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Abstract—In this paper, a new fuzzy granular approach for
modeling color categories is proposed. Fuzzy granular colors
where introduced by some of the authors as a way to model color
categories with non-convex membership functions, particularly
those categories that can be defined in terms of the union of
a finite collection of sub-categories (which are very commonly
found and applied in practice). To build a granular color, an
aggregation of fuzzy colors having semantic relationships, the
so-called “granules”, is performed. In this paper we introduce
the use of Voronoi tessellations for modelling the granules,
comparing its behavior with respect to a sphere-based approach.
We illustrate the advantages of our approach with respect to
current state of the art on the basis of some experiments.

Index Terms—color modelling, fuzzy color, fuzzy color space,
human perception, image analysis

I. INTRODUCTION

Color categories are commonly used by humans when
communicating about visual perception, using for such pur-
pose linguistic terms like red, yellow, etc. On the contrary,
computers represent (precise) colors by using color spaces,
the most usual of which are tri-dimensional numerical vector
spaces, where colors are represented by numerical triplets.

Matching these two very different ways of dealing with
color is a typical example of the problem known as semantic
gap. Solving this matching is imperative in applications
where colors in images are represented as numerical three-
dimensional vectors, but at the same time there is an important
necessity of interaction with humans [1] [2] [3].

It is well known that color categories correspond to fuzzy
subsets of precise colors, since the boundaries between sets of
precise colors corresponding to color categories are fuzzy in
nature [4] [5], [6]. In order to cope with these issues, fuzzy
colors and fuzzy color spaces [7] have been proposed as a
suitable way for modelling human color categories. Since Kay
and McDaniels [8], who proposed the first color naming fuzzy
model, many others fuzzy approaches have been developed
for color modelling. A first group of techniques define
(unidimensional) fuzzy partitions on each color component
[9], [10], usually based on trapezoidal or other convex
functions. These approaches define color categories by means
of combinations of one linguistic label from each partition,
which is an important limitation regarding color naming. The
final membership degree of a precise color to such fuzzy color
categories is obtained by means of a t-norm aggregation of the
degrees obtained to each linguistic label [11], [12], which lead
to another limitation: the membership functions obtained are

always convex, which is not the case for every color category,
as different experiments have shown.

A second group of techniques intend to determine mem-
bership functions on the basis of perceptual experiments [13],
an approach that has to deal with important difficulties: they
require a large number of subjects and color stimuli, together
with specific devices under standard lighting conditions. This
leads to tedious psychophysical experiments, that limit the
representativeness of the models and the amount of color
categories that can be reasonably modelled [14].

Recently, new approaches have been proposed in which
three-dimensional membership functions are defined on the
color space domain on the basis of precise colors repre-
senting prototypes of the color categories being modelled.
Membership functions are then obtained taking into account
the distance to the different prototypes, like in [15], who
employs a linear function of the Euclidean distance; as a
consequence, alpha-cuts of categories are spheres centered in
the corresponding prototypes. A different approach has been
recently proposed in [7], inspired in conceptual spaces [16],
[17]. In this proposal, a Voronoi tessellation of the color space
is obtained for the collection of prototypes, representing the
0.5-cut of the different fuzzy colors; the rest of alpha-cuts
are obtained by scaling and interpolation. Though providing
convex membership functions, they are less limited in the
sense that they allow to obtain membership functions that
cannot be obtained by combination of partitions in each
component of the color space.

However, sometimes it is the case that the membership
function corresponding to a certain color category is not
convex. One usual case is that of color categories that are
naturally composed of the union of a collection of sub-
categories related by IS-A relationships. As an example, the
precise colors in the category “dark red” are also in the
“red” category, being possible to define the fuzzy set defining
“red” as the union of the fuzzy sets for “dark red”, “light
red”, etc. Even when each subcategory is modelled by a
convex fuzzy set, the union of their membership functions
can yield a suitable non-convex membership function for
the global category “red”. To address this problem, in [18]
the authors introduce the notion of granular fuzzy color,
defined as aggregation of basic ones (the so-called granules).
The proposal builds a fuzzy color from a set of prototypes
associated with granules, where each granule corresponds to
a subcategory of the color category, and the membership
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function is defined on the basis of the distance to those
prototypes.

