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Abstract—In this paper, a type of uncertain random pro-
gramming model based on the chance measure for the permu-
tation flow shop (PFSP) scheduling problem is proposed with
uncertain random job’s processing times, i.e., dependent chance
programming model (DCPM). The objective is to minimize the
total wasted energy consumption induced by the machine idling.
Moreover, to solve the proposed model, the uncertain random
simulation and a two-stage eagle strategy (ES) are integrated to
produce a hybrid intelligent algorithm. In the first stage of ES, the
so-called Lévy Flights is employed as the global search algorithm.
While in the second stage, the grey-wolf optimizer (GWO) is
used as the local search algorithm. The generated hybridization
ensures the proper balance between exploration and exploitation.
Besides, the Variable Neighborhood Search (VNS) is adopted
as local search methods to improve the performance of the
highlighted algorithm. The numerical results are reported to
demonstrate the applicability of the proposed model.

Keywords—Permutation Flow Shop Problem (PFSP), Total
Wasted Energy Consumption (TWEC), Uncertainty Random
Theory (URT), Eagle Strategy (ES), Grey-Wolf Optimizer
(GWO), Variable Neighbourhood Search (VNS)

I. INTRODUCTION

Green strategies gather the intention of all stakeholders
to drive a global performance for energy monitoring and
environmental protection. For instance, companies have to
deal with the environment’s official consensus to cut the
different harmful emissions while improving their market
competitiveness. Supply chain optimization models have to
consider sustainability’s aspects like energy consumption and
natural resources control. Pointing out effective interactions
designing between the pillars of these aspects classify the
global mapping of climate goals and customer service level
dilemma. Thus, manufacturing processes hold an important
role in such a context as companies’ productivity is liaised
with environmental factors also. In that way, the permutation
flow shop problem (PFSP) that is a scheduling problem draws
a significant interest for practitioners and researchers, it is
considered as the simplified version of the flow shop issues
where the sequence of jobs to the process will be the same on
each machine. For industry modeling purposes, the previous
description feet with many sectors as semiconductor and motor
ones [1]. It has also been proved to be non-deterministic-
polynomial-time (NP)-hard [2].

The makespan in addition to the total completion time
is considered as the most studied scheduling criterion in
the literature. The first objective represents the utilization of
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machines, whereas the second objective is related to the jobs
processing rapidity behavior. In recent years, with the growth
of sustainable manufacturing, the minimization of energy
consumption has been considered as a challenging topic in the
scheduling problem. Recently, [3] proposed a new scheduling
problem to minimize the energy consumption due to idle
times of machines in the permutation flow shop. This type of
problem is denoted as F'm|prum|W. To solve this problem,
a branch and bound algorithm with two lower bounds, and an
initial upper bound generated by using a variant of the NEH
heuristic algorithm were proposed. The reported numerical
results showed the efficiency of the proposed algorithm for
small benchmark problems. To overcome the traditional B&B
drawbacks for larger benchmarks, a hybrid method combined
BSA and simulated annealing algorithm (SA) based on insert
local search methods have been proposed by [4]. The experi-
mental results show that HBSA can obtain better performance
than B&B and GA.

In these works, the job’s processing times are assumed to
be deterministic. However, this assumption may be inappro-
priate in many practical situations. In real production systems,
there are many imprecise or uncertain factors involved in the
scheduling problems, such as demand and processing times.
In the literature, the uncertainty is usually manipulated by
three approaches. The first is probability theory. The second
is a fuzzy set theory as proposed by [5]. The third is a
rough set theory, initialized by [6]. Regarding the PFSP under
uncertainty, [7] demonstrated how to integrate the concept of
the credibility measurement for the mentioned problem. As a
result, three types of fuzzy models are presented, namely, the
expected value model (EVM), the chance-constrained model
(CCPM), and the dependent chance model (DCPM). A hybrid
intelligent algorithm is then designed to solve the proposed
models. The processing times have been considered as rough
variables by [8]. The objective is to minimize the makespan
while considering the same decision models as [7]. To solve
this problem, they used a hybrid intelligent algorithm that
combined the rough simulation and genetic algorithm.

