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Abstract—In this paper, we investigate the total weighted
tardiness permutation flow shop with fuzzy rough processing
time and a distinct due date. A fuzzy rough model based on the
Hurwicz criterion is established. By varying the value of 0, it
can balance the optimistic and pessimistic levels of the decision-
makers. Moreover, to solve this model, fuzzy rough simulation
and a eagle strategy combined with the sine-cosine algorithm
are integrated to produce a hybrid intelligent algorithm. Finally,
numerical results are reported to demonstrate the efficiency and
applicability of the proposed model.

Keywords—Permutation Flow Shop (PFS), Total Weighted Tar-
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Sine-Cosine Algorithm (SCA)

I. INTRODUCTION

The permutation flow shop problem (PFSP) is considered
to be the simplified version of the flow shop problem. This
is where the sequence of jobs to the process will be the
same on each machine. The PFSP has proved to be non-
deterministic-polynomial-time(NP)-hard [1]. Both the motor
and the semiconductor industries use this problem as apart of
their production process [2]. It has also attracted the attention
of many researchers and practitioners due to its theoretical
complexity, as well as practical application.

Several scheduling criteria are studied in the literature.
Among them, the total tardiness which coincides with cus-
tomer satisfaction. Delays are likely to lead to an increase
in costs. These costs would include penalty clauses, loss of
customers, and a bad-standing reputation with new customers.
To avoid these problems, the objective seeks to reduce the
completion times of jobs to properly meet their due dates.
According to the notation in [3] this type of problem is denoted
as: Fm|prum|3 ;. ; o;.T;.

In the original total weighted tardiness scheduling problem,
one will likely assume that the job’s processing times are
deterministic. However, this assumption is inappropriate in
many practical scenarios. For example: in real production
systems there are many imprecise or uncertain factors involved
in the scheduling problems: including demand, processing
time, and due date. This uncertainty in real production systems
is usually manipulated through three approaches, according to
the literature [4]. The first is the probability theory. The second
is the fuzzy set theory, proposed by Zadeh [5]. The third is
the rough set theory, initialized by Pawlak [6]. Regarding the
PFSP under uncertainty, [7] demonstrated how to integrate
the concept of the credibility measurement for the mentioned
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problem. As a result, three types of fuzzy models are pre-
sented, namely, the expected value model (EVM), the chance-
constrained model (CCPM), and the dependent chance model
(DCPM). A hybrid intelligent algorithm is then designed to
solve the proposed models. The processing times have been
considered as rough variables by [8]. The objective is to
minimize the makespan while considering the same decision
models as [7]. To solve this problem, they used a hybrid
intelligent algorithm that combined the rough simulation and
genetic algorithm.

There is only one source of uncertainty that is considered in
these mentioned studies. However, scheduling problems may
be subject to hybrid uncertainties such as an encounter with
fuzziness and roughness simultaneously. For example, many
accept that the job’s processing times are triangular fuzzy
number variables (a,b,c) from the viewpoint of the fuzzy
theory. Though, the values of a, b, and ¢ may emerge with
incomplete or uncertain information. In a sense, they are rough
characteristics. Thus decision-makers have to face the “fuzzy
number with rough parameters”. In this case, particularly, the
job’s processing times should be more appropriately repre-
sented as the fuzzy rough variable [4].

In this paper, a new model based on both the fuzzy rough
theory and the Hurwicz criterion is proposed to deal with
uncertainty in the total weighted tardiness flow-shop schedul-
ing. A remarkable advantage of such criteria is to attempt
to strike a balance between the many extremes posed by the
optimistic and pessimistic criteria. In such a non-deterministic
environment, traditional methods cannot provide a solution.
To overcome this issue, researchers give a central focus for
the well known hybrid intelligent algorithm (HIA). In HIA, a
type of simulation (i.e. fuzzy, or rough simulation) is used for
calculating the non-deterministic measure (i.e. credibility, or
trust measures) while another method of metaheuristic such as
genetic algorithm is adopted to find the quasi-optimal solution.
As a second contribution, a new hybrid intelligent algorithm is
proposed. It starts with a simulation technique that is based on
a fuzzy rough simulation of the objective function. Then, the
global search is performed with an eagle strategy method [9]
according to Levy Flights while the local search is completed
through Sine-Cosine Algorithm (SCA) [10]. Besides, local
search methods are adopted from a performance improvement
standpoint.

