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Abstract—Fuzzy integrals are useful general purpose aggre-
gation operators, but they can be difficult to understand and
visualize in practice. The interaction between an exponentially
increasing number of variables–2n fuzzy measure variables for n
inputs–makes it hard to understand what exactly is going on in a
high dimensional space. We propose a new visualization scheme
based on a weighted indicator matrix to better understand
the inner workings of an arbitrary fuzzy measure. We provide
ways of viewing the Shapley and interaction indices, as well as
an optional data coverage histogram. This approach can give
insight into which sources are the most relevant in the overall
aggregation and decision making process, and it provides a way
to visually compare fuzzy measures and subsequently integrals.

Index Terms—fuzzy measure, fuzzy integral, visualization

I. INTRODUCTION

Fuzzy measures and fuzzy integrals are powerful tools for
performing generalized non-linear aggregation. Their expres-
siveness, however, has led to some mystification regarding the
actual operation of their inner workings in practice. At the
heart of the matter is the issue of understanding the interaction
and relationships between the 2n variables that arise from n
inputs. On a purely computational level, the fuzzy integral
and measure is well understood, but it remains difficult to
intuitively grasp what occurs in high dimensional spaces.

There have been some approaches for visualizing fuzzy
measures1 [1] and high dimensional set interactions [2, 3],
but these have fallen short of offering a holistic understanding
of the complete aggregation process, importance of individual
sources and relationships between sources. For instance, in [1],
a fuzzy measure is drawn as a lattice of all subset elements,
arranged by cardinality in a Hasse diagram. Nodes are scaled
to be proportional in size to the value of each subset, and
a path is drawn for the walk taken by the permutation of
each training data sample used in evaluating the fuzzy integral.
This approach is useful for understanding the data coverage
problem [1, 4, 5] at a high-level, but it does little to indicate
which subsets or data sources are over or underutilized.

We seek to address this problem by presenting a weighted
matrix visualization of an arbitrary fuzzy measure. Our ap-
proach utilizes basic data visualization guidelines established
in [6] and [7], such as minimizing “chartjunk” and maximizing
the “data to ink” ratio. The main idea of our method involves

Andrew, Derek, James, and Muhammad are with the Electrical Engineering
and Computer Science (EECS) department, University of Missouri (MU),
MO, USA, e-mail: buckar@missouri.edu. Tim Wilkin is with the School of
Information Technology, Deakin University, Victoria, AU.
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constructing a weighted indicator matrix of all possible subsets
and scaling the widths and heights of the rows and columns
to be proportional to useful values. We then include the
incremental contribution of each source, the Shapley and
interaction indices, and an optional data visitation histogram.
The resulting graphic serves as both an exploratory and an
explanatory visualization of a fuzzy measure, providing an
overview of the general nature of the measure while also
allowing one to inspect the numerous interactions at play. The
diagram is compact enough to be used as part of a small
multiple, comparing several different measures at once, and
arguably serves as a form of “modern” art [8].

The remainder of this paper is structured as follows. Section
II provides the background notation for fuzzy measures and
fuzzy integrals. Section III describes our approach in detail
using an illustrative example. Section IV shows several exam-
ples of the proposed visualization technique on various types
of fuzzy measures, and Section V gives our conclusions.

II. BACKGROUND

A. Fuzzy Measures

A fuzzy measure g defined on a finite set X = {x1, ..., xn}
is a function g : P(X)→ <+ satisfying the following2:

(i) g(∅) = 0
(ii) A ⊆ B ⊆ X implies g(A) ≤ g(B).

Here we note that P(X) is the power set of X , which includes
all possible combinations of the elements of X . For instance,
if X = {x1, x2, x3}, then P(X) = {∅, {x1}, {x2}, {x3},
{x1, x2}, {x1, x3}, {x2, x3}, {x1, x2, x3}}. The usefulness of
a fuzzy measure comes from its ability to model the worth
of any subset of X . In general, g(A) represents the value or
utility of the subset A ⊆ X .