To model each granule, a sphere-based membership function
is proposed in [18]; it is a simple approach, although it
allows complex models thanks to the aggregation process.
However, the sphere-based approach has several drawbacks.
Firstly, it does not guarantee to obtain connected fuzzy colors,
that is, fuzzy colors with a topologically connected core
(instead, as result of the union, the core could be composed
of disconnected components); this could generate models not
consistent with human color perception (with significative
changes in the membership degree of crisp colors perceived
as similar by humans) and, consequently, it could introduce
artifacts in color-based filtering or analysis. On the other hand,
the covering capacity is limited in the sphere-based approach;
some areas of the color space, compatible to some extent
(having membership greater than 0) with the color category,
may not be covered by sphere-based functions.

In this paper we propose to face the previous limitations by
introducing polyhedron-based functions (instead of the sphere-
based ones) in the granule modelling. Specifically, an approach
based on a Voronoi tessellation of the color space is proposed.
This type of functions was introduced by the authors for fuzzy
color modelling in the non-granular case [7]; in this paper we
propose to extend its use to the granular case.

The paper is organized as follows. Section II introduces the
notion fuzzy color and granular fuzzy color, and proposes a
polyhedron-based definition to model granular fuzzy colors.
In Section III a methodology to build granular fuzzy colors
according to the previous definitions is presented. Some exper-
imental results are shown in Section IV. Finally, conclusions
and future work are summarized in Section V.

II. DEFINING GRANULAR FUZZY COLORS

Let Γ be a crisp color space. A fuzzy color is a
computational representation of a color term defined as [7]:

Definition II.1. A fuzzy color C̃ is a linguistic label whose
semantics is represented as a normal fuzzy subset of colors.

As explained in [7], imposing the use of normal membership
functions implies that for each fuzzy color C̃ there is at least
one crisp color r such that C̃(r) = 1.

A particular case of fuzzy color is the so-called granular
fuzzy color, which is defined as the union of other fuzzy
colors; formally [18]:

Definition II.2. A fuzzy color C̃ is said to be granular iff
there exists a finite set of fuzzy colors {C̃1, . . . , C̃n}, called
granules, such that

C̃ =

n⋃
i=1

C̃i (1)

with the union performed on the corresponding membership
functions via a t-conorm

⊕
.

In this paper we will focus on granular approaches to fuzzy
color modeling, which have shown to be more suitable than
non-granular ones [18]. To define granular fuzzy colors, three-
dimensional membership functions on the color space domain
will be proposed. Specifically, we will define membership
functions on the basis of parametric functions of the distance
to prototypes [7], [15]. For humans is natural the use of
prototypes to describe basic color categories; in fact, color
naming techniques [19], [20] provide prototypes associated to
color categories on the basis of human color perception.

Let pi ∈ Γ be a crisp color prototype and let λi ∈ Rki
be a set of ki parameters related to the kind of membership
function used. Let P = {p1, . . . ,pn} and Λ = {λ1, . . . , λn}
with n ≥ 1. We define a granular fuzzy color C̃ as:

C̃(c;P,Λ) =
⊕

1≤i≤n

C̃i(c;pi, λi) (2)

with
⊕

being a t-conorm, and where

C̃i(c;pi, λi) = f(‖c− pi‖;λi) (3)

is a fuzzy color calculated from the distance to the prototype
pi by using a real parametric function. There are many
different types of parametric functions f that can be used
for defining granular colors. In this paper we will analyze
two approaches: the sphere-based one (section II-A) and the
polyhedron-based one (section II-B).

About the t-conorm in Eq.(2), in this paper we propose to
use the bounded-sum defined as:⊕

(a1, . . . , an) = min(1, a1 + . . .+ an) (4)

The motivation behind the use of the bounded sum is that
it maximizes the result of the union of granules, giving us
the maximum possible cohesion for the resulting granular
color. Whilst other t-conorms may provide larger values, it
is commonly recognized that beyond the bounded sum, the
values provided by other t-norms are more drastic and hence
less acceptable in practice.