The rest of this paper is organized as follows: Section 2



provides some preliminaries about fuzzy rough theory. Section
3, the fuzzy rough total weighted tardiness flow shop problem
based on the Hurwicz criterion is presented. Section 4, presents
the proposed hybrid intelligent algorithm. Section 5 contains
the computational results to illustrate the performance of the
proposed model and algorithm. Finally, the conclusion is
summarized in Section 6

II. Fuzzy ROUGH THEORY PRELIMINARIES

A fuzzy rough variable was initialized by Liu [4] as a rough
variable defined on the universal set of fuzzy variables, or a
rough variable taking “fuzzy variable” values. In this section,
we will recall some basic concepts that will help establish
the fuzzy rough model with Hurwicz criterion for flow shop
problem with total weighted tardiness.

Definition 4. [4]. A fuzzy rough variable ¢ is a mapping
from a rough space (A,A,A,7) to a collection of fuzzy
variables.

Definition 5. [4]. Let £ be a fuzzy rough variable, defined
on the rough space (A, A, A, ) . Then its expected value E [¢]

defined as:
Bl = [Tr{xe MBI 2 r}dr
0

- /Tr{)\ EAE[((N)] <rpdr (LD

Definition 6. [4]. Let £ = (&1, &2, ..., &,) be an n-dimensional
fuzzy rough vector defined on the rough space (A, A, A, )

and f; : " — R be real-valued functions,j = 1,2, ..., q. Then
the chance Ch{f; (§) <0,7=1,2,....,q} (o) of the fuzzy
rough event characterized byf; () < 0,7 = 1,2,...,¢ is a
function from [0, 1]to[0, 1] defined as:
sup{B|Tr {)\EA|C’T{ (61()\2)) } 25} Za}
a1.2)

III. FuzzZY ROUGH PERMUTATION FLOW SHOP PROBLEM

The Permutation Flow Shop Problem (PFSP) is a typical
combinatorial optimization problem, which determines the
processing sequence of jobs over machines to minimizes the
total makespan, the total flow time, and can satisfy other
objectives (such as total weighted tardiness). Assumptions and
notation for are described as follows:

o The processing sequence of all jobs on each machine is

the same, but has not been known;

o All jobs are available at time zero and the processing time
is assumed to be a fuzzy rough variable. Moreover, the
setup time is included in the processing time.

« Each machine can process at most one job at any time;

o Each job can be processed on at most one machine at
any time;

o Each job must complete processing without preemptions.

A. Symbols and formulation

n: Denotes the number of jobs;
m: Denotes the number of machines;
&;.;: Denotes the fuzzy rough processing time of the job 7 on
machine 7;
&= (%1,%1.2,,&,m): Denotes the fuzzy rough vector;
d;: Denotes the due date of the job;
v;: Denotes the tardiness cost per unit time of the job finished
after the due date;
Tr = (331,1‘2, veey Iy,
sents the schedule

): The integer decision vector that repre-

T1 — T2 —> .. = Ty (II1.1)

For simplicity, we use € = (£11,&1,2y -, &nm) to denote
the fuzzy rough vector and note that the full schedule is
represented by the integer decision vector @ = (x1, xa, ..., Tp),
which is representing a permutation of n jobs with 1 < z; < n
and z; #xp foralli £k, i,k=1,2,...,n

Let C(x;,7,€) be the completion times of job z; on the
machine j. Then the completion times can be calculated by
the following equations:

C(z1,1,6) =& 1
C(xi,1,8) =C(xi=1,1,8) + &py1, 1=2,...,1n
C(21,5,€) =C(z1,j — L&) + & jr 7=2,...,m
C(,5,8) = mar {C(xi-1,5,€),C(xi,j — 1,6)} + &u,
1=2,..,n,7=2,...,m
(I1.2)

Let TWT(x,€) denote the fuzzy rough total weighted
tardiness of the schedule which is calculated as follows:

n
E V; *
i=1

where v;*(C(x;, j, €)—d;)T denotes the fuzzy rough tardiness
cost when the job is completed after its due date d;.

