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Abstract—In this paper, we present a Deep Learning archi-
tecture, exploiting a fuzzy layer, applied to the data coming
from various sensors located under the feet of a patient affected
by the Parkinson’s disease. The solution we propose permits
one to cluster data coming from different sensors into different
fuzzy partitions, according to the different parts of the feet, and
to discriminate the illness of a person as well as the severity
degree of the disease itself. We employed a known dataset to
evaluate our solution and compared its performance with some
similar approaches found in the relevant literature. Moreover,
we performed an intensive parameter optimization step to find
the best setting for the proposed fuzzy neural network. The
evaluation shows that our solution obtains good classification
results both in the binary and in the multiclassification approach.

Index Terms—Parkinson Disease, Deep Learning, Fuzzy Neu-
ral Networks, Unsupervised pre-training

I. INTRODUCTION

Parkinson’s disease (PD) is a chronic and degenerative
illness affecting the nervous system, mainly impairing the
capabilities to move. As a matter of fact, the disease produces
an increasing difficulty to walk, to utter words or to accomplish
other simple daily actions.

Recent studies [1] demonstrated that monitoring the gait of
people thorough wearable technology (e.g., inertial sensors)
can be a useful and inexpensive solution to evaluate the pres-
ence of the PD. Therefore, in the last years, many researches
[2], [3], [4], [5], [6] have been carried out to analyze data
coming from inertial sensors, with the aim to identify the
so-called “freeze of gait” (FOG) or to discriminate ill and
healthy subjects. However, FOG detection is poorly useful to
perform PD early identification, since FOG takes place when
the disease has already reached a certain degree. Conversely,
the early identification of PD and the constant monitoring
of its severity can result into a powerful means to find out
appropriate therapies, in time to slow down the progression
of the disease, to save the integrity of the neurons, and to
evaluate the effectiveness and the adjustments of the treatments
themselves.

Given the aforementioned considerations, in this study we
propose a deep learning approach in order to distinguish be-
tween ill and healthy patients, as well as the PD severity levels,
by analyzing data coming from wireless sensors measuring
the vertical reaction force of different parts of the feet of a
subject. In the broad context of machine learning, the proposed
deep learning approach is more suitable to handle multimodal

and noisy data and can reveal useful information about the
parts of a foot more important to analyze. Furthermore, the
clustering performed by the fuzzy layer is a sort of unsu-
pervised pre-training, which has already proved to help deep
learning architectures by guiding the learning process toward
basins of attraction of minima supporting better generalization
from the training dataset [7]. Finally, like all deep learning
algorithms, the proposed solution can outperform traditional
machine learning techniques when a sufficient number of data
is available [8].

Summarizing, the main contributions of this paper are:
• the definition of a Fuzzy Neural Network (FNN) ar-

chitecture to analyze data coming from sensors located
under the feet of a person, as well as to perform both
a binary classification (ill and healthy subjects) and a
multiclassification (different severity degrees of the PD);

• the evaluation, for the first time in the literature, of a
feature that takes into account whether a patient is walk-
ing and simultaneously counting down by continuously
subtracting a given amount;

• a great optimization campaign of the parameters of the
FNN, aimed at finding the best combination for the
proposed architecture;

• a comparison of the proposed architecture with similar
neural networks approaches, using the same dataset,
discussing the trade-off between accuracy, smaller com-
plexity of the model and advantages of the initial fuzzy
clustering.

The rest of the paper is structured as follows. Some back-
grounds on Deep Learning and Fuzzy Neural Networks are
introduced in Section II. In Section III, a brief discussion
about the application of Deep Learning to investigate the
PD is reported. The proposed architecture and feature model
are carefully described in Section IV, while the experimental
outcomes are presented and discussed in Section V. Finally,
sections VII and VIII contain the threats to validity and the
conclusions, respectively.

II. BACKGROUND

A. Deep Learning

Deep Learning (DL) is a group of renowned machine
learning techniques, based on artificial neural networks, that
allows one to simulate the information processing of biological
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nervous systems, made of various perceptrons’ layers [9].
Artificial neural networks have been devised in the past
century, but they have recently come back to the attention
of the research community thanks to the developments in the
computational power of computers, fostering the adoption of
DL architectures, made of several related layers, each one
composed, in turn, of hundreds or thousands of neurons.