There are several properties of a fuzzy measure that can
be computed to give insight into the inner workings of the
measure. One is the Shapley value [9], which can be used
to assess the relative importance of each individual source
element in X . The Shapley value of a fuzzy measure g is
defined as the vector [s1, ..., sn], where

si =
∑

K⊆X\i

(n− |K| − 1)!|K|!
n!

[g(K ∪ i)− g(K)] , (1)

and n is the number of elements in X (i.e. n = |X|). The
Shapley index si of an element xi ∈ X represents the average
contribution that xi makes when added to an existing subset.

2Typically g is defined such that g(X) = 1, e.g., in decision level fusion,
however this is not strictly necessary.
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The Shapley value gives a normalized weight to each element
such that

∑n
i=1 si = g(X).

While the Shapley value is defined only for individual
elements of X , the process has been generalized [10] to extend
to arbitrary groups of elements. The interaction index of a
subset A ⊆ X for a fuzzy measure g is defined as

I(A) =
∑

B⊆X\A

(n− |B| − |A|)!|B|!
(n− |A|+ 1)!

∑
C⊆A

(−1)|A\C|g(C∪B).

(2)
Like the Shapley value, the interaction index of a set A gives
a sense of the worth of the set in the context of the fuzzy
measure. When I(A) is positive, the set is said to have positive
synergy, indicating that the elements are complementary and
that there is value in their combined usage. In contrast, when
I(A) is negative, the set is said to have negative synergy,
indicating that the elements are redundant and the set as a
whole brings no added value [11].

B. Fuzzy Integrals

The fuzzy integral is a validated tool with wide reaching
applications from information fusion to multicriteria decision-
making [12]. The fuzzy integral is defined with respect to a
fuzzy measure. Let h : X → [0, 1] be a function that specifies
the value of a single element x ∈ X = {x1, ..., xn}. Given
h and a fuzzy measure g defined on X , the discrete Choquet
integral is defined as

Cg(h) =

∫
C

h ◦ g =
n∑
i=1

h(xπ(i)) [g(Ai)− g(Ai−1)] , (3)

where π is a permutation of X such that h(xπ(1)) ≥
h(xπ(2)) ≥ ... ≥ h(xπ(n)) and Ai = {xπ(1), ..., xπ(i)} with
g(A0) = 0 [13].

We can consider an individual data sample as an instance
of h that produces an output Cg(h). In the evaluation of the
Choquet integral, the elements of X are ordered according
to h, resulting in a sequence of n subsets A1, ..., An that
are used by g. Note that while the fuzzy measure is defined
over 2n possible subsets, only n of these are visited for a
single data sample. We call the sequence of subsets visited by
a data sample h a walk notated as Wh. The distribution of
visited subsets over all possible subsets of X can have serious
implications in the quality of any data-driven learning method
for the fuzzy measure.

III. METHOD

A. General Approach

We now present the method for constructing the weighted
matrix visualization of a fuzzy measure. The process is most
clearly explained by working through an example step by step.
Consider the fuzzy measure g defined in Table I. This is a
measure defined on a set of three elements, X = {x1, x2, x3}.
We start by ordering the elements of the power set P(X) first
by cardinality and then lexicographically within each subset
of equal size as in Table I. A binary indicator matrix M is
defined such that each row i of the matrix corresponds to an

TABLE I: Fuzzy Measure Example

A g(A)
∅ 0

{x1} 0.3
{x2} 0.2
{x3} 0.4

{x1, x2} 0.7
{x1, x3} 0.8
{x2, x3} 0.4

{x1, x2, x3} 1

Fig. 1: Binary indicator matrix for the power set of
{x1, x2, x3}.

element xi ∈ X and each column j corresponds to a subset
A ⊆ X , where

Mij =

{
1 xi ∈ Aj
0 otherwise.

(4)

The matrix for a fuzzy measure defined on a set with three
elements is shown in Fig. 1.