Many studies emphasized the imprecise information which
is neither randomness nor like fuzziness or roughness. In the
decision-making process, experts can give a belief degree to
some quantities to reflect the human uncertainty statement.
A new theory has been developed by [9] accordingly to deal
with the highlighted indeterminacy, it is known as uncertainty



theory which is a branch of axiomatic mathematics for model-
ing human uncertainty. Nowadays, uncertainty theory has been
adopted for many research fields such as project management
and machine scheduling [10],[11]. It is worth mentioning
that in many real cases, uncertainty and randomness are
incorporated simultaneously in a system. For example, when
we processed new jobs and existing jobs in machines, we can
estimate the probability distribution of the processing times
for existing jobs from historical data. But we cannot derive
the probability distribution of processing times of new jobs.
To overcome this situation, we can invite experienced experts
to estimate the processing times for new jobs. Therefore, the
chance theory as a new mathematical tool was presented [12],
[13] to addresses uncertain random problems. Until now, the
chance theory has been applied to several areas by many
studies [14], [15].

The above-mentioned permutation flow shop scheduling
problem deals with uncertainty and randomness simultane-
ously. Therefore, based on chance theory, this paper will
present a new model to minimize the total wasted en-
ergy consumption (WEC) that occurred by machine idling.
The new model is called Dependent-Chance Programming
Model(DCPM). In such a non-deterministic environment, tra-
ditional methods cannot provide a solution. To overcome this
issue, researchers give a central focus for the well known
hybrid intelligent algorithm (HIA). In HIA, a type of sim-
ulation (i.e. stochastic, or uncertain simulation) is used for
calculating the non-deterministic measure (i.e. probability, or
uncertain measures) while another method of metaheuristic
such as genetic algorithm is adopted to find the quasi-optimal
solution. In this paper, a new hybrid intelligent algorithm is
proposed. It starts with a simulation technique that is based
on uncertain random simulation of the objective function.
Then, the global search is performed with an eagle strategy
method [16] according to Levy Flights while the local search
is completed through Grey Wolf Optimizer (GWO) [17].
Besides, the Variable Neighborhood Search (VNS) [18] is
adopted from a performance improvement standpoint.

The rest of this paper is organized as follows: Section
2 contains some preliminaries about uncertainty theory as
well as chance theory. In Section 3, the uncertain random
energy consumption in the PFSP based on the dependent-
chance programming model is presented. In Section 4, a hybrid
intelligent algorithm is proposed to solve the model. Section 5
provides the computational results to illustrate the performance
of the proposed model and algorithm. Finally, the conclusion
is summarized in Section 6

II. PRELIMINARIES

In this section, we will recall some basic concepts that will
help establish the permutation flow-shop scheduling problem
under uncertainty.

A. Uncertainty theory

Let I' be a non-empty set and let £ be a g-algebra on I'.
A set function M : £ — [0, 1] is called an uncertain measure

if it satisfies the four axioms normality, duality, sub-additivity
and product [1].

Definition 1 [9]. An uncertain variable is a function £ from
an uncertainty space (I', £, M) to the set of real numbers such
that {¢€ € B} is an event for any Borel set B.

Definition 6([1]). The uncertainty distribution ¢ of an uncer-
tain variable ¢ is defined by

D(x) = M{¢ <} ()

for any real number z.

Definition 6([1]). An uncertainty distribution ®(x) is said to
be regular if it is a continuous and strictly increasing function
with respect to z at which 0 < ®(z) < 1, and mli}r_noo O(z) =
0, lim ®(z)=1

[9] gave some types of uncertainty distributions to describe
uncertain variables. The paper used only linear uncertainty
distribution. Therefore, we only state them in the following
text.