A. The sphere-based case

As a first approach, the membership function bellow is used
to define a granule [18]:

C̃i(c;pi, ai, bi) = f(‖c− pi‖; ai, bi) (5)

where the function f , with parameters λ = (a, b), is defined
as [15]:

f(x; a, b) =


1 x < a,
b−x
b−a a ≤ x ≤ b,
0 x > b

(6)

In this function f , the parameter a represents the radius
of the core sphere, that is, the sphere centered around the
prototype pi whose points have membership degree 1 to the
color category. The parameter b is the radius of the support
sphere, that is, the sphere whose points have membership
degree greater than 0 to the color category (any point outside



Fig. 1. Sphere-based membership function. The parameter ai represents the
radius of the sphere associated to the core, while the parameter bi represents
the radius of the sphere associated to the support (see Eq. 6).

this sphere will have membership degree 0). Membership
decreases linearly with the distance to pi when a ≤ x ≤ b,
corresponding to points between the surfaces of both spheres.
Figure 1 shows graphically the sphere-based membership
function, with both the sphere associated to the core and the
support. A 2D view has been used for a better understanding,
although it is equivalent in 3D.

B. The polyhedron-based case

As a second approach, for each granule a membership
function based on a Voronoi tessellation of the color space
is proposed. The use of Voronoi cells was introduced in [7]
for fuzzy color modelling in the non-granular case; in this
paper we propose to extend its use to the granular case.
Specifically, the following membership function is proposed
for implementing Eq. 3:

C̃i(c;pi,Vi) = f(‖c− pi‖;Vi) (7)

where Vi = {V i1 , . . . , V iq }q≥2 is a set of volumes in R3, with
V ik ⊂ V ik+1 ∀1 ≤ k ≤ q − 1, corresponding to some α-cuts
of C̃i plus its support. In particular, let Ωi = {α1, . . . , αq} ⊂
(0, 1] with 1 = α1 > α2 > · · · > αq = 0 be a set of levels, so
that V ik corresponds to the αk-cut of C̃i for 1 ≤ k < q (hence,
V i1 is the core) while V iq is the support. From now on, let Sik
∀1 ≤ k < q be the surface that limits the volume V ik ∈ Vi
and let Si = {Si1, . . . , Siq}.

In Eq.7, we define f : R → [0, 1] as a piecewise linear
function with knots {xi1, . . . , xin} verifying f(xik) = αk ∈ Ωi.
These knots are calculated on the basis of the intersection
points between the surfaces in Si and the line pic that joins
pi and c as follows: Let sij = Sij ∩ pic be the intersection
point between the surface Sij and the segment pic; then, we
define xik = ‖pi − sk‖ as the Euclidean distance between pi
and sk. Based on the above, the function f is defined as:

Fig. 2. Polyhedron-based membership function. The parameter Si
k represents

the the surface that limits the volume V i
k ∈ Vi, with V 1

k being the core and
V q
k being the support. The points sij are the intersection points between the

surfaces and the line pic, and the knots xik of the piecewise function are
define as the Euclidean distance between pi and sik (see Eq. 8).

f
(
x;Vi

)
=


1 x ≤ x1
lik+1
k (x) xik < x ≤ xik+1

0 x ≥ xq
(8)

with lik+1
k (x) being a linear interpolation given by:

lik+1
k (x) = αk+1 + (αk − αk+1)

xik+1 − x
xik+1 − xik

(9)

This modelling has the following interpretation when
defining a certain granule C̃i ∈ C̃ with prototype pi: the
parameter V i1 represents the volume centered around the
prototype pi where colors are fully representative of the color
category (having membership 1). The parameter V iq is the
volume centered around pi containing all colors which are
compatible to some extent (having membership greater than 0)
with the color category. Finally, membership decreases linearly
with the distance to pi when x ∈ V ik and 1 < k < q.

Figure 2 shows graphically a 2D view of the the polyhedron-
based membership function (in this example, three volumes
are considered). Note that, as a particular case, if the volumes
in Vi are modeled by spheres and we consider only two of
them by defining Vi = {V i1 , V i2 }, this representation would be
equivalent to sphere-based scheme shown in II-A.