More in detail, each layer receives input data and abstracts
and organize them into a sort of hierarchy, useful to learn
features as well as to classify different patterns. Compared
to traditional machine learning techniques, DL algorithms are
considered i) much more suitable in contexts featuring a high
level of complexity, i.e., characterized by several features and
a huge number of data, and ii) capable of obtaining very high
performance. Thanks to the aforementioned characteristics, in
the last yeas, several applications of DL took place in different
fields and health informatics is one of these, where DL has
achieved very encouraging results [10].

Looking at the neural network training, this can be usually
split into two main phases: the forward and the backward
phase. In the former, the activation of the internal nodes,
representing neurons or perceptrons, follows a certain acti-
vation function and is performed, layer after layer, from the
input of the network to the output [11]. Conversely, the latter
phase allows the improvement of the network performance by
assigning to the nodes updated weights and bias values, if
necessary.

As regards this specific paper, we consider a multiple
feed-forward artificial neural network composed of a varying
number of layers, each one made up of a varying number
of perceptrons. The considered approach differs from the
linear perceptron approaches because of the multiple layers
and the non-linear node activation functions we used. These
characteristics allowed us to discriminate among data that
cannot be separated in a linear way, such as the ones coming
from the considered sensors.

B. Fuzzy Neural Networks

Fuzzy logic tackles uncertainty, always present in real-world
experiments, considering the membership degree of a feature
to a certain set as a continuous function. Such a set is called
a fuzzy set, opposite to a crisp set, where the membership
degree is strictly complete (value equal to 1) or null (value
equal to 0).

A fuzzy neural network is a particular type of neural
network which is combined in a particular way with a system
based on fuzzy logic [12], [13].
Neural networks and fuzzy systems share a common charac-
teristic: they can be both used to face problems that cannot
be described by any exact mathematical model. Moreover,
the disadvantages they have on their own almost completely
disappear using them in combination.

On one side, neural networks can only be used successfully
if a sufficient amount of observed samples is available and it
is not always straightforward to extract comprehensible rules
or information from the structure of the neural network itself.

However, no prior knowledge about the problem needs to be
given.

On the other hand, a fuzzy system requires in advance
linguistic rules as prior knowledge. If this knowledge is
incomplete, wrong or contradictory, then the fuzzy system
must be tuned, usually in a heuristic way. However, fuzzy
systems are simpler to be implemented and interpreted.

Despite the different approaches to model a fuzzy neural
network [14], most of them are based on some common
features such as: i) the training is provided by a data-driven
learning method derived from neural network theory, ii) the
learning procedure is constrained to ensure the semantic
properties of the underlying fuzzy system at any time of the
learning process, iii) the fuzzy layer can be considered as
a particular three-layer feed-forward neural network, whose
second layer symbolizes the fuzzy rules.

Approximately, there can be three different kinds of fuzzy
neural networks [15]:

• cooperative, where an artificial neural network and a
fuzzy system work independently;

• concurrent, where their working is mutually dependent,
but the neural network and the fuzzy system are still
separated entities;

• hybrid, where the neural network and the fuzzy system
are fused together and the fuzzy system can be interpreted
as a special type of neural network.

In this paper, we are going to consider the third type of
FNNs, wherein a fuzzy layer is inserted directly in a broader
dense neural network.

III. RELATED WORK

Recently, one can find various contributions in the litera-
ture dealing with deep learning and gait analysis of patients
affected by the PD. Several recent papers have studied FOG
to distinguish ill subjects from healthy people as well as to
discriminate the degree of severity of the PD in ill patients [2],
[3], [4], [5], [6]. However, FOG mirrors an irregular inability
to move and usually regards patients affected by an advanced
PD [2]. As a consequence, it is not so useful to evaluate
anomalies happening in the very first phases of the disease
itself.