Definition 6([1]). An uncertain variable ¢ is called linear if it
has a linear uncertainty distribution

0, ifz<a
d(z) =4 (@—a)/(b-a), fa<az<d )
1, if x> b

Denoted by £(a,b) where a,b are real number with a < b.
Definition 6([1]). Let £ be an uncertain variable with regu-
lar uncertainty distribution ¢(z). Then the inverse function
¢~ !(«) is called the inverse uncertainty distribution of &.
For example, the inverse uncertainty distribution of linear
uncertain variable £(a,b) is

pHa)=axa+(1—a)xb 3)

Definition 6([1]). Let &1, &o, . . ., &, be independent regular un-
certain variables with uncertainty distributions ®, ®o, ..., &,
respectively. If the function is strictly increasing with re-
spect to x1, Ts, ..., Ty, and strictly decreasing with respect to

Tt 1, Tty -y Ty then € = f(&1,&o,...,&,) is an uncertain
variable with inverse uncertainty distribution

T (@) = f(@1 (@), 23 (@), ..., D1 (@), @, 1 (1 — @),
ol o(1—a), @, (1—a)) @)

B. Chance theory

Based on the definitions of uncertain variable and random
variable, the concept of an uncertain random variable can be
given as follows:

Let (2, A, Pr) be a probability space and (I", £, M) be an
uncertainty space. Then (2 x ['; A x £, Pr x M) is called a
chance space.

Definition 6([1]). Let £ be an uncertain random on a chance



space (Q x I'; A x £,Pr x M). Then its chance distribution
® is defined by
®(x) =Ch{{ <u}

1

= /Pr{w e UM{y e T|¢(w,y) <z} >ridr ()

0
Theorem 6([1]). Let n1,72,...,m,, be independent random
variables with probability distributions Wy, Ws, ..., ¥,,, respec-
tively, and let 71, 7o, ..., 7,, be independent uncertain variables.
Assume f is a measurable function. Then the uncertain random

variable & = f(n1,m2, ., Mm, T1, T2, ..., Tn) has a chance
distribution

B(z) = / (&390, 02 s ) (1) AT (52).. A (1)

Rm

©)
where F'(x;y1, Y2, ..., Ym ) is the uncertainty distribution of the
variable [ (Y1, Y2, oy Ynms T1y T2y ooy T )-
Theorem 6([1]). Let 71,72, ..., be independent random
variables with probability distributions Wy, Wo, ..., ¥,,, and
let 74,79, ..., 7, be independent uncertain variables with reg-
ular uncertainty distributions Y1, Yo, ..., T,,, respectively. If
FOnsm2y ooy Mony T1, T2y -y Tn) 18 strictly increasing with re-
spect Ty, Ta, ..., T, and strictly decreasing with respect 75 +
1,79, ..., Th, then

Ch{f 17137727' 7777'77 Tl TQ?"WT’N,) SO}

/G%WW%M%%M%%%NM%)

., Ym) 18 the root « of the equation

)

where G(y1, ya, -

ST o),
T, '(1-a)=0 (8

-1 -1
f(yh Y2y -5 Ym, T1 (Ot), TZ (a)v .
—1 —1
e (1=a), Y1 —a), ...,
IIT. UNCERTAIN RANDOM PERMUTATION FLOW SHOP
SCHEDULING PROBLEM

The Permutation Flow Shop Problem (PFSP) is a typical
combinatorial optimization problem, which determines the
processing sequence of jobs over machines in order to min-
imizes many objectives. Assumptions and notation described
as follows:

o All jobs are available at time zero and the processing time
is assumed to be an uncertain random variable.