III. BUILDING GRANULAR COLORS

As we introduced in the previous section, a granular color
is defined on the basis of a predefined set of color prototypes
P and a set of parameters Λ (see Eq. 2). The lambda
parameters will depend on the approach used (sphere-based or
polyhedron-based); In this section we will define the procedure
to obtain these lambda parameters in each case.



Fig. 3. Example of how a sphere-based granule is built (2D view). In this
case, αi = 0.2, βi = 0.9 and the set of prototypes employed to limit the
growth of the granule is P−i = {np1, ...,np5,pj}.

In both approaches, the starting point is the set of color
prototypes P . This set is, in fact, a set of positive prototypes
in the sense that they are fully representative of the color term
modelled by the fuzzy color (i.e., their membership to the
fuzzy color is 1.0). To emphasize this feature of P , from now
on we will note it as P+ = {p1, . . . ,pn}. In addition, for the
learning process we will also consider prototypes representing
the complement of the color term we want to model. Let
P− = {np1, . . . ,npm}, with m ≥ 1, be a set of such negative
prototypes, satisfying P+∩P− = ∅. Negative prototypes can
be obtained in several ways. Particulary, when color categories
are disjoint in semantics, the negative prototypes for a certain
color category include the positive prototypes for the rest of
color categories.

A. The sphere-based case

In the sphere-based case, the lambda parameters λi =
(ai, bi) are related to the parameters of the function defined
in Eq.(6), that is, the radii of the core and the support. To
estimate these parameters a simple procedure will be applied
[18]: to expand the sphere associated with the support of each
C̃i until it reaches some negative prototype (see Fig. 3). In
this way, we can see the negative prototypes as the “limiters”
of the growth of the support of the granular color C̃ (given
by the union of the individual supports).

Let Di be the distance from pi to its nearest point in a the
set P−i = P−∪P+\{pi}. Note that P−i is the set of prototypes
employed to limit the growth of the granule C̃i ∈ C̃, that
include both the negative prototypes of C̃ and the positive
prototypes of the rest of granules that form C̃. Then, λi is
obtained as follows [18]:

λi = (ai, bi) = (αiDi, βiDi) (10)

with αi ∈ [0, 1) and βi ∈ (0, 1] being scale factors for the core
radius and the support radius, respectively, satisfying αi < βi.

Figure 3 shows a example where a sphere-based granule
C̃i ∈ C̃ is built (a 2D view has been used). In this example, the

Fig. 4. Example of how a polyhedron-based granule is built (2D view). In
this case, the set of centroids is P = {np1, ...,np9,pi,pj ,pk,pl}, and
the parameters λ = 0.5 and λ′ = 1.5 are used to scale the Voronoi cell.

set of prototypes employed to limit the growth of the granule
is P−i = {np1, ...,np5,pj}, and the values αi = 0.2 and
βi = 0.9 have been used to calculate the core and support
radii.

B. The polyhedron-based case

In the second approach, the lambda parameters λi = Vi =
{V i1 , . . . , V iq }q≥2 are related to the parameters of the function
defined in Eq.(7), that is, a set of volumes corresponding
to some α-cuts of C̃i plus its support. In this paper, we
have focused on the case of convex surfaces defined as a
polyhedrons, which have shown to be a suitable approach for
color modelling in the non-granular case [7].

To obtain V ik ∈ Vi, in this paper we propose to calculate
a Voronoi tessellation [21] of the metric space defined by
the color space Γ plus the Euclidean distance (see Fig. 4);
as centroid points, we propose to use the set of colors
P = P+∪P− given by the union of the positive and negative
prototypes. In this approach, a Voronoi tessellation give us a
partition of the color space Γ into a collection of 3D volumes
(the so-called Voronoi cells), one for each prototype, such
that each cell contains those crisp colors that are closer to
the associated prototype than to any other. The boundaries of
the Voronoi cells are convex polyhedrons whose points are
equidistant from two (or more) prototypes. From now on, let
V Cp be the Voronoi cell associated to the prototype p ∈ P .

