
TSSweb: a Web Tool for Training Set Selection
Giovanni Acampora and Autilia Vitiello

Department of Physics ”Ettore Pancini”
University of Naples Federico II

Naples, Italy
{giovanni.acampora, autilia.vitiello}@unina.it

Abstract—Supervised learning methods aimed at performing
precise predictions by learning from labeled training data. Unfor-
tunately, training data can contain noisy or wrong information,
specially when they come from real-world applications. In this
scenario, applying a so-called training set selection procedure
on data can lead to improve the performance of the supervised
learning methods used for classification or regression tasks. In
literature, several training set selection techniques have been pro-
posed, but, to the best of our knowledge, few software tools imple-
ment this procedure. Moreover, all of them require programming
capabilities or software package installation what makes their use
difficult for people without specific computer skills. This paper
proposes the first web-based tool, named TSSweb, for performing
an accurate selection of the training instances. Thanks to its web
nature, TSSweb enables all researchers, coming from several and
heterogeneous scientific backgrounds, to reduce own datasets so
as to improve their analysis and reduce the execution time of
their supervised learning models. As shown in the experimental
session, TSSweb produces reduced datasets with a good quality
as well as being user-friendly.

I. INTRODUCTION

In the machine learning area, supervised learning methods
aimed at building mathematical models based on sample data,
known as training data, in order to perform predictions within
classification or regression problems. Unfortunately, in many
real-world applications, training data can contain noisy or
wrong information and also the performance of best supervised
learning methods could worsen when they deal with these
data [1]. Training Set Selection (TSS) [2] represents a suitable
and consolidated approach to face these problems. Precisely,
TSS consists of a preprocessing technique that selects only
the relevant dataset instances before performing training for
classification or regression tasks [3]. Thanks to the computa-
tion of a reduced training dataset including the most adequate
instances, TSS techniques achieve a twofold benefit: on one
hand, the performance of the supervised learning methods can
be improved, while, on the other hand, the execution time can
be decreased.

In literature, there are several approaches for addressing
the TSS problem as described in [4]. However, the most
part of them do not provide software to enable researchers
to run the proposed procedure. Among the software, it is
possible to count packages in Java1 and R2 languages such
as those provided in [5] [3]. However, these approaches are
usable only by people with programming skills and, typically,

1https://www.java.com/it/
2https://www.r-project.org/

researchers far from computer science area do not have these
capabilities. To address this issue, one of the most known
tools for machine learning, namely KEEL [6] [7] [8], provides
a graphical interface to make machine learning tasks such
as the training set selection more simple. However, this tool
works after performing some installation activities including
the Java Virtual Machine set up and, sometimes, people are
not practical and confident with these installation procedures.

Starting from these considerations, this paper proposes the
first web-based tool, namely TSSweb, aimed at performing
the TSS procedure in an easily way regardless from the
computer skills of users. In detail, the implemented procedure
is a so-called wrapper training set selection mechanism, i.e.,
it requires the use of an embedded supervised method to
detect the most adequate instances to compose the reduced
training dataset. In other words, the quality of the selected
instances is determined by the performance measure that a
supervised approach obtains when these instances are used to
train it. In this work, the best performance value is searched
through the application of an evolutionary algorithm, namely
a genetic algorithm. The proposed TSS method handles both
classification and regression problems. Hence, TSSweb allows
users to run the TSS method by using both classifiers and
regressor methods. In particular, the classifiers included in
TSSweb are: the Linear Discriminant Analysis (LDA), the K-
nearest neighbour (KNN), the Support Vector Machine (SVM),
the Multi-Layer Perceptron (MLP) and the Decision Tree
(DT). As for regressors, TSSweb includes the Linear Regressor
(LR) and the regression version of the K-nearest neighbour
(KNN-R), Support Vector Machine (SVM-R), the Multi-Layer
Perceptron (MLP-R) and the Decision Tree (DT-R).

TSSweb is accessible to everyone regardless from their
computer skills thanks to a user-friendly web interface. At
the same time, it produces good reduced datasets as shown in
the wide experimental session where two quality indicators are
used for the evaluation. In detail, the first one determines the
goodness of the reduced dataset in representing the original
dataset, whereas, the second one studies the efficacy of the
proposed TSS method with respect to two baseline approaches.