On its own, the binary indicator matrix says nothing about
the fuzzy measure itself. There are several ways to encode the
values of the fuzzy measure as part of the visualization. We
choose to adjust the width of each matrix column correspond-
ing to a subset A ⊆ X to be proportional to g(A), as shown
in Fig 2. Here, the overall width of the matrix remains the
same (taken to be dispw), and the width of each column j
is calculated as dispw · g(Aj)/

∑
B⊆X g(B). Note that since

g(∅) = 0, the empty set is not shown. Measures that include
several small values of g(A) may end up with columns that
are too narrow to interpret, but this is an indication that these
subsets do not contribute greatly in the overall evaluation of the
fuzzy integral. In small examples, we can label each column
j with g(Aj) on the top of the diagram. However, as the
number of columns increases with larger measures, the labels
are removed to improve legibility.

To clarify the visual presentation, particularly as we begin
to work with larger and more complex fuzzy measures, we
separate the diagram into separate parts for each cardinality
set. Within each set, the columns are sorted in order of
increasing values of g(A) as shown in Fig. 3. This has the
effect of moving the strongest subsets to the right and will
make it easier to identify trends and substructure within the
fuzzy measure.

We now introduce what is perhaps the most important
feature of the weighted matrix visualization. The incremental



Fig. 2: Column widths are scaled to be proportional to the
fuzzy measure value.

Fig. 3: Sets are separated by cardinality and columns are
reordered to have increasing values.

contribution of each source i in every subset Aj ⊆ X is
defined as

∆gij = g(Aj)− g(Aj\i). (5)

The incremental contribution values form the basis of the
Shapley value calculated in Eq. 1. In Fig. 4, the incremental
contributions are shown as the black shaded parts of each grid
cell in the matrix visualization. The binary indicator matrix
of Fig. 3 is now shown with a lighter gray color to allow the
darkened parts to stand out. The Shapley index of a source
(row) is proportional to the sum of the widths of the black
regions in that row.

Clearly, for subsets with a single element (Aj = {xi}),
∆gij = g(xi) = g(Aj), so the three left-most columns are
drawn with completely black elements. In the center part of
the diagram corresponding to subsets with a pair of elements
{xu, xv}, the black bars indicate the amount that each source
xu contributes to the fuzzy measure value of the pair of
sources. For instance, g({x2, x3}) = 0.4, g({x2}) = 0.2, and
g({x3}) = 0.4. The incremental contribution of x2 in the set
{x2, x3} is g({x2, x3})−g({x3}) = 0, so there is no darkened
black region in the grid cell for x2 in the column for the set
{x2, x3}. Likewise, the incremental contribution of x3 in the
same set is g({x2, x3})− g({x2}) = 0.2, so the grid cell for
x3 is half shaded. We can see in this example that x1 has
the greatest incremental contribution to the full set X , which
shows that the subset without x1 was the lowest valued subset
of size two, and so the addition of x1 has the largest impact on
the fuzzy measure value. In other words, the two two-element
subsets that do not include x2 and x3 respectively already have
relatively high values assigned by the fuzzy measure, and so
do not see as much benefit from including those elements.

An alternative interpretation of the shaded area is to consider
the gray portion of each grid cell. The width of this region is

Fig. 4: Each grid cell is shaded with the incremental contri-
bution of that element.

equivalent to the value of the fuzzy measure with the specified
element removed. For instance, in the right-most column of the
example in Fig. 4 corresponding to the full set X , the grid cell
for source x2 is 80% gray with only 20% shaded black. This
shows that the value of the set {x1, x3} is already 80% of the
value of the full set, so adding x2 has only a relatively small
impact.

B. Shapley and Interaction Indices

To further enhance the information presented in the vi-
sualization, we can include both the Shapley value of the
fuzzy measure and the interaction indices. The Shapley value
is obtained with Eq. 1 and to more clearly illustrate it, the
row heights of the diagram are scaled to be proportional
to the Shapley index of each source. Fig. 5 shows that the
Shapley value for the example is [0.45, 0.2, 0.35], suggesting
that source x1 is the most important and source x2 is the least
important. Modifying the row heights makes the Shapley value
proportional to the widths of the black regions in each row as
opposed to the total black area, but altering the row heights
makes any differences in the Shapley value more obvious.