From the Voronoi tessellation, in this paper we propose to
obtain the set of volumes Vi of each granule C̃i ∈ C̃ by
means of scaled versions of the cell V Cpi associated to the
positive prototype pi. Let ∆o,s(V ) be the uniform scaling of
the polyhedron V with respect to the point o and with scale
factor s; then, we define V ik = ∆pi,s

i
k(V Cpi) with sik being

the scale factor associated to V ik .
In the case of s = [1, 1, 1], that is, if no scaling is performed,

it seems natural to assume that each Voronoi cell V Cpi is
related to the 0.5-cut of each granule C̃i: this interpretation is
based on the fact that all the points in a Voronoi cell boundary



are equidistant from, at least, two prototypes in P; in addition,
it is consistent with the natural criteria of assigning degrees
greater or equal than 0.5 to crisp colors that are closer to the
cell prototype than to other prototypes. Usually, this 0.5-cut
will be one of the volumes employed in the definition of the
granule, that is, V Cpi = V ij ∈ Vi with 1 < j < q.

On the basis of the scaling operator ∆o,s, the volume
corresponding to the core is calculated by scaling V Cpi as
V i1 = ∆pi,sλ(V Cpi), using as scale factor sλ = [λ, λ, λ],
with λ ∈ [0, 1) (i.e, we are “reducing” the Voronoi cell).
On the other hand, the volume corresponding to the support
is calculated as V iq = ∆pi,sλ′ (V Cpi), using as scale factor
sλ′ = [λ′, λ′, λ′] with λ′ ∈ (1, 2] (i.e, we are “enlarging” the
Voronoi cell). The condition 1 ≤ λ + λ′ ≤ 2 is imposed for
guaranteeing that the support of any granule C̃i ∈ C̃ has empty
intersection with the core of any other granule C̃j ∈ C̃ with
i 6= j.

Finally, the volume V ik ∈ Vi corresponding to any α-cut of
the granule C̃i can be obtained by scaling V Cpi with scaling
factors values between λ and λ′. Therefore, for any α-cut, the
scaling parameter λα must satisfy that λ1 = λ, λ0.5 = 1, and
λ ≤ λα ≤ λβ ≤ λ′ ∀α > β.

Figure 4 shows a example where a polyhedron-based
granule C̃i ∈ C̃ is built using as centroid points the set
P = {np1, ...,np9,pi,pj ,pk,pl}. The Voronoi tessellation
is shown with grey lines, and the Voronoi cell V Cpi associated
to pi is drawn in blue. From this Voronoi cell, scaled version
are calculated to obtain the core using a scale factor λ = 0.5
(drawn in red) and the support by means a scale factor λ′ = 1.5
(drawn in orange). In the bottom-right of the figure, 3D view
of the granule is shown, where the three volumes associated
to the core, 0.5-cut and support are plotted.

C. Granular fuzzy color space

In practical applications it is usual to work with different
color terms, arising for this purpose the concept of fuzzy
color space [7]. A fuzzy color space Γ̃ = {C̃1, . . . , C̃m} is
a collection of fuzzy colors defined on a certain crisp color
space Γ. In our case, each C̃k ∈ Γ̃ is a granular fuzzy color
made up of the union of color granules. Let C̃ki ∈ C̃k be the
i-th granule of the granular fuzzy color C̃k ∈ Γ̃.

IV. RESULTS

In this section, the behavior of the granular fuzzy colors is
analyzed. For illustrative purposes, the color space RGB plus
the Euclidean distance will be used in the examples of this
section, although the proposal could be extended to any other
Euclidean space.

A. The ISCC-NBS color system

As we have mentioned, both our methodology and some
literature proposal are based on a collection of crisp color
prototypes. In the following experiments, the color names and
prototypes provided by the well-known ISCC-NBS system
[22] will be used. The core of the ISCC-NBS system is a set
of 13 basic color categories, made up of 10 hue names (pink,

(a) (b)

Fig. 5. Prototypes provided by the ISCC-NBS system. (a) The 13 basic color
categories. (b) The 267 extended color categories

(a) Sphere-based non-granular (b) Voronoi-based non-granular

(c) Sphere-based granular (d) Polyhedron-based granular

Fig. 6. 3D view of the support for the “red” color using different approaches.
In the granular case, 6 granules are used.

red, orange, brown, yellow, olive, yellow-green, green, blue,
violet, purple) and three neutral ones (white, gray, and black).
These basic categories are extended into a more descriptive set
of 267 color terms by introducing a small set of adjectives.
Fig. 5 shows the ISCC-NBS system prototypes for the basic
and complete sets (in the RGB cube).