TWT(z,§) = (Clxi,5,€) — di))* (IIL3)

B. Fuzzy rough model with Hurwicz criterion

In an uncertain environment, the most well-known criteria
are optimistic value criteria and pessimistic value criteria.
By using optimistic criteria, a decision-maker can handle the
maximum payoffs of alternatives and can choose a suitable
alternative with the lowest cost (which would be the greatest
outcome). By using pessimistic criteria the decision-maker
only handles the minimum payoffs of alternatives, and can
choose the alternative with the least bad outcome. This cri-
terion is suggestive of a conversation decision-maker who, in
a situation of an unfavorable outcome known as loss, ensures
that we are aware of the maximum loss. Several other criteria
are proposed to overcome the extreme cases of these two
criteria. The Hurwicz criterion, proposed by [11], is one of
the most well-known criteria. It attempts to balance extreme
criteria by ensuring that both the optimistic and pessimistic



criteria are averaged using the weights 6 and 1 — 6. It then
associates to each action x the following index:

O max(z) + (1 — 0) min(z). (Ir.4)

Then, we get the fuzzy rough environment under Hurwicz
criterion as follows:

6 min fopt(Oé,,B) + (1 - 9) I}laxfpes(avﬂ)

fopt pes

(IIL5)

where fop(a, 8) and fpes(a, ) are the (o, 3)-optimistic and
(a, B)-pessimistic values defined as follows:

Jopt(a, B) = min {fICh{f(z,§) < f}(a) = B} (IL6)

FpeslarB) = max {ICh{(2,) = f} (@) = B} QILT)

The parameter «, 3 € (0, 1] reflects the level of satisfying the
event Ch{f(z,&) < f} or Ch{f(x,&) > f}. This means
that the cost function will be below the (c,)-optimistic
value fop(r, B) with trust (o, 8), and will reach upwards
of (a, 3)-pessimistic value fpess(ar,5) with trust (a, 3) [4].
Therefore, by changing the value of 6, the Hurwicz criterion
degenerate various criteria (e.g..,) = 1 led an optimistic
criterion; ¢ = 0 degenerate a pessimistic criterion).

Based on the above assumptions we can present the («, 3)-
Cost model with Hurwicz criterion for TWT-PESP as follow:

min @ min fop: + (1 — 0) max fpes
opt pes

Subject to:

CRATWT(2.€) < fopr} (a) >
CHATWT(2,€) = fyes} (@) =
1<z; <n,i=1,2,...,n

T FEr,iFk i, k=1,2,...n
v, €Z, 1=12,..n

(II1.8)

Remark 1: According to Definition 6, if the fuzzy rough
vector £ degenerates to a rough vector, the («, 3)-Cost mini-
mization model under the Hurwicz criterion becomes a simple
the a-cost minimization model under the Hurwicz criterion
with rough processing times as follow :

min Omin fyp + (1 — 0) max fpes
fopt Fpes

Subject to:

Tr{TWT(z,§) < fopr} >

Tr {TWT(2,) > fpes} >

1<z; <n,i=1,2,....,n

T Fr,i#k i,k=1,2,...n

€7, i=1,2..n

(II.9)

Remark 2: According to the Definition 6, if the fuzzy
rough vector ¢ degenerates to a fuzzy vector, the («,f)-
Cost minimization model under the Hurwicz criterion becomes

a simple the (-cost minimization model under the Hurwicz
criterion with fuzzy processing times as follow :

min fmin fop: + (1 — 0) max fpes

opt pes

Subject to:

Cr{TWT(z,€) < fopt} >
Cr{TWT(,8) = fpes} = B
1<z;<n,i=12,...,n

r F ot Fk 4, k=1,2,..,n
v €Z, i=12..,n

(IIL.10)

Remark 3: By setting the value of § = 1, the (a, 3)-Cost
model with Hurwicz criterion led to an optimistic model as
follow:

min min fope
opt

Subject to:

ChA{TWT(2,6) < fope} (@) > B
1<z, <n,i=1,2,...,n

v Fag,i£k i,k=1,2,...n
v, €7, 1=1,2,...n

(IIL.11)

IV. HYBRID INTELLIGENT ALGORITHM

In this section, we will design a hybrid intelligent algorithm
to solve the (a, 3)-cost model under the Hurwicz criterion,
where fuzzy rough simulation and eagle strategy with the sine-
cosine algorithm based on local search method are used.