The Shapley indices alone do not tell the whole story, as
they apply only to single source elements. The interaction
indices are an extension of the Shapley indices for arbitrary
sets. For each subset A ⊆ X we can compute the interaction
index I(A) and plot it as a bar graph below the matrix
diagram. This “row” of the diagram is labeled with an “I”
and the scale3 is fixed to the range [-1, 1]. Positive values are
colored red and negative values are colored blue to emphasize
positive and negative interaction. The interaction indices of the
three left-most columns are equivalent to the Shapley values,
although note that they may be presented in a different order
due to the ordering of the g(A) values. The example shows
that I({x1, x2}) and I({x1, x3}) are both positive, whereas
I({x2, x3}) is negative. This suggests that the subset {x2, x3}
is redundant and adds no value, which can be gathered from
the fact that g({x2, x3}) = g({x3}). The interaction of the
full set is zero in this example, which indicates that this is a
2-additive measure [14].

Measures with small values of g(A) will have reduced
column widths that can make it difficult to view the graph
of interaction indices, or may prevent it from being drawn at

3Although the interaction index of a subset A with |A| > 2 can exceed
±1, keeping a fixed range provides consistency across multiple diagrams.



Fig. 5: A bar graph of the interaction indices is included for
each subset.

all. In these cases, it is useful to rely on the row heights to
show the Shapley indices, although the interaction indices of
subsets with two or more elements may still be difficult to
see. Often, the interaction indices for subsets with very low
values of g(A) are disregarded as being unimportant. Though
not explored in this paper, an alternative plotting method using
fixed column widths, or widths proportional to the interaction
index values may be considered.

C. Data Coverage

A common use case for visualizing a fuzzy measure is to
assess the quality of a measure learned from data. In general,
a fuzzy measure has 2n − 1 variables that can be assigned.
During training and evaluation, a single instance uses only n
of these variables. As n grows large, it becomes increasingly
likely that some variables will never have been encountered
in the training process and are assigned based on boundary
conditions only. For details, see [4].

The data coverage can be shown in the visualization by
including an additional row above the main matrix diagram,
labeled “D”. As with the bar graph for the interaction indices,
the height of the bar in each column shows the relative visita-
tion frequency v for the corresponding subset. Let h1, ..., hm
be the data set used to construct the fuzzy measure, and let
Whi

be the set of subsets A ⊆ X visited in the walk of hi
(See Section II-B). The visitation frequency of a subset A is
defined as

v(A) =
1

m

m∑
i=1

1(A ∈Whi). (6)

where 1 is an indicator function that equals 1 if the condition
is true and 0 otherwise.

The visitation frequencies are plotted in yellow and scaled
such that the maximum value within each cardinality set is set
to 1, or the full height of the row. Each column is scaled such
that

v′(A) =
v(A)

max|B|=|A| v(B)
. (7)

Within each cardinality set, the mean visitation frequency is
shown as a horizontal line. Columns with greater than average
visitation frequencies have their bars darkened above the mean
to emphasize the degree to which they may be considered

TABLE II: Example Data

h(x1) h(x2) h(x3) π(1) π(2) π(3)
0.74 0.13 0.14 1 3 2
0.94 0.09 0.74 1 3 2
0.97 0.13 0.75 1 3 2
0.92 0.96 0.74 2 1 3
0.91 0.20 0.92 3 1 2

Fig. 6: A data coverage histogram is added above the diagram.

outliers, having been visited by a disproportionately large
number of walks from the data set. As with the graph of
interaction indices, the visitation frequency graph may be
difficult to interpret for subsets with small values of g(A)
due to narrow column widths. If these values are considered
important, it may be helpful to plot the diagram with equal
column widths.

An example data set is shown in Table II and the cor-
responding visualization is shown in Fig. 6. There are five
samples with three sources in this data set and three unique
walks. The first thee data samples share the same sort order
for the elements and have the walk 1–3–2. The remaining two
data samples have the walks 2–1–3 and 3–1–2 respectively.
These walks can be more clearly observed in Fig. 7, which
shows the FM lattice visualization for this example. While
this diagram shows the three walks and the visited subsets,
it does not indicate which sources were included in these
subsets.4 Conversely, while the specific walks are not shown

4Although the subsets can be identified based on lexicographic sort order,
this becomes impractical for large measures.

