.e. a variety of algebras of fuzzy logic. Let us
further note that the equation (x ⇒ x2) ∨ (¬¬y ⇒ y) ≈ 1
is clearly satisfied by every algebra in G∪NM, and therefore
in V(G∪NM). However, there are algebras in PQN that do
not satisfy it, as the following Example shows (see also [3,
Def. 11]).

Example 5.3: Consider the (uniquely determined) three- and
the two-element G-chains:

G+ = 〈G+ = {0+, a+, 1+};∧+,∨+,→+, 0+, 1+〉
G− = 〈G− = {0−, 1−};∧−,∨−,→−, 0−, 1−〉.

Let ∇ = G+. Define n : G+ → G− by n(a+) = n(1+) = 1−
and n(0+) = 0−, and p : G− → G+ in the obvious way,
i.e. p(0−) = 0+ and p(1−) = 1+. These determine a
QN twist-structure A = Tw〈G+, G−, n, p,∇〉. Observe that
〈0+, 0−〉, 〈a+, 0−〉 ∈ A. We have 〈0+, 0−〉2 = 〈0+, 1−〉
and ¬¬〈a+, 0−〉 = 〈1+, 0−〉, which give us the following:
(〈0+, 0−〉 ⇒ 〈0+, 0−〉2) ∨ (¬¬〈a+, 0−〉 ⇒ 〈a+, 0−〉) =
(〈0+, 0−〉 ⇒ 〈0+, 1−〉)∨(〈1+, 0−〉 ⇒ 〈a+, 0−〉) = 〈0+, 0−〉∨
〈a+, 0−〉 = 〈a+, 0−〉 6= 〈1+, 0−〉.

The following lemma entails that V(G∪NM) is axiomatised
precisely by adding (x ⇒ x2) ∨ (¬¬y ⇒ y) ≈ 1 to the
equational presentation of PQN.

Lemma 5.4: Let A be a linearly orered pre-linear QN-
algebra. The following are equivalent:

4Interestingly, this correspondence does not generalise to Heyting algebras:
which is perhaps suggesting that ‘non-pre-linear NM-algebras’ may not be
representable as rotations (whereas they are, as twist-structures).

(i) A satisfies (x⇒ x2) ∨ (¬¬y ⇒ y) ≈ 1.
(ii) A is either a Gödel algebra or a Nelson algebra.

Proof: The non-trivial implication is from (i) to (ii). Let
then A be a subdirectly irreducible algebra in PQN. Suppose
A is neither Gödel nor Nelson. Then there are elements
a, b ∈ A such that a 6= a2 (thus a2 < a) and b 6= ¬¬b (thus
b < ¬¬b). This means that a ⇒ a2 < 1 and ¬¬b ⇒ b < 1.
Since A is linearly ordered, the preceding considerations
imply (a⇒ a2) ∨ (¬¬b⇒ b) 6= 1.

Lemma 5.4 applies, in particular, to subdirectly irre-
ducible QN-algebras (which are linearly ordered, by Propo-
sition 4.10.i). The following result is thus an immediate
consequence (as well as an instance of [14, Lemma 5.25]).

Corollary 5.5: V(G∪NM) is the subvariety of PQN ax-
iomatised by:

(x⇒ x2) ∨ (¬¬y ⇒ y) ≈ 1.

Proof: Observe that the subvariety of PQN axiomatised
by (x ⇒ x2) ∨ (¬¬y ⇒ y) ≈ 1 and V(G∪NM) have the
same subdirectly irreductible members; therefore, they must
coincide [7, II, Cor. 9.7].

The next (and last) corollary entails standard completeness
(see item 3. in Section VI) of the logic associated to the class
V(G∪NM). Denote by [0, 1]G and by [0, 1]NM, respectively,
the G-algebra and NM-algebra having as universe the real
interval [0, 1]; both algebras are unique up to isomorphism.
It is well known that V([0, 1]G) is the variety of G-algebras
and V([0, 1]NM) is the variety of NM-algebras.