The remaining of the paper is organized as follows. Section
II describes the TSS problem and its formulation as an
optimization problem to be maximized. Section III is the core
of the paper where the proposed tool is described in a detailed
way. Before concluding in the Section V, the experimental
session and its results are reported in the Section IV.

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

Fig. 1: TSSweb architecture

II. TRAINING SET SELECTION PROBLEM

The Training Set Selection (TSS) is a pre-processing method
used to select relevant instances in training data before ap-
plying a supervised method. TSS is very useful in many
real-world applications, where datasets can contain noisy or
wrong information that make difficult the classification or
regression also for the best methods. Formally, let TR be the
original training set composed of n instances. Each instance
Ii is a pair (xi, yi) with i = 1, . . . , n, where xi defines an
input vector of attributes and yi defines the corresponding
class label [3]. Each input vector contains m input attributes
that are quantitative or qualitative information that describe
the corresponding instance. The goal of any TSS technique
is to produce a set of instances S ⊆ TR to be used to
train a supervised learning method capable of predicting new
instances with the same or higher quality of the same learning
method trained with the original training data TR. Hence,
it is possible to define the TSS problem as an optimization
problem. Let us consider TR be the original training set and
ΛTR be the set of all possible subsets S of TR, the TSS
problem can be formulated as below:

max y = f(S) with S ∈ ΛTR (1)

where f : ΛTR → R is defined as follows:

f(S) = eval(TR, S) with S ∈ ΛTR (2)

where eval is a function that computes the quality (in per-
centage) of the prediction performed by a supervised learning
method by considering TR as testing set and S as the training
set. The cardinality of the set S should be smaller than the
cardinality of the set TR in order to reduce the supervised
learning method time complexity. The amount of reduction of
S with respect to TR is referred to as reduction rate. Formally,

red(TR, S) =
|TR| − |S|
|TR|

· 100 with S ∈ ΛTR (3)

where red is a function that computes the reduction rate in
percentage of the set S with respect to the original set TR.

In literature, there are several training set selection methods
and they are categorized in filter and wrapper approaches [9].
The filter methods use general criteria to select the instances
regardless of the supervised method that will be applied.
Instead, the wrapper methods use a complete computation of
the supervised method in order to select the most suitable
instances. Hence, typically, filter methods are faster but less
accurate with respect to wrapper methods. Since the compu-
tation time of the training is not an issue for TSSweb which
will be run on a powerful server and send results also in an
asynchronous via by email, TSSweb implements a wrapper
training set selection mechanism. More details are given in
the next section.

III. TSSWEB

TSSweb is a web-based tool that permits 1) to perform a
training set selection procedure on a given dataset by using a
set of user’s inputs, 2) to obtain the corresponding reduced
training dataset; 3) to display the quality of the selected
supervised method trained with the reduced dataset, if a test
dataset is given in input; 4) to compare the obtained quality
with two baseline approaches. As aforementioned, TSSweb
implements a wrapper training set selection procedure, i.e.,
the selection of the most suitable instances is based on the
computation of an embedded supervised learning method and
the quality that it achieves. In this work, the proposed training
set selection exploits the evolution of a genetic algorithm
to search the best subset of instances. The computational
effort of this procedure is given by the number of solutions
evaluated. The TSS procedure addresses both regression and
classification problems. In other words, the dataset uploaded
to be reduced can contain both a numerical and categorical
target variable. TSSweb is accessible by means of any web
browser and makes available a user-friendly interface where it
is possible to fill a form with all necessary inputs. Once the
user submits the form, TSSweb manages the request of the
user thanks to the architecture displayed in Fig. 1. In detail,
the web browser contacts the web server using the HTTP
connection over Internet. In turn, the web server receives the

Fig. 2: TSSweb interface

request and calls a Common Gateway Interface (CGI) script.
The CGI script performs the training set selection procedure on
the given dataset by using the other user’s input information.
Then, it builds a HTML page with the dynamically obtained
results that will be displayed to the user. Moreover, as well
as memory resource, the CGI script uses other hardware
resources of the web server such as the email server SMTP in
order to send results to user’s email address, too. Hereafter, a
description of the the two tiers of the TSSweb architecture is
given.