Because of the aforementioned considerations, in the last
years some studies focusing onto the direct analysis of the gait
have started to appear in the literature. This type of analyses
seems to be more suitable to identify the PD in the early phases
[16].

Moreover, in [17] and [18] deep learning approaches, ap-
plied to gait data, have been also employed to evaluate the
progression rates of the disease itself. The contribution in [17]
focuses onto the identification of ill and healthy people as well
as on the classification of the severity of the PD. According to
the authors, they propose the first algorithms performing sever-
ity prediction on the basis of a Unified Parkinson’s Disease
Rating Scale. The considered dataset is the PhysioNet1 one,

1https://physionet.org/content/gaitpdb/1.0.0/



which has been used also in our contribution. The used deep
learning architecture encompasses eighteen 1D convolutional
networks, each made of eight layers, one for each input
feature. These networks work in parallel and are followed by a
convolutional network, constituted of 2 fully connected layers,
and by an output layer. Finally, a concatenation layer groups
together the outputs of the first eighteen neural networks. In
the experiments, a 10-fold cross validation is employed, with
70% of ill patients and 30% of healthy subjects for each fold.
The achieved results, in terms of accuracy, are 98.7% for the
binary detection problem (ill patient detection), and 85.3% for
the multiclass problem (severity detection).
The authors compare their work also with the one of Zhao
at al. [19], analyzing the same dataset and focusing on the
same problems. However, in this contribution, the authors
employ a different deep learning architecture, made of 2
parallel branches, one with a 2D convolutional network and
one with an LSTM network. The obtained overall accuracy
achieved on the whole PhysioNet datset is 98.61% for the
binary classification problem. The overall dataset accuracy
values about severity detection are also relevant, ranging from
97.48% for the Ga sub-dataset, to 97.86% for the Ju sub-
dataset, and to 98.8% for the Si sub-dataset. For the whole
dataset, made of the merging of the three sub-datasets (Ga, Ju
and Si), the accuracy has not been computed instead.

Finally, in [18] the authors concentrate again on the already
mentioned PhysioNet dataset and on the already investigated
tasks of detecting ill and healthy persons (2 classes) as
well as of multiclass severity classification. However, in this
case the data from the two feet are considered separately,
like different inputs of a deep neural network made of two
parallel and identical branches. Both of them are composed
of a 2-layer convolutional network, followed by an attention-
enhanced LSTM. The two branches are finally concatenated
and submitted to a softmax layer for the final classification.
The data of the dataset have been segmented according to
gait cycles and in the experiments the authors considered both
the three sub-datasets singularly and altogether. As concerns
the binary classification, the achieved accuracy values are
99.31%, 99.29%, 99.16% for the three single sub-datasets and
99.07% over the whole merged dataset. On the other hand,
for the multiclass severity classification, the accuracy results
are the following: 98.11%, 98.36%, and 99.01% for the three
sub-datasets considered singularly, and 98.03% for the whole
dataset.

We decided to test the approach we propose in this paper
on the already mentioned PhysioNet dataset, with the aim to
directly compare the obtained results with the contributions
cited above by means of a great phase of hyper-parameters’
optimization.

IV. APPROACH

In this section, we first describe the proposed feature model
and then we detail the architecture of the used deep fuzzy
neural network.

TABLE I
DESCRIPTION OF THE CONSIDERED FEATURES.

Acronym Description

RF1 Vertical reaction force from
the sensor located in the heel under right foot

RF2 Vertical reaction force from
the sensor located in the left rear part of right foot

RF3 Vertical reaction force from
the sensor located in the right rear part of right foot

RF4 Vertical reaction force from
the sensor located in the left part of the inset of right foot

RF5 Vertical reaction force from
the sensor located in the right part of the inset of right foot

RF6 Vertical reaction force from
the sensor located in the left part of the sole of right foot

RF7 Vertical reaction force from
the sensor located under the ball of right foot

RF8 Vertical reaction force from
the sensor located under the toes of right foot

LF1 Vertical reaction force from
the sensor located in the heel under left foot

LF2 Vertical reaction force from
the sensor located in the left rear part of left foot

LF3 Vertical reaction force from
the sensor located in the right rear part of left foot