A. Fuzzy Rough Simulation

Since total weighted tardiness TWT'(z,§) is a fuzzy rough
variable, it will be difficult to compute the optimistic and pes-
simistic values to derive the Hurwicz criterion value by using
analytical methods. As a kind of Monte Carlo methods, fuzzy
rough simulation [12] provides an effective approximation.
The main steps of fuzzy rough simulation are given according
to [12]. Firstly, we give the simulation of the fuzzy rough
function:

Up s x — min { f|Ch {f(2,€) < [} () > B}

Generate )\, Ay, ..., Ay from A and i, g, ..., \x from A
according the measure 7. For any number v, let N(v) denote
the number ), satisfying Cr{f(xz,&(A)) <v} < B for
k=1,2,..,N, and N(v) denote the number of \; satisfying
Cr{f(xz, &) <v} > B for k = 1,2,..., N, with may be
estimated by fuzzy simulation Cr {.}. Then find the minimal
value v such that:

av.y

N(v) + N(v)

2 2V

(IV.2)

This value is an estimation of f. The process can be summa-
rized in algorithm 1:



Algorithm 1 Fuzzy Rough simulation of U;

Stepl: Generate Ai,Ao,...,Ay from A according to the
measure 7 .

Step2: Generate M\, \2,..., Ay from A according to the
measure 7.
Step3: Find

the minimal value v such that (16)

Stepd: Return v

By the similar way, we can estimate the second fuzzy rough
function which:

Us sz — max { f|Ch{f(z, &) > f} (a) > B}

At last, we obtain the estimation of the Hurwicz criterion as
follow:

(IV.3)

V=0xU +(1-0)xU, (IV.4)

B. Brief introduction to Eagle Strategy

Eagle Strategy (ES) is a two-stage optimization strategy that
was presented by [13], it mimics both the behavior and hunting
patterns of eagles in nature. Eagles forage using two factors:
the first would be random search performed by flying freely
and the second would be intensive search which is used to
catch prey when sighted. In ES’s two-part strategy, the first
stage involves exploring the search space globally through
Levy flight. The second step is employed if it finds a promising
solution; this would be known as a local optimizer (such as
hill-climbing and the downhill simplex method). One of the
many advantages of this process is that it uses a balanced
system between global search (which is generally slow) and
local search (which is much quicker). It should be noted that
another advantage is that this process is not an algorithm,
rather a methodology or strategy.

C. Brief introduction to Sine-Cosine Algorithm

The Sine Cosine Algorithm (SCA) is a population-based
stochastic search algorithm proposed by [10], it is inspired by
the behavior of the mathematical functions known as sine and
cosine. It is an optimization technique that is used to solve
complex engineering optimization problems [14], [15]. The
core mechanism of the SCA consists of two basic phases:
initialization and updating solutions. The initial population of
agent’s solutions, represented by n dimension, is randomly
generated. At iteration ¢, the position of agent — solution is
specified by X%t = [Xi’t,Xg’t,...ij{t . The solutions are
updated based on the sine or cosine function as the following
equations:

Xi’t +T1 X sin(rg) X |r3 X Pi’t —Xi"t| T4 S 0.5

X’i,t+1= ) . .
X5 4y X cos(rg) X |rg x PPt — X 74> 05
(IV.5)
_ g
rr=ax(l— ) (IV.6)