From now on, let BP = {pi}1≤i≤13 be the set of ISCC-
NBS basic prototypes, and let CP = {pi}1≤i≤267 be the
complete set of ISCC-NBS prototypes. Notice that for each
prototype in BP (associated to a basic category) there is
a related subset in CP (corresponding to a more detailed
description of the category). From now on, let CP k ⊂ CP
be the subset of prototypes in CP associated to the k-th basic
color category.

B. Building the fuzzy color spaces

In our experiments, the 13 basic color categories of the
ISCC-NBS system are modelled by means of different ap-
proaches. The following fuzzy color spaces will be analyzed:



(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 7. Example of a natural image with balloons in the sky. (a) Original
image. (b)-(i) Mapping to “blue” using different approaches: (b)-(c) Sphere-
based non-granular, (d)-(e) Polyhedron-based non-granular, (f)-(g) Sphere-
based granular and (h)-(i) Polyhedron-based granular.

1) Non-granular fuzzy color spaces: Within the approaches
based on defining non-granular convex fuzzy colors, the
sphere-based modelling [15] and the Voronoi-based proposal
in [7] will be analyzed. In both cases, the single positive
prototype pk ∈ BP is required for defining the k-th color
category of the ISCC-NBS basic set, together with the set of
negative prototypes BP\{pk}.

In the sphere-based case, the technique described in section
III-A is applied for estimating both the core and support radii
using α = 0.25 and β = 1. For the Voronoi-based case, the
methodology proposed in [7] is used together with the software
developed in [23]. Fig. 6 shows a 3D view of the red color
using the sphere-based approach (Fig. 6a) and the Voronoi-
based one (Fig. 6b); in both cases, the support of the fuzzy
color is plotted (in the sphere-based view, the core is also
shown).

2) Granular fuzzy color spaces: For building granular
fuzzy color spaces, the proposal in section III is followed.
For each granular fuzzy color C̃k modelling the k-th color
category of the ISCC-NBS basic group, a set of positive
prototypes P+

k , together with a set of negative ones P−k ,
are used. In our experiments, we use as positive prototypes
the ones corresponding to the modifiers moderate, strong and
vivid from the set CP k, that is, the subset of prototypes in
the ISCC-NBS complete set associated to the k-th basic color
category for the given modifiers; and as negative prototypes
P−k = BP\{pk}, with pk ∈ BP , that is, the prototypes from
the ISCC-NBS basic set corresponding to all color categories
except the k-th one.

Fig. 6 shows a 3D view of the red color using the sphere-
based granular approach (Fig. 6c) and the polyhedron-based
one (Fig. 6d). The support of each granule is plotted, being the
support of the granular fuzzy color the union of the granule
ones

C. Natural image examples

In this section, a qualitative analysis of the proposed
model with respect to other approaches is performed. For this
purpose, the techniques described in IV-B are tested on natural
images with high variability in color tonalities.

Fig. 7 shows an example of a natural image of balloons
where mainly three colors can be labeled: “blue” (both the
blue balloon and the sky), “yellow” and “white” (the clouds).
Two relevant points stand out in this example: on the one hand,
there are different subcategories of blue (corresponding to the
balloon and the sky) which are related by an IS-A relationship;
on the other hand, there is a lot of variation within the same
hue due to the shape of the balloons and the light reflection
on their surfaces.

In order to compare the fuzzy techniques described in
IV-B for color modelling, Fig 7(c)-(j) shows the mapping of
the original image to the fuzzy color “blue” using several
approaches. To compute this mapping, the membership degree
of each pixel to the fuzzy color “blue” is calculated. Two
images are shown: one in grey levels, where white indicates
maximum membership degree and black indicates membership



0, and other in color, where the membership degree is used as
transparency degree (α-channel) in the original image. Note
that the membership 0 corresponds to maximum transparency
and, therefore, shows the background color that, in this case, is
the white; on the other hand, membership 1 corresponds with
non-transparency and, therefore, shows the original color. The
color mapping allows us to see the colors “selected” to some
degree by the model, so it is expected that it shows the “blue”
areas of the image.