A. Front-end tier

TSSweb is accessible by means of any web browser at the
following link: http://quasar.unina.it/trainingSetSelection.html.
The graphical web interface, shown in Fig. 2, allows the
users to introduce all inputs necessary to run the training set
selection procedure implemented on server-side. Precisely, the
inputs of the form include:

• the path of the file containing the original dataset to be
reduced. Thanks to this information, the file is uploaded
and processed on server-side;

• the percentage of reduction thanks to which the number
of instances that will compose the reduced dataset is
computed. The value of this percentage ranges from 1%
to 99%;

• the computational effort representing the effort used to
perform the task of the TSS procedure. This value ranges
from 102 to 106 and it corresponds to the number of
solutions evaluated before giving in output the most
adequate reduced dataset. The higher the computational
effort, the longer is the time that the user should wait
to obtain the results. On the other side, the higher the
computational effort, the results will be better. For this
reason, this parameter is left to the user;

• the choice of the task between classification and re-
gression. Indeed, TSSweb manages datasets whose the
target variable is numerical (in the case of regression) or
categorical (in the case of classification). This information
is necessary to run different supervised learning methods
according to the task;

• the supervised learning method to be used to select the
most adequate instances. It is possible to select among
five methods for classification and as many methods for
regression;

• hyper-parameters of the selected supervised learning
method. In detail, it is possible to insert the following
information for each supervised learning method.

– K-nearest neighbour: the K value (from 1 to 11)
both in the classification and regression case;

– Support Vector Machine: the C value (from 10−6

to 105), the tolerance error (from 10−7 to 0.1), the
maximum number of iterations (from 1 to 104) and
information about the kernel both in the classification
and regression case. Among kernels, it is possible to
select the linear, the polynomial or the gaussian one.
Then, for the polynomial kernel it is possible to set
the degree (ranging from 1 to 10), whereas, for the
gaussian one it is possible to set the gamma value
(ranging from 10−6 to 105);

– Multi-layer perceptron: the number of hidden lay-
ers (from 1 to 5), the number of neurons for the
hidden layers (from 1 to 100), the tolerance error
(from 10−7 to 0.1), the maximum number of iter-
ations (from 1 to 104) and the learning rate (from
10−6 to 104) both in the classification and regression
case;

– Decision Tree: the maximum depth (from 1 to 500)
and the criterion to measure the quality of a split
(gini and entropy in the classification case and the
Mean Squared Error (MSE) and the Mean Absolute
Error (MAE) in the regression case);

– Linear Discriminant Analysis and Linear regres-
sion: no hyper-parameters are necessary.

• the path of the file containing the test dataset (optional).
This file is used to test the performance of the selected
supervised learning method trained by using the reduced
dataset and to compare the results with two baseline
approaches as described in Section IV;

• the user email address to receive results in an asyn-
chronous way.

Fig. 3: TSSweb report web page

Once the request is submitted, the web server handles the
request and computes a response in the form of a web page.
The displayed web page contains a report of the training set
selection procedure. More precisely, this web page, shown
in Fig. 3, allows users to download the reduced dataset and
to visualize some preliminary results related to its quality.
Moreover, since the training set selection procedure could
work also for several minutes, TSSweb uses the user’s email
address given in input to send him/her the results of the
procedure. So, it is not necessary that users wait the results
appear on web page. The technologies used to implement the
graphical interface on front-end tier are HTML53, Css4 and
Javascript5.