« Each machine can process at most one job at any time;

o Each job can be processed on at most one machine at
any time;

« Each job must complete processing without preemptions;

e Machines are turned on as soon as the first job arrives
and turned off when the last job leaves;

« Machines will keep being idle during two successive jobs;

A. Symbols and formulation

n: Denotes the number of jobs;
m: Denotes the number of machines;
&,j = (mij,7ij): Denotes the uncertain random processing
time of the job 7 on machine j where 7; ; are independent
random variables with probability distributions W; ;, and 7 ;
are independent uncertain variables with uncertainty distribu-
tions Y; ; respectively.
&= (&1,1,61,2,-,€n,m): Denotes the uncertain random vec-
tor;
A;: Denotes the rated output power of machine j;
x = (x1,22,...,2,): The integer decision vector that repre-
sents the schedule

T1 —> L2 —> . = Ty ©))
For simplicity, we use & = (11,612, ,&n,m) (e =
(M1,1,M1,25 s Mrym T1,15 T1,25 -+» Tnym) t0 denote the uncertain

random vector and note that the full schedule is represented
by the integer decision vector @ = (x1, 3, ..., T, ), Which is
representing a permutation of n jobs with 1 < z; < n and
ri Fxp forall i £k, i,k=1,2,...n.

Let C(z;,7,€&) and IT(z;,7,€) be the uncertain random
completion time and idle time of job x; on the machine j
respectively. Then are calculated by the following equations:

C(l’l, 175) - 611 1
C(CC,;, l,f) = C(:L'j_]_, 1,6) + ng 1, = 2, N
C(w17j7£) = (*L17 -1 5) +£CE1,]7 .} - 2
C(xhjvg) = maxr {C($i_1,],€), (mi,] - 1’5)} + gImj
t=2,...n,7=2...,m
(10)
IT(‘Lzang) = max {C(‘LHJ - 175) - C(wifla.%g)ao}
1=2,..,m,]=2,...,m
(11
Let TEC(x,&) be the total uncertain random energy con-

sumption of the schedule x. According to [3], we have:

TEC(z,¢) = TUEC(x,¢) + TWEC(z,€),
TUEC(%,&) = >/ Ui =32 2071 A * &g
TWEC(z, &) =370, Wy = 300 Ay x 30 IT (24, 5, €)

(12)
where TUEC(x,€) denotes the total uncertain random use-
ful energy consumption and TW EC(x, &) denotes the total
uncertain random wasted energy consumption.

IV. UNCERTAIN RANDOM DEPENDENT CHANCE MODEL

Dependent-chance programming (DCP) initialized by [19],
is a powerful decision-making criterion which concerns the
risk of some unfavorable event occurring. [15] extended the
dependent-chance programming to deal with an uncertain
random time-cost trade-off problem (TCTP) which is a type
of project scheduling problem.



In scheduling problems, decision-maker may want to control
the total wasted energy consumption. Hence, it is natural for
decision-maker to maximize the chance degree that the total
uncertain random wasted energy consumption does not exceed
some given target wasted energy consumption. According to
this idea, the uncertain random dependent-chance program-
ming model for TWEC-PFSP is written as follows:

max Ch{TWEC(z,£) <TWEC,}
Subject to:

1<x; <n,i=1,2,...,n

v Fag,iEk ,k=1,2,...n
€2, i=1,2,..,n

13)

where TW EC) is the predetermined target of the wasted
energy consumption.

Remark 1:If the uncertain random variable £ degenerates
to an uncertain variable, the proposed model becomes an
uncertain dependent chance model with uncertain processing
times.

Remark 2:If the uncertain random variable £ degenerates to
a random variable, the proposed model becomes a stochastic
dependent chance model with random processing times

V. HYBRID INTELLIGENT ALGORITHM

In this section, we will design a hybrid intelligent algorithm
to solve the uncertain random dependent-chance model, where
uncertain random simulation and eagle strategy with grey wolf
optimizer based on variable neighborhood search are used.

A. Uncertain Random Simulation

Recently, [15] propose a new HIA for project scheduling
problems within the uncertain random theory. The proposed
method combine two uncertain random simulation algorithms
that are based on stochastic and uncertain simulation to
estimate the expected value and dependent chance value
embedded with the genetic algorithm to find the quasi-optimal
solution.

In this paper, we will use the proposed uncertain random
simulation of chance value. The following steps are given in
Algorithm 1.