Fig. 7: The FM lattice visualization for the example.



TABLE III: Fuzzy Measure Examples for X = {x1, x2, x3}

A g1(A) g2(A) g3(A) g4(A) g5(A) g6(A)
∅ 0 0 0 0 0 0

{x1} 0 0.33 0 1 0.2 0.86
{x2} 0 0.33 0 1 0.3 0.03
{x3} 0 0.33 0 1 0.5 0.05

{x1, x2} 0 0.67 1 1 0.5 0.98
{x1, x3} 0 0.67 1 1 0.7 0.91
{x2, x3} 0 0.67 1 1 0.8 0.42

X 1 1 1 1 1 1

in the weighted matrix visualization of Fig. 6, the visitation
frequency of each subset is clearly seen. In this example, we
note that the subset {x2, x3} is never visited by this data
set. Furthermore, the darkened bars on the subsets {x1} and
{x1, x3} indicate their dominance, as they were each visited
by 60% of the walks.

IV. EXAMPLES

A. Three-Source Measures
We now show several examples of the weighed matrix fuzzy

measure visualization for different fuzzy integrals. Table III
shows six different fuzzy measures defined for three sources.
The first four integrals (measures g1–g4) correspond to differ-
ent OWA operators [15] that demonstrate how the visualization
method appears in edge cases.

The first measure (g1) turns the Choquet integral into the
min operator, shown in Fig. 8a. Since the only element to have
a non-zero value is the full set X , the diagram shows only one
large black region. The two smaller cardinality sets are empty
and are shown as thin lines on the left side of the diagram.

The second measure (g2) corresponds to a mean operator,
defined such that g(A) = |A|/|X|. The diagram in Fig. 8b
shows equal row sizes and uniform black bar sizes, indicating
identical ∆g values. We note that these vertical “stripes” are
characteristic of averaging operators in which all sources are
treated equally. Note also the lack of interaction index bars on
cardinality sets greater than 1.

The third measure (g3) is a median operator shown in Fig.
8c, in which g(A) = 1 for all subsets where |A| ≥ 2 and
0 otherwise. Like the min operator, the cardinality one set is
shown only as a thin line on the left side of the diagram. The
full value of the measure is assigned in the cardinality two
set, showing all black boxes. Since there is no more room for
improvement, the full cardinality three set is all gray.

The fourth measure (g4) is a max operator shown in Fig.
8d, where all subsets except the empty set are assigned a value
of one. Similar to the median operator, all value is assigned
in the first cardinality set (shown with black boxes) and the
remaining sets are drawn in gray.

The fifth measure (g5) is an example of an additive fuzzy
measure in which g(A ∪ B) = g(A) + g(B). The diagram
in Fig. 8e shows differing row heights indicating the Shapley
indices and a lack of interaction index bars.

The sixth measure (g6) shows a fuzzy measure with a dom-
inant source. Fig. 8f shows a much wider row for source x1
indicating its larger Shapley index. Also, the shaded regions in
the x1 row are mostly black, which means that x1 contributes
the most to the subsets that it is a part of.

B. Multicriteria Decision-Making

Besides aggregation, fuzzy integrals can be used for multi-
criteria decision-making (MCDM) as a way of comparing the
importance of various subsets of criteria. Table IV shows a
fuzzy measure used in a MCDM example from [11]. This
measure is a learned representation of the evaluation of five
different individuals against four judging criteria, x1 to x4.
The weighted matrix visualization of the measure is shown in
Fig. 9. Each row represents a different scoring criteria. The
integral of this measure with each candidate’s performance
scores gives a combined score that can be used to rank the
individuals.