LF4 Vertical reaction force from
the sensor located in the left part of the inset of left foot

LF5 Vertical reaction force from
the sensor located in the right part of the inset of left foot

LF6 Vertical reaction force from
the sensor located in the left part of the sole of left foot

LF7 Vertical reaction force from
the sensor located under the ball of left foot

LF8 Vertical reaction force from
the sensor located under the toes of left foot

RF Total Total force under right foot
LF Total Total force under left foot

7Count Whether the subject is counting
down or not

A. The proposed feature model

In this paper, we assume that PD can be detected exploit-
ing the dynamics of the Vertical Ground Reaction Forces
(VGRFs), measured by sensors under the feet of a subject at a
constant sampling rate, namely 100 Hz. Thus, differently from
other related contributions in the literature, we do not make
considerations on the gait cycle nor we adopt particular win-
dowing techniques to consider only close temporal instants.
We consider each sampling instant and its corresponding
sensors’ values independently, instead.

The overall set of considered features is presented and



Fig. 1. The used fuzzy neural network model for the binary and multiclassification problem. µi represents the membership function of each fuzzy cluster,
output of the Fuzzy layer.

described in Table I. The table reports, in the first column,
the acronym of the feature, while, in the second column, a
brief description thereof. More in detail, the first eight features
describe the value of the vertical reaction force (in Newton)
captured by sensors positioned in different points of the right
foot. Likewise, the second group of eight features describes the
value of the vertical reaction force retrieved through sensors
located in different parts of the left foot. The “RF total” and
the “LF total” features represent the sum of all the forces under
the right and left foot, respectively.

Finally, since some of the subjects involved in the study
related to Ga sub-dataset performed also a countdown (by
continuously subtracting 7) while walking, we added also a
further binary feature (called “7Count”), assuming the follow-
ing values: 1 when during walking the subject performed the
countdown, 0 in case of normal walking (no countdown). In
this way, we wanted to test, for the first time in the literature,
the relevance or not of this further feature on the deep learning
performance.

B. Deep learning model

In this work, we employed a deep learning neural network
with the aim to: i) distinguish ill subjects from healthy subjects
(binary classification), ii) distinguish subjects on the base of
different degrees of illness (multiclassification).

The considered architecture model is shown in Figure 1,
and consists of a variable number of layers, described in the
following:

• Input layer: the first layer of the network, receiving data
from the sensors and encompassing a number of nodes
equal to the number of considered features (18 or 19 in
case the 7Count feature is considered);

• an initial Batch Normalization layer: this has been added
to improve the training of the deep feed-forward neural
network. Indeed, it allows also the rise in the speed
of training, the adoption of higher learning rates, the
initialization of parameters in a more flexible way, as well
as the saturation of possible non-linearities. Moreover,
this layer can furnish higher accuracy on both validation
and test sets, thanks to a stable gradient propagation
within the network itself [20].

• a Fuzzy layer: this layer is responsible for the clustering



of the initial data into interpretable groups, e.g., spatial
coordinates, multi-function values, etc. The number of
outputs represent the number of clusters, whose mem-
bership function is described as follows:

µj(x, c, a) = e
−
∑dim

i=0
1/4

(xi−ci)
2

a2
i , (1)

where x is the input vector of dim length, c is the centroid
of the jth membership function and a is a vector of
scaling factors. The choice of a Gaussian-like function
has been made to exploit its well-known universality and
smooth decreasing behavior, in this first attempt to apply
fuzzy membership functions to this dataset.

• a variable number of Hidden layers: each of these lay-
ers contains a variable number of artificial perceptrons,
whose output is a weighted sum of their inputs, passed
through a certain non-linear activation function (ReLu,
Swish, etc.). In the evaluation section, we will present
experiments with a different number of hidden layers, as
well as an optimization of the number of layers, of nodes
per layer and of the used activation function, in order to
test the best possible performance of the network.

• a Dropout layer: this layer is tightly coupled with each
hidden layer that immediately precedes it. The dropout
functionality has been introduced to prevent over-fitting
by means of a regularization technique that turns off
randomly several neurons in a hidden layer according to
a probability p drawn from a Bernoulli distribution. This
probability is usually chosen in the 0.0− 0.5 range.