U:z— Ch{TWEC(z,¢) <TWEC,}  (14)

999-method

The 999-method was proposed by [9] to calculate uncertain
variables. It is suggested that an uncertain variable can be
represented by a 999-table. The first row contains the values
of uncertainty distribution, while the second row presents
the corresponding values of inverse uncertainty distribution
Q7 Y(z, ) of the total wasted energy consumption as stated
in table 1.

Algorithm 1 Uncertain-Random Simulation for Chance value:

I: Sete=0;

2: Generate wi,ws, ...,wy from € according to the proba-
bility Pr.

3: Consider w; = {m 1,72, Mumprt =1,2,.., N

4 e +— e+ M{TWEC(xz,(wr)) <TWECy}, kE =
1,2,...;, N where M{TWEC(x,{(wi)) < TWECy} is
given by uncertain simulation (i.e. 999-method) as given
in the following section.

5: Repeat the second and third steps N times, where N is a
sufﬁciengy large number;

6: Return —;
N
TABLE 1
INVERSE UNCERTAINTY DISTRIBUTION OF Q! (z, o)
« 0.01 | 0.02 0.999
Q-1 (17, O() S1 S92 5999

The value of M{TWEC(x,&) < TWEC,} is equivalent
to Q(TWEC (x,TW EC))) which can be approximately es-
timated by :

Q(a, TWECy) — —

if s <TWEC) < $k41 for some
100
(15)
where s, ..., Sg99 are given by Table 1.
The main steps of uncertain simulation of

M{TWEC(x,&) <TWEC,} is given in Algorithm
2.

Algorithm 2 Uncertain simulation of
MA{TWEC(x,&) < TWECy}

1: Set DCM «+ 0, u<+1;

2 1 (s < TWECq < s+, let DOM « oo

3. If (u < 998), let u + u + 1. Turn back to éjtep 2;

4: Report DCM as the estimation of

M{TWEC(z,£) < TWEC,};

B. Brief introduction to Eagle Strategy (ES)

Eagle strategy is a two-stage optimization strategy that was
presented by [16]. This algorithm mimics the hunting behavior
of eagles in nature. Eagles forage using two components:
random search performed by flying freely and intensive search
to catch prey when sighted. In this two-stage strategy, the
first stage explores the search space globally by using a Levy
flight; if it finds a promising solution, then an intensive local
search is employed using a more efficient local optimizer, such
as hill-climbing and the downhill simplex method. Then, the
two-stage process starts again with new global exploration,
followed by a local search in a new region.

C. Brief introduction to Grey Wolf Optimizer (GWO)

GWO is an efficient population-based optimizer recently
proposed by [17] which can provide a more efficient per-
formance compared to other well-established optimizers. The

k



GWO mimics the ideal hunting behavior of wolf packs through
the leadership hierarchy as well as the hunting mechanism
of grey wolves in nature. Alpha («), beta (3), delta (J), and
omega (w) are used to denote four separate types of grey
wolves to properly simulate the leadership hierarchy. Three
main steps are used to ensure optimal performance which is
known as: searching for prey, encircling prey, and attacking
prey formulated mathematically as below :

D=|CX,1)-X|
X(t+1)=X,0t) - AD (16)

. "
- a7

(18)

19)

Equations (17) and (18) are used to calculate the encirclin
behavior where t indice%es the current iteration, and
are coefficient vectors, X, is the position vector of the prey,
and indicates the position vector of a grey wolf. where
components of d are linearly decreased from 2 to 0 over the
course of iterations and 71, 72 are random vectors in [0, 1].
Equations (19) and (20) simulate the hunting behavior, in a
mathematical setting, we assume that the alpha («), beta (53),
delta (9) know the potential location of prey. When random
value |A| < 1, the wolves are forced to attack the prey
as exploitation mode. When |A| > 1, the members of the
population are enforced to diverge from the prey as exploration
mode. In every iteration, the three best individuals are saved
and guide the others to update their positions. More details of
the GWO can be found in [17].