The visualization highlights the interactions between the
scoring criteria. We notice first that the cardinality one set is
shown only as a thin line, indicating that at least two criteria
are needed to perform an assessment. The fourth criteria is
dominant, with the largest Shapley index and widest row.
It also remains black throughout the width of the diagram
showing that it is the main contributor to the value of each
subset for which it is a part. The third criteria is shown with
a low Shapley index and a narrow row that has no black
markings until the rightmost, complete set. This confirms that
it plays a small role in the aggregation, only contributing
once all other criteria have been considered. We can reason
that the first two criteria behave somewhere between these
two extremes, with the first criteria being somewhat more
important due to its larger Shapley index and row width.

C. Embedded OWA Operators

The expressiveness of the fuzzy integral allows it to repre-
sent both simple and complex operators simultaneously. Fig.
10 shows the weighted matrix visualization for a fuzzy integral
with an embedded OWA operator. In this example, g(A) = 0.4
when |A| = 2 and g(A) = 0.7 when |A| = 3. The remaining
values are randomly selected based on the constraints. We
note that this diagram shares several of the characteristics of
OWA operators from Section IV-A. In particular, we notice the
vertical stripes formed by the black bars in the cardinality three
and four sets. These show that all sources contribute equally
when considering sets of three or four elements, which is a
property of an OWA operator. Observing trends such as these
stripes in the visualization can help identify substructure such
as embedded OWA operators within the fuzzy measure.

D. Measures Learned From Data

A common use case for the fuzzy measure is to aggre-
gate multiple sources of information using a fuzzy integral.
There are several methods for learning a fuzzy measure from
data [4, 16]. In [17], a fuzzy measure is learned from the
output of seven heterogeneous neural network architectures
on a classification problem. Fig. 11 shows one of the fuzzy
measures learned from this data set. From this diagram, we can
deduce that the learned measure is acting mainly as a minimum
operator, based on the narrow columns for all cardinality sets
except the full set. The vertical striping pattern suggests that
the measure could be represented as an OWA operator without



(a) A min operator (g1). (b) A mean operator (g2).

(c) A median operator (g3). (d) A max operator (g4).

(e) An additive fuzzy measure (g5). (f) A fuzzy measure with a single dominant source (g6).

Fig. 8: Weighted matrix fuzzy measure visualizations for three inputs.

TABLE IV: Multicriteria Decision-Making Example

A g(A)
∅ 0

{x1} 10−6

{x2} 10−6

{x3} 10−6

{x4} 10−6

{x1, x2} 10−6

{x1, x3} 10−6

{x1, x4} 0.666667
{x2, x3} 10−6

{x2, x4} 0.389743
{x3, x4} 10−6

{x1, x2, x3} 10−6

{x1, x2, x4} 0.666667
{x1, x3, x4} 0.666667
{x2, x3, x4} 0.389743

{x1, x2, x3, x4} 1
Fig. 9: The fuzzy measure from the MCDM example.



Fig. 10: A fuzzy measure with an embedded OWA operator.

Fig. 11: A fuzzy measure learned from data.

significant loss of accuracy. The uniform interaction indices
across cardinality sets, rising to the largest value for the full
set, and the near uniform row widths and Shapley indices
imply that all sources have roughly equivalent utility.

The data visitation is shown by the yellow histogram at the
top of the diagram. Within each cardinality set, the visitation
frequency is concentrated mainly on a single subset. This
shows that despite the large amount of training data used to
learn the fuzzy measure, almost all the data utilized a single
walk. The FM lattice visualization of this measure in Fig. 12
shows that most subsets were in fact visited by at least one
data sample, but only a few walks are dominant.

V. CONCLUSION

The weighted matrix visualization is a useful tool for under-
standing the properties of a fuzzy measure. As an explanatory
graphic, it provides a way to quickly see which sources are
being utilized and in what combinations. It also provides
enough detail into the inner workings of the measure to
allow for exploration into specific interactions. When used in
conjunction with other visualization approaches, such as the
FM lattice, a practitioner can identify if a fuzzy measure is
suitable for a particular application, or if another approach
may be more appropriate. For instance, when learning the
fuzzy measure parameters from a data set, one may wish to
know if the problem requires the full expressive power of the
fuzzy integral, or if a simpler operator such as an OWA would
suffice.