• Output layer: this is the exit of the neural network,
producing the final categorical classification and it is
usually made of a number of neurons equal to the number
of classes. In Figure 1, two different output layers are
shown, even if one at a time is used. The binary classi-
fication (discrimination between ill and healthy subjects)
is represented in the lower part, while the multiclassi-
fication problem (identification of four different degrees
of severity) is in the upper part. We employed a dense
layer as a final exit layer and a softmax as an activation
function.

V. EXPERIMENT DESCRIPTION

In this section, we present the application of the deep fuzzy
neural network architecture described in Section IV-B on a
dataset of open data. In the following subsection, a description
of the analyzed dataset is provided. Moreover, the settings for
the experiments we made are reported in Subsection V-B.

A. Dataset description

In this paper, we took advantage of the PhysioNet dataset2,
which we decided to use because: i) it is made of three
different sub-datasets, each one coming from the contribution
of three different and independent neuroscience research ex-
periments [21], [22], [23], thus ensuring the value and validity
of the extracted measures in the medical community; ii) it

2https://physionet.org/content/gaitpdb/1.0.0/

contains enough samples to be applied successfully in a deep
learning scenario, like the one we considered in this paper.

The whole dataset includes 93 patients with idiopathic PD
(59 males and 34 females) and 73 healthy control subjects (40
males and 32 females). Every participant walked with his/her
usual pace for about 2 minutes, while wearing a pair of shoes
with vertical reaction force sensors. All these studies collected
the data from 16 sensors located under each foot, 8 per foot,
and all the gathered sub-datasets are consistent and contain
data that can be related to the feature model explained in
Section IV-A, apart from the 7Count feature, only available for
the Ga sub-dataset. Table II reports some statistics describing
the considered whole dataset (last row) and the component
sub-datasets (called Ga, Ju and Si, respectively). For each
dataset the number of considered subjects (second column)
and the number of total instances (third column) are reported.
The total number of subjects is then split, for each considered
dataset, in four different groups representing a different level
of the severity of PD, where 0 is the level for healthy people.
The severity scale we considered is the Hoehn and Yahr’s one3

that usually comprises 5 levels of severity of PD, ranging from
1 to 5. In our experiments, we considered only the 2, 2.5 and 3
stages, since these are the only levels exhibited by the patients
in the considered datasets.

B. Experiment setting

Two different experiments have been carried out with the
aim to evaluate the capability of our proposed classifier to
distinguish: i) ill subjects and not ill subjects and ii) the level
of severity of the disease. Each experiment has been performed
on the datasets listed in Table II, using as feature model the one
described in Table I. Moreover, for the Ga sub-dataset, we have
also considered the 7Count feature and we have performed a
further experiment to test whether and how this feature impacts
the final results.

Meanwhile, we performed a thorough hyper-parameter opti-
mization phase [24], in order to find out the best combination
of the following parameters:

• Network size: we have considered in our experiments
three different network sizes (small, medium and large),
depending on the actual number of neurons in the various
hidden layers. A small size network consists of a maxi-
mum of 1.5 mln of learning parameters. A medium size
network is composed of a number of parameters between
1.5 mln and 7 mln, whereas a large network is made up
of over 7 mln up to 12 mln parameters;

• Activation function: we have taken advantage of a very
known activation function called ReLu and we have also
tested two recent activations functions called Swish and
Mish [25], respectively;

• Learning rate: we have made it vary from 5 to 15,
normalized with respect to the optimization algorithm.
For instance, using SGD optimizer the range is from
0.005 to 0.15;

3https://parkinsonsdisease.net/diagnosis/rating-scales-staging/



TABLE II
STATISTICS OF THE CONSIDERED DATASETS.