B. back-end tier

The web server receives the request by the web client
and handles it by calling a CGI script written in Python6.
CGI is an interface specification for web servers to execute
programs like console applications running on a server that
generates web pages dynamically. In our case, the CGI script
computes the reduced training dataset by applying a wrapper
TSS method. As described in Section II, TSS problem can

3https://www.w3.org/TR/2012/CR-html5-20121217/
4https://www.w3.org/Style/CSS/
5https://ecma-international.org/
6https://www.python.org/

be mapped in an optimization one to be maximized. Hence,
evolutionary algorithms seem to be a suitable solution to
address this task [10] [11]. In general, the main concept of
the evolutionary wrapper TSS methods is that they maintain
a population of individuals, which are subsets of instances,
i.e., candidate reduced datasets. Specifically, they operate on
encoded representations of the solutions, called chromosomes,
that correspond to the representations of individual features
in nature. The algorithm evolution starts from a population
of randomly generated individuals and consists in successive
generations [12]. In each generation, as in nature, a selection
process provides the mechanism for selecting better solutions
to survive. Each solution is evaluated by means a fitness
function that reflects how good it is, compared with other
solutions in the population. The better is the fitness value
of an individual and higher are its chances of surviving. In
the case of TSS, the fitness of an individual S is based
on the value eval(S) defined in Eq. 2. Among evolutionary
algorithms, TSSweb runs a simple genetic algorithm [13]
whose the pseudo-code is shown in the table I. Hence, the
recombination of genetic material is simulated through two
operators: crossover that exchanges portions between two
randomly selected chromosomes and mutation that causes
random alteration of the chromosome genes. The algorithm
evolution ends when specified conditions are reached. In our
algorithm, the evolution ends when the maximum number
of evaluations of fitness (corresponding to the number of
solutions evaluated) is achieved. The output is represented by
the subset of instances in the final population with the best
fitness value. To conclude with the description of our genetic
algorithm applied to solve the TSS problem, hereafter, we
describe the solution encoding for our TSS problem and the
recombination and selection operators used. As described in
Section II, a solution of the TSS problem should represent a
subset of TR. Other papers [3] [9] describe a solution as a
vector of n variables (one for each instance in the training set
TR) where each variable can be set to two possible states: 0
and 1. In detail, if the variable is set to 1, the corresponding
training instance is included in the subset of TR, otherwise,
it is not included. However, this technique leads to have a
large chromosome size. Therefore, in this paper, we decide to
consider each instance of the dataset to be reduced identified
by an index l (with l = 0, 1, . . . , n− 1 where n is the number
of the instances of the dataset). Then, a solution is encoded as
a vector of p integer values ij (with j = 0, 1, . . . , p−1) where
ij is the index of an instance. Hence, our algorithm exploits
an integer encoding. The chromosome size p is related to the
reduction rate given in input. Formally, let us consider TR the
dataset to be reduced characterized by n instances and r% the
reduction rate, the chromosome size p is as follows:

p = n− n ∗ r%
100

. (4)

Differently from other encoding schemes for training set
selection, the proposed one permits to better deal with large
datasets. Indeed, the chromosome size is not equal to the

TABLE I: Listing of the genetic algorithm-based wrapper TSS method implemented by TSSweb

Input: the number of the instances n of the original dataset; the number of instances to be selected p; parameters of GA (size of the population pop size,
crossover rate p c, mutation rate p m, tournament size t size), termination criteria (maximum number of evaluations max evals).

Output: the bestchromosome representing the reduced dataset

1: gen← 0;
2: pop← generatePopulation(pop size); // Generate randomly an initial population pop of pop size chromosomes
3: evaluateFitness(pop); // Evaluate the fitness value for each chromosome and increase the number of executed evaluations evals
4: best chromosome← getBestChromosome(pop); // Select the best chromosome of the current population
5: while (evals ≤ max evals) do
6: offspring=executeTournament(pop, pop size, t size); // Select pop size chromosomes to compose the offspring
7: executeSinglePointCrossover(offspring, pc); // Recombine chromosomes of the offspring according to a crossover rate pc
8: executeUniformIntegerMutation(offsping, pm); // Mutate chromosomes of offspring with a mutation probability pm
9: evaluateFitness(offspting); // Evaluate the fitness value for the changed chromosomes and increase the number of executed evaluations evals

10: pop← offspring; // The new population is replaced by the offspring
11: best chromosome← getBestChromosome(pop);
12: gen← gen+ 1; // Increment number of iterations
13: end while
14: return best chromosome;

number of instances of the dataset but to the number of in-
stances of the reduced dataset. However, dealing with datasets
with millions of instances will require to enhance TSSweb
with technologies from Big data area. As for recombination
operators, we use the well-known single-point crossover and
the uniform mutation. These operators are common for the
designed integer encoding. Finally, as the selection mecha-
nism, our evolutionary-based TSS method uses the tournament
selection.