Gmam

Where a is a constant, GG,,,, iS the maximum number
of iterations and g is the current iteration. Where P! is
the destination solution, X% is the current solution, |.| is
used to indicate the absolute value. There are four main
parameters in SCA:ry, 75,73, and r4, these are all classified
as random variables. The parameter r; indicates the next
movement direction that could be in the space between the
solution destination or outside of it. In [10] the authors alter
the parameter r; according to equation IV.6 to balance both
exploration and the exploitation. The parameter ry defines how
far the movement is away or towards the destination. The
parameter r3 gives random weights for destination in order
to stochastically emphasize (r3 > 1) or deemphasize (rs < 1)
the effect of desalination in defining the distance. Finally, the
parameter 4 switches in a balanced manner between both the
sine and the cosine factors in Eq. IV.5.

D. The proposed Hybrid Intelligent Algorithm (HIA)

The eagle strategy and the Sine-Cosine algorithm were
designed to solve continuous optimization problems; it is not
possible to apply it directly to discrete problems such as TWT-
PFSP. To address the concerns mentioned previously, they
are incorporated with several methods mainly: representation,
population initialization, and generate solutions. Besides, the
fuzzy rough simulation is used the compute the fitness. All
these steps will be discussed in the following subsections.
Algorithm 2 describes the pseudo-code of the proposed hybrid
intelligent algorithm where I? is the number of rounds, and NV,
is the population size.

1) Solution representation: To properly apply ES-SCA
to the TWT-PFS problem would be through constructing a
direct relationship between the vector solution of ES-SCA and
the job sequence itself. In this paper, we will be using the
Largest-Order-Value (LOV) mechanism, which was explained
in the literature from [21], to map the ES-SCA solution
X; = [zi1,®i2,....,T;n] to job solution/permutation vector.
The basic idea of this rule is ranked X; by descending order
to obtain a sequence @; = [¢;.1,Pi2, ..., Pi,n]. Then, the job
permutation 7; is calculated by the following formula ¢; ;, = k
where the dimension k varies from 1 to n.

2) Population initialization: The initial population deter-
mines the performance of metaheuristics, especially the pro-
posed strategy ES-SCA. To construct a good initial population,
many researchers use heuristics specifically developed for the
case of the PFS problem; For the total weighted tardiness
criteria, an adapted version of the NEH heuristic, called
NEHEDD, is developed to initially sort jobs through using
the earliest due date (EDD) rule [16]. Recently [17] introduced
several tie-breaking mechanisms to NEHEDD namely :

o First tie (FT): The tie of the first occurrence.

o Last tie (LT): The tie of the last occurrence.

o Total idle time (IT1): The tie with minimum idle time
(including front delays and excluding back delays), i.e.,
IT1 =370 (ery = 3272 pug)

« Total completion time (CT): The tie with minimum total
completion time, i.e., CT = Zizl €im



Algorithm 2 The proposed algorithm for solving the («, §3)-

Cost model under Hurwicz criterion

1: Initialize the parameters and use NEHWEDD to produce
10% agents algorithm 3, and the rest of the agents are
generated randomly according to Equation.(IV.7);

2: while (R > r) do

3:  Generate a set of agents — solutions X for global
exploration using the Levy flight according to Equation
av.8);

4:  Convert each agent X; of the set X to a job permutation
m; by using the LOV rule;

5:  For each permutation, calculate the total weighted tar-
diness (TWT(x,€)) according to Equation (IV.4) using
fuzzy rough simulation (Algorithms 1);

Update the best solution obtained so far (P = X*)

7: Inner loop :

8:  Generate randomly a set of agents around this promis-
ing solution, where feasibility must be offered;

9: Carry out an intensive local search via the Sine-Cosine
algorithm

10:  Execute the local search (Algorithm 4)

1: fori=1 to NP do

12: Update the position of search agents using Equation.
av.e)

13:  end for

14 Update ry using Equation.(IV.9) and r9,r3 and 74

15:  Convert each agent X; of the set X to a job permutation
m; by using the LOV rule;

16:  For each permutation, calculate the total weighted tar-
diness (TWT(x,&)) according to Equation (IV.4) using
fuzzy rough simulation (Algorithms 1);

17:  Update the best solution obtained so far (P = X*)