It is observed that sphere-based non-granular approach
(Fig. 7(b)-(c)) collects part of the blue balloons, but nothing
from the sky. About the polyhedron-based non-granular
approach (Fig. 7(d)-(e)), it captures a large part of the blue
balloons, but not their upper area (corresponding to lighter blue
shades), and it practically does not capture the blue of the sky
(only the top, but with very low membership degrees around
0.2). This behavior of the non-granular approaches is because
the state of the art approaches model color categories without
considering subtypes of tonalities (only a prototype is used for
each category). On the other hand, it is observed that granular
approaches improve the non-granular ones. In the case of the
sphere-based granular approach (Fig. 7(f)-(g)), it collects both
the areas of the blue balloons and the sky, although it does
not fit well the blue shades of the top of the balloons, and
the membership degrees of the sky are lower than 0.7 in
all the pixels. About the polyhedron-based granular approach
proposed in this paper (Fig. 7(h)-(i)), it reflects the different
types of blue in its different degrees both in the balloons and
the sky. First, the blue of the sky is captured almost entirely;
second, the blue pixels of the balloon are also selected with a
high membership degree, including the different subcategories
of “blue”, like “light blue”, “deep blue” or “pale blue”, among
others.

Fig. 8 shows another example with flags waving in the
wind. The most interesting aspect of this image is the variety
of tonalities generated by the waving of the flag, emerging
different shades of red yellow, blue and white. Focusing our
analysis on the colors inside the flags, a mapping to the fuzzy
colors “red” is performed in both images. First, it is observed
in Fig. 8(c)-(f) that non-granular approaches are not able to
collect the variations in shades, especially in the dark areas
corresponding to the folds of the flags. They work well in
the cases of “vivid red” regions, but have problems with
shadow areas corresponding to “deep red” or “dark red”.
This is observed more clearly in the zoom shown at the
bottom, where non-granular techniques leave “holes” (i.e.,
they give zero or very low membership degrees to many red
pixels). On the other hand, Fig. 8(g)-(j) shows that the granular
approaches captures all the red pixels, although they differ in
the membership degree assigned in each case. In the sphere-
based case (Fig. 8(g)-(h)), the degrees are low in certain areas,
which indicates that the spheres do not adequately cover the
color space corresponding to those shades of red. On the
contrary, the polyhedron-based approach (Fig. 8(i)-(j)) gives
high membership degrees to almost all the red pixels; the
reason is that polyhedra allow to cover more accuracy the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l) (m) (n)

Fig. 8. Example of a natural image with flags waving. (a)-(b) Original images.
(c)-(j) Mapping to “red” using different approaches: (c)-(d) Sphere-based non-
granular, (e)-(f) Polyhedron-based non-granular, (g)-(h) Sphere-based granular
and (i)-(j) Polyhedron-based granular. (k)-(r) Detail of the lower area of the
image Fig. 8(a) using the four approaches.



color space areas corresponding to different shades. This is
observed more clearly in the zoom shown at the bottom.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, granular fuzzy color has been analyzed to rep-
resent color categories. The proposal introduces polyhedron-
based functions in the granule modelling. Specifically, from
a set a prototypes, granule membership functions have been
defined on the basis of the distance to those prototypes; for
this purpose, a Voronoi tessellation of the color space has been
performed, with the Voronoi cells representing the 0.5-cut of
the different granules, and the rest of alpha-cuts obtained by
scaling and interpolation. This approach allow us to consider
IS-A relationships between color categories, defining color
terms (for example, “red”) by means of related subcategories
(“vivid red’, “pale red’, “dark red’, etc.). The goodness of the
polyhedron-based approach has been analyze with respect to
current state of the art; specifically, it has been shown that it
improves the sphere-based granular approach. The experiments
carried out show that polyhedron-based approach provides a
better covering of the color space than the sphere-based one;
in addition, it guarantees to obtain connected fuzzy colors, that
is, fuzzy colors with a topologically connected core (which are
consistent with the human color perception).

As feature work, we shall use granular colors in different
applications going from color image description to color based
image retrieval.
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