IV. EXPERIMENTS AND RESULTS

Being a web-based tool, TSSweb enables researchers com-
ing from different domain areas without programming skills
to compute a reduced training dataset easily. However, this
advantage would be not enough if the computed reduced
dataset is not characterized by a good quality. Therefore,
this section is devoted to show the good performance of
the proposed training set selection by means of a set of
experiments involving a set of well-known datasets and a
comparison with two baseline approaches. Hereafter, more
details about the experimental configuration and the results
are given.

A. Experimental set-up

The experiments involve well-known datasets from the UCI
Machine Learning Database Repository7. Table II shows the
features in terms of number of attributes, instances and classes
of the selected datasets. As it is possible to see, the datasets
have been selected to cover a different set of values for
the aforementioned features. Moreover, datasets belonging to
classification or regression data have been selected to study all
TSSweb functionalities. Each dataset has been split in training
and test data. Training data is the dataset that will be reduced,
whereas, test data will be used for computing the study of the
performance of the proposed TSS method. The percentage of
test data is the 20% of the original data.

7https://archive.ics.uci.edu/ml/index.php

TABLE II: Datasets information. Note that C stands for
classification and R for regression.

Dataset name #instances #attributes #classes Task
bupa 345 6 2 C
glass 214 9 7 C
heart 270 13 2 C
laser 993 4 - R
stock 950 9 - R

The evaluation of the proposed method is performed by
using several indicators. Firstly, the quality of the reduced
training dataset is computed by considering the performance
obtained by the selected supervised method when trained with
the reduced training dataset and applied on the original training
dataset. This indicator allows to understand how much good
the reduced dataset represents the original one. The perfor-
mance measures are the well-known accuracy in the case of
the classification task and the coefficient of determination R2

of the prediction in the case of the regression task. Formally,

Accuracy =
c

t
(5)

where t is the number of new instances to be predicted and
c is the number of the correctly predicted instances. Instead,
the coefficient of determination R2 can be defined as follows.

R2 = 1−
∑t

i=1(yi − ŷi)
2∑t

i=1(yi − y)2
(6)

where t is the number of new instances to be predicted, yi is
the ith real value to be predicted, ŷi is the ith predicted value
and y is the mean value of the variable to be predicted. The
coefficient of determination ranges from − inf to 1. Negative
values arise when the mean of the data provides a better fit to
the outcomes than do the predicted values.

The second indicator is the performance of the supervised
method in predicting instances in the test dataset. In this case,
the performance of the supervised methods trained by using
the reduced dataset is compared with that obtained by two

TABLE III: Experimental configuration of hyper-parameters

Algorithm Parameters
TSS method Population size = 100, Evaluations = 1,000,

pc = 0.8, pm = 0.05, tournament size=5
K-nearest neighbour (KNN) k-value=5

Support Vector Machine (SVM) C-value=1.0, Tolerance=0.001,
maximum number of iterations=200, ker-
nel=Gaussian, gamma=1/number of features

Multi-layer perceptron (MLP) number of hidden layers=1, num-
ber of neurons=100, Tolerance=0.0001,
maximum number of iterations=200,
learning rate=0.001