18:  if (a better solution is found) then

19: Update the current best

20:  end if

21: End Inner loop

22: Update r=7+1

23: end while

24: Report the best solution as the optimal schedule

o Total earliness time (ET): The tie with maximum total
earliness time, i.e., BT = Zizl max {d; — €;m,0}
« Makespan(MS): The tie with maximum makespan, i.e., .
MS = €im
Based on advanced tests, IT1 tie-breaking mechanism [17]
lead to better results than others tie-breaking. In this paper,
the NEHWEDD with IT1 is used to generate 10% of N. The
pseudo-code is shown in Algorithm 3. The rest of 90% of N
of solutions generated randomly according to the following
equation:

Xp,j = X]’maaf _ RND() > (ijar _ X]mm)

where p = 1,2,...,. NP, j = 1,2, ..
random number between 0 and 1.
3) Generate new solutions:

av.m)

.,n , and r is a uniform

Algorithm 3 NEHWEDD heuristic
Function NEHWEDD(T' Brr1)
a : Jobs ordered by non-decreasing %,
[a1, vy ey ]
7 {1}
for £ =2 ton do
Test job «ay, in any possible position of 7
7 : Permutation obtained by inserting ¢y, in the position
of 7w which less total tardiness breaking ties according to
IT1 tie-breaking mechanism;
end for
EndFunction

where o =

a) Exploration phase using Lévy Flights: As mentioned
above, the ES is a two-stage strategy, and we can use different
algorithms at different stages. In the first stage, ES uses the
so-called Lévy flights, which represent a kind of non-Gaussian
stochastic process whose step sizes are distributed based on
a Levy stable distribution to generate new solutions. When a
new solution is produced, the following Levy flight is applied:

X! = X!+ a@ Levy(B) (IV.8)

Here, o is the step size that is relevant to the scales of
the problem generally chosen as o = 0.01. The step length
Levy()\) can be calculated by using Mantegna’s algorithm
[18].

b) Exploitation phase using SCA based local search: For
the second stage, we can use various efficient meta-heuristic
algorithms like the sine-cosine algorithm to do a strenuous
local search. We know the SCA is a global search algorithm,
but it can easily be tuned to do an efficient local search
by limiting new solutions locally around the most promising
region. As mentioned above in the parameter r; given in
equation (1) balanced the exploration and exploitation. Since,
if the ranges of sine and cosine functions are in (1,2] and
[-2,—1) then the SCA explores the search space. However,
it exploits the search space. In this paper, we proposed a
modified version of the parameter r; as follow:

log(g) )
10g(Gmaz)

In SCA, at each iteration ¢, agents update their positions
around the global optimal location, which results in a strong
local aptitude. For further improvement of computational
performance, a local search-based method is applied to the
destination agent. Such a combination provides excellent re-
sults however; the performance of the local search depends
on the neighborhood operation utilized. For the PFS problem,
there are three neighborhood operations used in the literature:
Insertion, Interchange, and Swap move. Several studies [19],
[20] show that Insert move is more efficient than both In-
terchange and Swap move. Thus in this paper, Insert is used
as the neighborhood structure (which was developed by [21]
for the proposed model). The algorithm 4 provides the local
search-based method.

r=(2-3x (1V.9)



Algorithm 4 Insert-based local search

1: Convert individual destination X jestination tO @ job per-
mutation 7; o according to the LOV rule;

2: Randomly select u and v, where u # wv; m =
Insert(m; 0,u,v);

3: Set loop=1;

4: repeat
Randomly select v and v, where v # v, m_1 =

Insert(m;, u,v);

6 if TVVT(TI',L'_l, E) < TVVT(FZ‘_l, E) then

7: Ti—1 = Ti—1;

8

9

wn

loop + +;
: end if
10: until (loop < n x (n —1))
11: if TWT(ﬂ'L,é) < TWT(TFL‘_’(),S) then
12: 3,0 = T4
13: end if

V. NUMERICAL RESULTS

In this section, we illustrate the numerical results to (i)
to demonstrate the application of the model, (ii) to test the
robustness of the proposed algorithm. We assume that there are
10 jobs and 5 machines. The processing times are addressed
by fuzzy rough variables are presented in Table 1, and Table 2
shows the corresponding due date time and tardiness penalty
cost of each job. We set 1000 cycles in fuzzy rough simulation
and the confidence levels (a, 3) = (0.8,0.9).