Dataset Total Subjects Total Instances Severity 0 Severity 2 Severity 2.5 Severity 3 Total Patients
Ga [21] 47 1,361,382 18 15 8 6 29
Ju [22] 55 1,180,552 26 12 13 4 29
Si [23] 64 775,616 29 29 6 0 35
Whole 166 3,317,550 73 56 27 10 93

• Number of layers: The numbers of considered hidden
layers ranges from 6 to 9;

• Batch size: it could assume the following values: 128,
256 and 512;

• Optimization algorithm: we have tested the Stochastic
Gradient Descent (SGD) [26], Adam [27], RmsProp [28],
Nadam [28], Adamax [29], Adagrad [29] optimizers;

• Dropout rate: we have considered two different rates,
namely 0.15 and 0.2.

• Number of outputs of the Fuzzy layer: three possible
numbers of clusters have been considered, i.e., 6, 8, and
10.

Table III summarizes the considered hyper-parameters and
the considered ranges or values for each hyper-parameter.

TABLE III
OPTIMIZED HYPER-PARAMETERS AND CONSIDERED RANGES.

Hyperparameters Ranges
Batch Size {128, 256, 512}

Network Size {Small, Medium, Large}
Activation Functions {ReLU, Swish, Mish}

Dropout in range [0.1, 0.2]
Optimization algorithm {SGD, Adam, RMSProp, Nadam, Adamax,

Adagrad }
Learning Rate in range [5, 15] (normalized, refer to text)

Fuzzy sets {6, 8, 10}

Both the binary classification (ill/not ill subjects) and the
multiclassification problem (classification on the base of the
level of severity of the subject’s disease) have been performed
with the fuzzy neural network, described in Section IV-B,
and a changing number of epochs to validate every single
considered sub-dataset, and then, the whole merged dataset.

As regards the parameters not involved in the optimization,
the considered loss function has been categorical cross-entropy
[30], while the chosen optimizer has been SGD, with momen-
tum equal to 0.09 and a decay of 1e−6, accompanied with
Nesterov Accelerated Gradient (NAG) correction, in order to
avoid excessive changes in the parameter space, as specified
in [31].

Four known metrics have been used to evaluate the clas-
sification results: accuracy and validation accuracy, loss and
validation Loss. The accuracy has been evaluated over the
training set and computed as the ratio of the sum of true
positives and true negatives to the total number of tested
instances. The validation accuracy has been computed in the
same way as the the accuracy, but considering the validation
set. On the other hand, the loss and validation loss, computed
on the training and validation sets respectively, imply how

poorly or well a model behaves after each iteration of the
back-propagation mechanism.

VI. DISCUSSION OF THE RESULTS

Figure 2 shows the evaluation of the validation accuracy and
validation loss of the binary classifier versus an increasing
number of epochs, for sub-dataset Ga, with the parameters’
configuration which permits the achievement of the best ob-
tained results. The values of these parameters are shown in
Table V, in scenario 1 row.
As one can see, the figures demonstrate that the learning pro-
cess stabilizes at about 100 epochs, when both the validation
accuracy and the validation loss tend to saturate. This could be
considered a good value to train the considered fuzzy neural
network.

In Table IV, we provide the best obtained validation ac-
curacy values in three different scenarios with a number of
epochs set to 100:

1) binary classification and Ga sub-dataset (scenario 1);
2) binary classification and whole dataset (scenario 2);
3) multiclassification and whole dataset (scenario 3).

In the columns from three to five, table IV shows the corre-
sponding values obtained in other comparable studies, whose
reference is reported as well. Looking at the table, we can see
different situations: i) the achieved accuracy is between the
worst and best accuracy values obtained in the literature with
similar methods, which, however, do not use fuzzy layers; ii)
the obtained accuracy is the worst, considering similar DL
methods with no fuzzy layers at all.
These can be explained considering that the introduction of
a fuzzy layer implies a discretization of the initial data, thus
a sort of loss of information. However, the architecture we
propose is far less complex compared with the ones in the
literature and does not involve any complex consideration
on gait cycle. Moreover, it results to be an intermediate
solution in most of the considered scenarios and permits some
further considerations that follow. As a matter of fact, looking
at Table V, summarizing the best values of the validation
accuracy in the three aforementioned scenarios as well as the
corresponding hyper-parameters’ values, we can state that: i)
the accuracy decreases with the increase of the difficulty in
the classification task: binary classification with a reduced
dataset (Ga), then binary classification with the whole dataset,
and, finally, multiclassification with the whole dataset; ii)
conversely, the optimum number of fuzzy sets decrease with
the difficulty of the task: this may indicate that in detecting
the severity degree only some macro areas of the foot are



TABLE IV
OBTAINED ACCURACY VALUES COMPARED WITH OTHER EXISTING

SOLUTIONS.