Decision Tree (DT) criterion=gini/mse, maximum depth=200

baseline approaches. The first baseline approach, denoted as
original, consists of training the selected supervised method
by taking into account all the original training dataset. The
proposed TSS method will perform well if its quality measure
is a bit less, equal or greater than that produced by the original
dataset. Indeed, if the original dataset contain redundancy or
wrong information, the computed reduction will improve the
performance value, otherwise, it could lead to a slightly lower
quality of the prediction. The second baseline method, denoted
as random, consists of training the supervised method by
using a dataset reduced randomly. However, to perform a fair
comparison, the performance obtained by the random approach
is the average of values computing using a set of randomly
selected reduced datasets. The cardinality of this set is equal to
the number of fitness evaluations computed by our training set
selection mechanism (i.e., the number of solutions evaluated).
In this case, the performance obtained by our TSS mechanism
is expected to be very high with respect to the random
approach. Also for this second indicator, the performance
measures are the accuracy (see Eq. 5) in the case of the
classification task and the coefficient of determination R2 (see
Eq. 6) of the prediction in the case of the regression task.
To perform a complete experimental session, all supervised
methods included in TSSweb are applied. Table III shows the
experimental hyper-parameters of the our TSS mechanism and
the applied supervised methods. Moreover, different values for
the percentage of reduction are considered, i.e., 10%, 25%,
50%, 75% and 90%.

B. Results

As for the first indicator of quality related to how much our
TSS method succeeds to represent the original dataset, Fig.
4 displays the performance measure values (accuracy or R2

according to the kind of task) for all datasets and for all super-
vised methods when trained with the TSSweb reduced datasets
according to different reduction rates and applied to predict
the original training data. By analysing this figure, firstly, it
is possible to see a high value for the performance measures
in general. That means that our TSS method performs well
regardless from the supervised learning methods embedded.
Quantitatively, by considering all supervised methods, all
reduction rates and all datasets, the average accuracy is about
75%, whereas, the average coefficient of determination is 0.8.
Typically, the performance measure value decreases when the

(a) bupa

(b) glass

(c) heart

(d) laser

(e) stock

Fig. 4: Performance of the supervised learning methods trained
with the reduced datasets computed by our TSS method and
applied to predict the original training data.

percentage of the reduction increases. However, by computing
an average value on all supervised methods and all datasets by
considering the maximum reduction rate, i.e. 90%, the average
accuracy is about 73%, whereas, the average coefficient of
determination is 0.63. Therefore, the performance is good also
when the supervised learning methods are trained with the
datasets with the maximum reduction, and, this means that
TSSweb succeeds to keep the most suitable instances.

As for the comparison between our TSS method and the
two baseline approaches, Table IV shows the results in terms
of accuracy for classification datasets and in terms of the
coefficient of determination in the case of regression datasets.
More precisely, the table shows the performance values of
the different supervised learning methods applied on the test
dataset when they are trained with the original complete
datasets (the original approach), the reduced datasets computed
by our TSS method and the datasets randomly reduced (the
random approach). Since the performance of the our approach
and the random one have been evaluated by considering differ-
ent reduction rates, in order to compute the whole comparison,
their reported performance values are the mean computed on
the different reduction rate values. As shown in the table,
the performance of the supervised methods trained with the
TSSweb’s reduced datasets are near or, often, greater than
that obtained using the original training data. Moreover, our
proposal always outperforms better than the random approach.
Starting from this analysis, it is possible to say that TSSweb
produces reduced datasets with a high quality.

V. CONCLUSIONS

The paper presents the first web-based tool, named TSSweb,
for implementing the training set selection procedure. TSSweb
will enable researchers coming from different backgrounds to
produce good reduced datasets as shown in the experimental
session. The results of the training set selection procedure are
displayed in the web browser and sent via mail. In the future,
TSSweb could be enhanced by implementing, in the back-end
tier, several training set selection methods (e.g., fuzzy-based
approaches [14]) and by allowing users to select what they
want to use to produce their reduced training datasets.

REFERENCES

[1] N. Verbiest, J. Derrac, C. Cornelis, S. Garcı́a, and F. Herrera, “Evolu-
tionary wrapper approaches for training set selection as preprocessing
mechanism for support vector machines: Experimental evaluation and
support vector analysis,” Applied Soft Computing, vol. 38, pp. 10 – 22,
2016.

[2] S. Garcı́a, A. Fernández, and F. Herrera, “Enhancing the effectiveness
and interpretability of decision tree and rule induction classifiers with
evolutionary training set selection over imbalanced problems,” Applied
Soft Computing, vol. 9, no. 4, pp. 1304 – 1314, 2009.

[3] G. Acampora, F. Herrera, G. Tortora, and A. Vitiello, “A multi-objective
evolutionary approach to training set selection for support vector ma-
chine,” Knowledge-Based Systems, vol. 147, pp. 94 – 108, 2018.