A. Analysis of robustness

The proposed algorithm (ES-SCA-LS) is compared with the
standard Sine-Cosine algorithm (SCA) [10]. The robustness
of both algorithms is tested with different values of two
parameters including population size and maximum iteration.
Table 3 reports the obtained computational results as follow :

e Column 1 & 2: The algorithm parameters (Npop; Gmaz)

o Column 3: The obtained objective value (I'WT') by ES-
SCA-LS and SCA

e Column 4: The relative error computed according to
equation 23 :

Vactual - Voptimal

* 100%

V.1

Voptimal
where V,p,timai represents the optimal objective value (i.e
minimum) of all objective values obtained with different

parameters and V., 1S the objective value obtained for
a given experiment with the given parameters.

It follows from columns 4 and 6 of table 3 that the error
does not exceed 14.91% and 46.00% for ES-SCA-LS and
SCA respectively which implies that the designed algorithm
is robust to the parameter settings when solving the problem
considered in this paper.

Figures 1-3 provide the convergence curves of ES-SCA-LS
for a given Npop and Gruae.

Convergence Curves - ES-SCA-LS
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B. Analysis of sensitivity

The proposed model is dependent on the values of Hurwicz
parameter 6, thus it is, therefore, useful to study the sensitivity
of the optimal objectives concerning these parameters. We will
discuss this issue using different values. Table 4 reports the
obtained optimal values as follow :

o Column 1: The confidence levels (o, )

e Column 2: The considered values of Hurwicz parameter
e Column 3: The pessimistic value

¢ Column 4: The Optimistic value

¢ Column 5: The value of Hurwicz Criterion

It follows from Table 4 and figure 4 that the pessimistic
value decreases, while the optimistic and Hurwicz values
increases as the Hurwicz parameter increases.



TABLE I

FUzZZY ROUGH PROCESSING TIMES

Jobs | Machinel | Machine2 | Machine3 | Machine4 | Machine5
Jobl (p=L,pp+1); (p— 3,p,p+3) s (p—4,p,pt4); (P=2,p,p+2); (p=L,pp+1);
p = ([50, 60], [50, 66]) = ([15,17], [13,18]) p=([11,13],[11, 15]) p = ([20, 24], [20, 25]) p = ([18, 20], [18, 23])
Job2 (b=2,p,p+2); p=5,p,p+5); (p=3.p,p+3); (p=Tp,p+17); (p=2,p,p+2);
= ([15,20], 15, 25]) L (10,43, 130,45) | p— (12598, 120.25) | p= (13356, [34,57) | p= (1719],[17. 24])
Job3 (p=6,p,p+6); (p=1,p,p+1); (p=3.p,p+3); (p=3,p,p+3); pP—=5,p,p+5);
= ([45,65],[45,70)) | p=([30,55],(30,60)) | p=([31,37],[31,40) | p = ([17,18],[17,24]) = ([80,95], [80, 100])
Job4 (P—Q,p,p+2); (p_107p7p+10); (P_5,/),P+5); (p_gap’p+3); (P—ll,p,p+11);
p = ([10, 24], [10, 30]) p = ([77,83],[77,91]) p = ([22,25], [22, 28]) p = ([44,48], [43,49]) p = ([72, 78], [69,80])
Jobs (b=2,p,p+2); (b=1,p,p+1); (p—8,p,p+8); (p—8,p,p+8); (p—30,p,p+30) ;
p = ([15,17], 15, 20]) o= ([84, 86] [82,90]) p = ([65,70], [65, 75]) p = ([48,52], [48,52]) = ([80, 95], [80, 100])
Job6 (p=1L,pp+1); (p=1,pp+1); (p=11,p,p+11); (P=5,p,p+5); (p—25,p,p+25) ;
p=([34,42],(34,45) | p=([11,15] [10,16]) = ((60,65,[58,65) | p=(129,33],[27,37)) | p= ([80,85],[77,92])
Job7 (p—4,p,p+4); (b=2,p,p+2); (p=8.p,p+8); (p=6,p,p+6); (p—6,p,p+6);
= ([19,22], [19, 24]) p = ([16,17], 16, 19]) p = ([27,29], [27, 31]) p = ([23,26], [23, 28]) p = ([29, 32], [29, 35])
Job8 (0=5,p,p+5); (p=12,p,p+12) ; (p—30,p,p430); p= (p=1,p,p+1); (p=3,p,p+3);
p = ([28,31],[28, 35]) p = ([36,39], [36,41]) ([115,120], [100, 124]) p= ([15 17] [15, 20]) p = ([19,21], [17,24])
Job9 (o—4,p,p+4); (0 =3,p,p+3); (0—12,p,p+12) 5 p = (p=5,p,p+5); (p—20,p,p+20) ; p=
p = ([28,30], 28, 32]) p = ([38,40], [35,45]) ([124,128], [124, 128]) p= ([11 12] [11,14]) ([93,102], [87,115))
Job10 (p=11,p,p+11) ; (p—15,p,p+15) s p= (b=T,0p+7); (p—25,p,p425) ; (p—10,p,p+10) ;
p = ([24,27], 23, 28]) ([114,119], [105, 121]) p = ((19,21],[19,24)) p = (191,94], [84,94)) p = ([48,52], [40, 59])