D. Brief introduction to Variable Neighborhood Search (VNS)

Variable Neighborhood Search (VNS) [18] is explained as a
systematic change in both global and combinatorial problems
with optimization. VNS has been used in a wide selection
of literature as the local search methodology. Regardless of
the obvious performance of hybridization with VNS, the
performance depends on the neighborhood operation used.

E. The proposed hybrid intelligent algorithm

Since eagle strategy and grey wolf optimizer; both of which
were designed to solve continuous optimization problems.
To solve a discrete problem such as TWEC-PSP, they are
incorporated with several methods mainly: representation, pop-
ulation initialization, and generate solutions. Furthermore, the
uncertain random simulation is used the compute the fitness.
All these steps will be discussed in the following subsections.
Algorithm 3 describes the pseudo-code of the proposed hybrid

intelligent algorithm where I? is the number of rounds, and NV,
is the population size.

Algorithm 3 The proposed hybrid intelligent algorithm (HIA)

1: Initialize the parameters and use NEH heuristic (Algo-

rithm 4) to produce 10% agents and the rest of agents are
generated randomly according to Equation (22);

2: Rank the wolf pack as : X, Xg and Xs;

3. while (R > r) do

4:  Generate a set of agents — solutions X for global
exploration using the Levy flight according to Equation
(21), where the feasibility must be offered;

5:  Convert each agent X; of the set X to a job permutation
m; by using the LOV rule;

6:  For each permutation, calculate the total wasted energy
consumption (TWEC (x, £)) according to Equation (12)
using uncertain random simulation using Algorithms 1 &
2;

7:  Update the best solutions obtained so far (X, X3 and
Xs)

8: Inner loop :

Generate randomly a set of agents around this promis-
ing solution, where feasibility must be offered;

10: Carry out an intensive local search via the Grey Wolf
Optimizer

11:  Execute the local search by using VNS (Algorithm 5);

122 fori=1 to NP do

13: Update the position by Equation (19);

14:  end for

15:  Update A, C and a;

16:  Convert each wolf X; of the set X to a job permutation
m; by using the LOV rule;

17:  For each permutation, calculate the total wasted energy
consumption (TWEC(x, £)) according to Equation (12)
using uncertain random simulation using Algorithms 1 &
2;

18:  Rank the updated wolf pack as alpha, beta and delta
(Xa), beta (Xp), delta (X5s);

19:  if (a better solution is found) then

20: Update the current best

21:  end if

22: End Inner loop

23: Update r=7r+1

24: end while

25: Report the best solution as the optimal schedule

1) Solution representation: The proposed strategy, com-
bine the so-called Levy flight and the grey wolf optimizer,
both of which were designed to solve continuous optimization
problems, and cannot be applied directly to the discrete
problem, such as TWEC-PFSP. One key to apply ES-GWO
to solve TWEC-PFSP is to construct a direct relationship
between the job sequence and the vector solution of ES-
GWO. In this paper, we will use the largest-order-value (LOV)
mechanism from the research literature of [20] to map the
ES-GWO solution X; = [X;1,X;2,...,Xin] to job solu-



tion/permutation vector m; = [m; 1,72, ..., T n|. The basic
idea of this rule is ranked X; by descending order to obtain a
sequence ¢; = [¢; 1, %i 2, ..., $in]. Then, the job permutation
m; is calculated by the following formula ¢; , = k where the
dimension k varies from 1 to n.

2) Population initialization: To guarantee an initial pop-
ulation with certain quality and diversity, an adopted version
of NEH heuristic for total wasted energy proposed by [3] is
used to generate 10% of N. The pseudo-code is shown in
algorithm 4. The rest of 90% of N of solutions generated

Algorithm 4 NEH heuristic

I: « : Jobs ordered by decreasing order of TUEC(x, &
according to (Eq.12) o = [ay, ag, ..., ]
m:{as}
for k =2 ton do

Test job «y, in any possible position of m

7w : Permutation obtained by inserting «j in the po-
sition of m which less total wasted energy consumption
(TWEC(x, £)) calculated according to Equation (12) by
using Algorithms 1 & 2;
6: end for

randomly according to the following equation:

X,; = X% — RND() x (X[ — X7y (20)

where p = 1,2,...,. NP, j = 1,2,...,n , and r is a uniform
random number between 0 and 1.
3) Generate new solutions:

a) Exploration phase using Lévy Flights: As mentioned
above, the ES is a two-stage strategy, and we can use different
algorithms at different stages. In the first stage, ES uses the
so-called Lévy flights, which represent a kind of non-Gaussian
stochastic process whose step sizes are distributed based on
a Levy stable distribution to generate new solutions. When a
new solution is produced, the following Levy flight is applied:

X! = X! +ae Levy(B) Q1)

Here, « is the step size that is relevant to the scales of
the problem generally chosen as o = 0.01. The step length
Levy(A) can be calculated by using Mantegna’s algorithm
[21].

b) Exploitation phase using GWO based on VNS: For
the second stage, we can use various efficient meta-heuristic
algorithms like grey wolf optimizer to do a strenuous local
search. We know the GWO is a global search algorithm, but
it can easily be tuned to do an efficient local search by limiting
new solutions locally around the most promising region. As
mentioned above in GWO, the other wolves (w) are forced
to update their positions according to the position of the best
search agents. For further improvement of the computational
performance of local search ability, a VNS is applied to the
best agents. In this paper, three kinds of neighborhoods are
used from literature mainly: Insertion, Interchange, and Swap;
The pseudo-code of VNS is shown in algorithm 5.

Algorithm 5 Local Search by using VNS
1: Denotations
2: Iter; Itermas; Niter(.); TWEC(.) denotes index of the
neighbourhood structure; Total of neighbourhood struc-
tures; the neighbourhood structure (i.e : Insert, Interchange
and Swap; The objective function (i.e Total wasted energy
consumption using uncertain random simulation)
3: Convert each best (alpha, beta and delta) agent X, to a
discrete job permutation 7;
4: Tter = 0; Iterpa. =3
5: while (Iter < Iter,,q.) do
6:  Randomly generates a neighbor 77; € Nrier(m) 3
7
8
9

if (TWEC(mi, €) > TWEC(x;,€)) then

Ty =T,
: Iter =1
10:  else
11: Iter = Iter + 1
12:  end if

13: end while

VI. NUMERICAL RESULTS

In this section, we illustrate the numerical results to (i)
to demonstrate the application of the model, (ii) to test the
robustness of the proposed algorithm. We assume that there are
10 jobs and 5 machines. The processing times are addressed
by uncertain random variables & ; = (m,; + 7;;);4 =
1,.,n, g =1,...,m where n; ;;1 = 1,...,n, j=1,...m
are uncertain linear distributions and 7; ;¢ = 1,....,n, j =
1,...,m are random linear distributions are presented in Ta-
ble 2. The output rated power (A\j;j = 1,...,m) is set to
1 for all machines. We consider 2000 cycles in stochastic
simulation).The predetermined level of total wasted energy
consumption (TW EC)) is set to 7650.

Table 2 reports the computational results obtained for dif-
ferent set of parameters as follow :

o Column 1 & 2: The algorithm parameters (Npop; Grmaz)

o Column 3: The obtained objective value (I'W EC) by

ES-GWO-VNS

e Column 4: The relative error computed according to

equation 23 :

Vo imal — Vac ua
ptimal fual 4 100%

Voptimal (22)
where Viptimai represents the optimal objective value (i.e
maximum) of all objective values obtained with different
parameters and V1,4 is the objective value obtained for
a given experiment with the given parameters.

It follows from column 3 of table 2 that the error does
not exceed 6.45%, which implies that the designed algorithm
is robust to the parameter settings when solving the problem
considered in this paper.

Figures 3 and 4 represent an intuitive analysis of objective
value and error. Figures 3 and 4 shows that the objective value
(TWEC) increases and error decrease significantly when the
population size and maximum of generations increase.