[4] J. R. Cano, F. Herrera, and M. Lozano, “Using evolutionary algorithms
as instance selection for data reduction in kdd: an experimental study,”
IEEE Transactions on Evolutionary Computation, vol. 7, no. 6, pp. 561–
575, 2003.

[5] R. Jensen and C. Cornelis, “Fuzzy-rough instance selection,” in Inter-
national Conference on Fuzzy Systems. IEEE, 2010, pp. 1–7.

TABLE IV: Comparison between our TSS method and base-
line approaches in predicting the test dataset

Dataset bupa (C)
Method Our approach Original approach Random approach

KNN 65.22 60.87 62.03
SVM 71.01 72.46 64.35
MLP 71.01 68.12 66.67
DT 59.42 63.77 59.71

LDA 71.59 69.57 64.64
Dataset glass (C)

Method Our approach Original approach Random approach
KNN 67.91 69.77 61.40
SVM 44.65 37.21 36.74
MLP 59.07 37.21 37.21
DT 68.84 69.77 60.93

LDA 55.95 60.47 55.35
Dataset heart (C)

Method Our approach Original approach Random approach
KNN 66.67 61.11 60.37
SVM 63.70 59.26 58.15
MLP 80.37 72.22 55.56
DT 74.81 70.37 69.26

LDA 80.00 81.48 76.67
Dataset laser (R)

Method Our approach Original approach Random approach
KNN 0.78 0.80 0.77
SVM 0.61 0.66 0.55
MLP 0.62 0.70 0.53
DT 0.88 0.94 0.81

LDA 0.57 0.58 0.57
Dataset stock (R)

Method Our approach Original approach Random approach
KNN 0.97 0.99 0.97
SVM 0.80 0.84 0.71
MLP 0.22 0.87 -0.22
DT 0.96 0.97 0.92

LDA 0.84 0.84 0.83

[6] I. Triguero, S. González, J. M. Moyano, S. Garcı́a López, J. Al-
calá Fernández, J. Luengo Martı́n, A. Fernández Hilario, J. Dı́az,
L. Sánchez, F. Herrera Triguero et al., “Keel 3.0: an open source
software for multi-stage analysis in data mining,” 2017.

[7] J. Alcalá-Fdez, L. Sanchez, S. Garcia, M. J. del Jesus, S. Ventura,
J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas et al.,
“Keel: a software tool to assess evolutionary algorithms for data mining
problems,” Soft Computing, vol. 13, no. 3, pp. 307–318, 2009.

[8] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garcı́a,
L. Sánchez, and F. Herrera, “Keel data-mining software tool: data set
repository, integration of algorithms and experimental analysis frame-
work.” Journal of Multiple-Valued Logic & Soft Computing, vol. 17,
2011.

[9] S. Garcia, J. Derrac, J. Cano, and F. Herrera, “Prototype selection for
nearest neighbor classification: Taxonomy and empirical study,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 3, pp. 417–435, March 2012.

[10] S. Garcı́a, J. R. Cano, and F. Herrera, “A memetic algorithm for evolu-
tionary prototype selection: A scaling up approach,” Pattern Recognition,
vol. 41, no. 8, pp. 2693–2709, 2008.

[11] G. Acampora, G. Tortora, and A. Vitiello, “Applying spea2 to prototype
selection for nearest neighbor classification,” in 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Oct 2016, pp.
003 924–003 929.

[12] G. Acampora, P. Avella, V. Loia, S. Salerno, and A. Vitiello, “Improving
ontology alignment through memetic algorithms,” in 2011 IEEE Inter-
national Conference on Fuzzy Systems (FUZZ-IEEE 2011), June 2011,
pp. 1783–1790.

[13] A. E. Eiben, J. E. Smith et al., Introduction to evolutionary computing.
Springer, 2003, vol. 53.

[14] J. Alcalá-Fdez and J. M. Alonso, “A survey of fuzzy systems software:
Taxonomy, current research trends, and prospects,” IEEE Transactions
on Fuzzy Systems, vol. 24, no. 1, pp. 40–56, 2015.