Fig. 12: The FM lattice visualization for the data-driven
example, as described in [1].

Although this visualization approach is possible for an
arbitrary number of sources, it becomes less feasible and
harder to interpret as the number of sources grows large.
While our method is designed for static display in print,
it may be possible to utilize an interactive version of the
diagram that can better handle larger problem sizes. Other
variations on this approach may be helpful for exploring
specific aspects of a problem, such as mapping column widths
to the interaction index or data visitation frequency. Since
the true value of any visualization technique comes from real
world use, we have made the code available on Code Ocean
(https://codeocean.com/capsule/6663959).

REFERENCES

[1] A. J. Pinar, T. C. Havens, M. A. Islam, and D. T.
Anderson, “Visualization and learning of the Choquet
integral with limited training data,” in 2017 IEEE In-
ternational Conference on Fuzzy Systems (FUZZ-IEEE),
Naples, Italy, July 2017.

[2] A. Lex and N. Gehlenborg, “Sets and intersections,”
Nature Methods, vol. 11, no. 8, pp. 779–779, Aug. 2014.

[3] B. Alsallakh and L. Ren, “PowerSet: a comprehensive
visualization of set intersections,” IEEE Transactions on
Visualization and Computer Graphics, vol. 23, no. 1, pp.
361–370, Jan. 2017.

[4] M. A. Islam, D. T. Anderson, A. J. Pinar, and T. C.
Havens, “Data-driven compression and efficient learning
of the Choquet integral,” IEEE Transactions on Fuzzy
Systems, vol. 26, no. 4, pp. 1908–1922, Aug. 2018.

[5] B. Murray, M. A. Islam, A. J. Pinar, T. C. Havens, D. T.
Anderson, and G. Scott, “Explainable AI for understand-
ing decisions and data-driven optimization of the choquet
integral,” in 2018 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), Rio de Janeiro, July 2018.

[6] E. R. Tufte, The Visual Display of Quantitative Informa-
tion, Graphics Press, USA, 1986.



[7] J. Bertin, Graphics and Graphic Information Processing,
Walter de Gruyter, Berlin, 1981.

[8] R. Krauss, “Grids,” October, vol. 9, pp. 51–64, 1979.
[9] L. S. Shapley, “A value for n-person games,” in

Contributions to the Theory of Games (AM-28), H. W.
Kuhn and A. W. Tucker, Eds., vol. 2, pp. 307–318.
Princeton University Press, Princeton, 1953.

[10] G. Owen, “Multilinear extensions of games,” Manage-
ment Science, vol. 18, no. 5-part-2, pp. 64–79, Jan. 1972.

[11] M. Grabisch and M. Roubens, “Application of the
Choquet integral in multicriteria decision making,” Fuzzy
Measures and Integrals-Theory and Applications, pp.
348–374, 2000.

[12] M. Grabisch, T. Murofushi, and M. Sugeno, Eds., Fuzzy
Measures and Integrals: Theory and Applications, Stud-
ies in Fuzziness and Soft Computing. Physica-Verlag
Heidelberg, 2000.

[13] G. Choquet, “Theory of capacities,” Annales de l’Institut
Fourier, vol. 5, pp. 131–295, 1953.

[14] M. Grabisch, “k-order additive discrete fuzzy measures
and their representation,” Fuzzy Sets and Systems, vol.
92, no. 2, pp. 167–189, Dec. 1997.

[15] R. Yager, “On ordered weighted averaging aggregation
operators in multicriteria decision making,” IEEE Trans-
actions on Systems, Man, and Cybernetics, vol. 18, no.
1, pp. 183–190, 1988.

[16] D. T. Anderson, S. R. Price, and T. C. Havens,
“Regularization-based learning of the Choquet integral,”
in 2014 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), July 2014, pp. 2519–2526.

[17] M. A. Islam, D. T. Anderson, A. J. Pinar, T. C. Havens,
G. Scott, and J. M. Keller, “Enabling explainable fusion
in deep learning with fuzzy integral neural networks,”
IEEE Transactions on Fuzzy Systems (accepted), 2019,
arXiv: 1905.04394.