TABLE Il Convergence Curves - ES-SCA-LS
DUE DATE TIMES AND PENALTY COEFFICIENT 1100 T T T T T T T T T
1000 Npop =30 | ]
Jobs | Due date | Tardiness penalty cost Npop =50
I 468 2 900 Npop =80} 4
12 325 2 &
3 923 7 g 800 ‘ e
= 400
J4 513 4 S o0 i
J5 850 4 g '\_‘ 390
J6 690 3 =
77 602 4 g 600f w I
=
J8 350 3 2 370
19 873 3 Z s00f 360
710 245 ) I~ 140 145 150 155 16
| S S S
TABLE LI 400 1
COMPUTATIONAL RESULTS - - - - : : ‘ ‘ :
20 40 60 80 100 120 140 160 180 200
N e ES-SCA SCA Iteration
P maer T TWT Error TWT Error
100 424 14,9% 378 0.0% Fig. 3. Convergence Curve of Gyae = 200
30 150 381 3,3% 450 19,0%
200 388 5,1% 411 8,7%
100 395 | 7.0% | 552 | 460% TABLE IV
50 150 397 7.6% 763 22.5% SENSITIVITY ANALYSIS OF HURWICZ PARAMETER
200 407 10,3% 404 6,9% @ B 7 TWTop | TWTpess | TWTho
100 409 10,8% 442 16,9%
0,3 1361,0 0,0 408,3
80 150 396 7.3% 433 14,6% 05 70 121.0 124.0
0.8,0.9 : 2 d 4
200 369 0,0% 399 5,6% ( ) 07 715.0 132.0 630.1
0,9 714,0 527,0 695,3

VI. CONCLUSION

In this paper, we investigate the total weighted tardiness
permutation flow-shop problem under uncertainty. The main
contributions of this paper are discussed below. First, the
proposed model uses the fuzzy rough theory and the Hur-
wicz criterion. The fuzzy rough theory represents a powerful
alternative to other classical theories, such as random, fuzzy,

and rough. Moreover, the Hurwicz criterion is more flexible
than optimistic or pessimistic criteria. Therefore, the proposed
model can provide better theoretical directions for decision-
makers. Second, a hybrid intelligence based on a fuzzy rough
simulation and a discrete eagle strategy combined with a sine-
cosine algorithm is developed to solve the model. Furthermore,



Sensitivity Analysis - Hurwicz parameter
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Fig. 4. Hurwicz parameter sensitivity analysis

the computational experiments demonstrate that the proposed
strategy is more competitive and efficient to solve the model
than the standard SCA.
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