Scenario Dataset Proposed
Approach

Approach 1
[17]

Approach 2
[19]

Approach 3
[18]

1 Ga Binary 99.10% - 98.7% 99.31%
2 Whole Binary 95.98% 98.7% 98.61% 99.07%
3 Whole Multi 91.08% 85.3% - 98.03%

relevant, while to detect PD in the first stages (simple binary
classification) a more fine-grained distribution of the sensor
data is necessary.

Fig. 2. Validation accuracy and validation loss trends vs the number of epochs
for Ga sub-dataset in the case of binary classification.

In Fig. 3, we show the trends of the validation accuracy
using or not the 7count feature, for both the binary and
the multiclassification tasks. For the binary classification,
the introduction of this new feature, allows the curve to be
smoother from a certain number of epochs on and an increase
of the performance of about 2% at the last epoch. Conversely,
for the multiclassification the overall gain is much smaller
in the trend, and about 1% at the last epoch. However, also
in this case the optimum number of fuzzy sets is greater in
the binary classification (8) than in the multiclassification (6),
corroborating once again the already mentioned interpretation.

VII. THREATS TO VALIDITY

As concerns the construct validity threats, some inaccuracies
and omissions can be due to the specific sensitivity of the

Fig. 3. Validation accuracy vs the number of epochs for Ga sub-dataset, in
the case of binary and multiclassification, using or not the 7Count feature.

sensors used to extract the considered features. In order to
limit this threat, we have considered three different sub-
datasets, from three different and independent researches,
using different sensors to extract the same measures.

Moreover, regarding the internal validity, if the adopted
datasets are not correctly labeled or are obtained with a non-
rigorous process, we could have classification errors. This
risk is strongly mitigated because the used datasets are well
documented and referenced in medical studies.

Finally, threats to external validity may involve the gen-
eralization of the discussed findings. We have evaluated our
approach on a great number of instances from three existing
datasets having different sizes, characteristics, and previously
adopted with different goals. In any case, in the future, it is
possible to further analyze more datasets with more instances.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, a Fuzzy Deep Learning architecture is pro-
posed to exploit information deriving from a set of sensors
located under the feet of a person. This information has been
used to discriminate persons affected by PD and to identify the
severity of their disease, by grouping the data of the sensors
in different fuzzy clusters.

Moreover, in this study, a high parameter optimization is
performed to evaluate, for the proposed classifiers, the best
possible parameters, on the basis of the obtained overall



TABLE V
THE VALUES OF THE HYPER-PARAMETERS IN THE SCENARIOS REPORTED IN TABLE IV.

Scenario Network
Size

Activation
Function

Learning
Rate

No.
Layers

No. Fuzzy
Sets

Batch
size

Optimization
Algorithm

Dropout
Rate Val. Acc.

1 medium all ReLu 10 7 10 128 SGD 0.2 0.9910
2 small all ReLu 10 6 8 128 SGD 0.2 0.9598
3 small all ReLu 10 8 6 128 SGD 0.2 0.9108

validation accuracy. The obtained results show for all the
considered datasets very good performance, obtaining (in the
best case) a validation accuracy of 99.1%. The obtained results
are intermediate compared with the results achieved on the
same datasets using similar approaches in the literature, but
our architecture is much simpler and allows for a sort of
interpretability in discriminating the areas of the sole more
involved in the binary or multiclassification tasks, respectively.

As future work, we will extend the high parameter optimiza-
tion phase as well as the proposed set of features. Finally,
further experimentation will be performed to generalize the
obtained results with different and more elaborated fuzzy
neural network architectures, sporting different membership
functions.
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