TABLE I
UNCERTAIN RANDOM PROCESSING TIMES

Ml M2 M3 M4 M5

JI | £(382,456) + U(38,45) | L(463,537) + W(46,53) | L(49,123) + U(49,54) | £(140,214) + U(14,24) | £(160,234) + 1(16,23)

J2 | £(715,789) + U(71,78) | £(780,854) + 1(78,85) | L(151,225) + U(15,22) | L(454,528) + W(44,52) | L£(49,123) + (14, 24)

J3 | £(802,876) + 1(80,87) | £(558,632) + U(55,63) | L(514,588) + U(51,58) | L£(822,896) + 1(82,89) | £(382,456) + U(38,45)

J4 | L(469,543) + U(46,54) | L(71,145) + U(7,14) | £(595,669) + U(59,66) | L(251,325) + U(25,32) | L(715,789) + U(71,78)

J5 | £(136,210) + U(13,21) | £(711,785) + U(71,78) | £(892,966) + U(89,96) | L(73,147) + U(73,84) | L(802,876) + 1(80,87)

J8 | £(715,789) + U(71,78) | L(69,143) + U(6,14) | L(681,755) + U(68,75) | £(353,427) + U(35,42) | L(49,123) + U(4,12)

J9 | £(802,876) + U(80,87) | £(624,698) + U(62,69) | L(248,322) + U(24,32) | L(472,546) + U(47,54) | L(382,456) + (38, 45)

Py g sy [ sy s sy [ s s [ g g

(

(

( (

| |
J6 £(49,123) + U(9,12) | £(140,214) + U(14,21) | £(258,332) + U(25,33) | L(782,856) + U(78,85) | L(469,543) + (46, 54)
J7 | £(382,456) + U(38,45) | L(678,752) + W(67,75) | L(70,144) + U(7,14) | £(247,321) + U(24,32) | £(136,210) + U(13,21)

( (

( (

( (

J10 | L(469,543) + U(46,54) | L£(458,532) + U(45,53) | L(26,100) + U(6,10) | £(247,321) + U(24,32) | L(715,789) + U(71,78)

TABLE III
COMPUTATIONAL RESULTS ES-GWO-VNS
N c ES-GWO-VNS
pop 4 " Objective value | Error
100 0.87 6.45 8
30 300 0.90 323
500 0.93 0.00 o 6
100 0.89 430 =
50 300 0.93 0.00 > 4
500 0.93 0.00 ‘é
100 0.90 426 3
80 300 0.94 0.00
500 0.94 0.00 0
ES-GWO-VNS

Pop size

1 1 Max Generation
<
=
=
@ 0.5 Fig. 2. Error value results with different set of parameters
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Figures 3-5 provide the convergence curves of ES-GWO-
VNS for a given Npop and Giraq.
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VII. CONCLUSION ; ;
10 20 30 40 50 60 70 80 90 100

In this paper, we investigate the total wasted energy con- Iteration
sumption in the permutation flow-shop problem under un-
certainty and randomness simultaneously. The main contribu-
tions of this paper are discussed below. First, the proposed

Fig. 3. Convergence Curve of Gpae = 100
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Fig. 4. Convergence Curve of Gymaez = 300

Convergence Curves - ESGWOVNS
T T ‘ T T T I ‘
Npop =30| |
Npop =50
Npop =80 | ]

—

0.85 -

Best score obtained so far

0.55 1

L ! L I ! L ! L I

50 100 150 200 250 300 350 400 450 500
Iteration

Fig. 5. Convergence Curve of Gimaz = 500

model uses the uncertainty random theory and the dependent-
chance programming model. The uncertainty random theory
represents a powerful alternative to other classical theories,
such as uncertainty, random, fuzzy, and rough. Therefore, the
proposed dependent-chance programming model can provide
better theoretical directions for decision-makers. Second, a
hybrid intelligence based on an eagle strategy combined with
a grey-wolf optimizer based VNS is developed to solve the
model. Furthermore, the computational experiments demon-
strate that the proposed strategy is more competitive and
efficient to solve the model
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