Corollary 5.6: V(G∪NM) = V({[0, 1]G, [0, 1]NM}).
Proof: Our previous considerations entail that

V({[0, 1]G, [0, 1]NM}) ⊆ V(G∪NM). For the converse
inclusion we proceed as in Corollary 5.5. Let A be a
subdirectly irreducible member of V(G∪NM). Then, by
Lemma 5.4, A is either a G-algebra or an NM-algebra. Thus
either A ∈V([0, 1]G) or A ∈V([0, 1]NM). In both cases we
have A ∈V({[0, 1]G, [0, 1]NM}), as claimed.

VI. FUTURE WORK

As mentioned in the Introduction, this paper has been a
first attempt at establishing a connection between the theory
of quasi-Nelson algebras/logics and fuzzy systems extending
MTL. Future research may take several directions, among
which we mention a few below.

1. Is it possible to extend (some form of) twist-structure
representation to the whole class of WNM-algebras? Recent
results [22] show that twist-structures can be used to represent
algebras in the implication-free language 〈∧,∨,¬〉, including
De Morgan and Kleene lattices [21], as well as more general
sub(quasi)varieties of semi-De Morgan algebras [25]. The
algebras representable in this way have been dubbed semi-
Kleene lattices in [22]. It is easy to check that the 〈∗,⇒〉-
free reduct of every WNM-algebra is a semi-Kleene lattice;
as we have seen, it is this reduct that determines (on WNM-
chains) the behaviour of the remaining operations. These
considerations suggest that representing WNM-algebras via
twist-structure may indeed be a feasible project.



2. The above-mentioned question suggests another structural
relation that may be worthwhile exploring: namely the one be-
tween WNM-algebras (and thus PQN) and Sugihara monoids.
These structures, that are algebraic models of relevance logic,
have also been studied from a twist representation point of
view; interestingly, the twist representation proposed (e.g.)
in [15] also decomposes a Sugihara monoid as a special binary
power of a Gödel algebra. To make this even more intriguing,
we may further observe that every Sugihara monoid (indeed,
even every generalised Sugihara monoid in the sense of [15])
also has a semi-Kleene lattice reduct. . .

3. From a fuzzy logic point of view on the logic of pre-linear
QN-algebras (i.e. the extension of WNM-logic by the axiom
(¬¬ϕ ∧ ¬ϕ)⇒ ϕ), an obvious (and open) question concerns
so-called standard completeness. This property means for a
logic to be complete not only with respect to its linearly
ordered algebraic models (which we know to be true, by
pre-linearity), but also with respect to a class of (possibly
non-isomorphic) algebras defined over the real interval [0, 1].
Standard completeness is known to hold for WNM-logic [12,
Thm. 3], but it is also well known that the property need not
be preserved by axiomatic extensions. An even stronger form
of standard completeness is single-chain real completeness,
that is, completeness with respect to a unique algebraic model
over the real unit interval. This property, which holds for
Gödel and NM-logic, is entailed by the observation that the
G-algebra (resp. NM-algebra) over [0, 1] is unique up to
isomorphism. Since every G-algebra and every NM-algebra
is a pre-linear QN-algebra, we have over [0, 1] at least two
non-isomorphic QN-algebras (in fact, Example 5.3 suggests
that there may be more). This however, does not destroy all
hope of proving single-chain real completeness for the logic of
pre-linear QN-algebras. Therefore, both standard and single-
chain real completeness are currently open problems, which
we intend to address in future work.

4. Lastly, let us mention a possible extension of our
approach outside the setting of integral residuated lattices.
Alongside constructive logic with strong negation, a later paper
by David Nelson [1] introduced a paraconsistent weakening of
N-logic that is nowadays known as N4. The algebraic models
of N4 (called N4-lattices) are residuated structures related to
algebras of relevance logics, which can also be represented
as twist-structures by a straightforward generalisation of the
construction presented in this paper. Indeed, the twist construc-
tion for N-algebras (though not the one for QN) may be seen
as a special case of that for N4-lattices; abstractly, N-lattices
correspond precisely to the subvariety of N4-lattices defined
by the equation x ⇒ x ≈ y ⇒ y. N4-lattices that are twist-
structures over Gödel algebras have already been studied in
the paper [4], but the algebras considered there are not pre-
linear in the usual sense. We speculate that a more thorough
investigation of ‘pre-linear N4-lattices’ (along the lines of the
present paper, as well as extending the results of [4]) may turn
out to be an intriguing project for future research.
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