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Abstract—In this paper, we introduce Random Weights Fuzzy
Neural Networks as a suitable tool for solving prediction prob-
lems. The generalization capability of these randomized fuzzy
neural networks is exploited in order to estimate accurately the
sample be predicted from a multidimensional input. The latter is
obtained by applying an embedding technique to the time series,
which selects only the meaningful past samples to be used for
prediction. We tested the proposed approach on real-world time
series pertaining to the application context of power delivery.
We proved the efficacy of the proposed approach by comparing
its forecasting accuracy with respect to other prediction systems
based on well-known data-driven regression models.

I. INTRODUCTION

Fuzzy Neural Networks (FNNs) do provide a well suited
solution for classification, regression and prediction problems,
where supervised learning is used in real-world use cases
relevant to physics, engineering, computer science, medicine,
bioinformatics, econometrics, and even quantum computation
[1]. This work is based on the Adaptive Neuro-Fuzzy Inference
System (ANFIS) [2], which established itself as a pivotal tool
for applications such as rule-based process control, pattern
recognition, function approximation, etc.

In recent years, the ANFIS model has been reformulated
in various fashions, particularly using a randomized version
of the FNNs approach. In [3], this new model has been
introduced as a Random Weights Fuzzy Neural Network
(RWFNN), where the parameters of the membership functions
are randomly selected instead of being estimated during the
learning process.

It has been proven that this particular data-driven Fuzzy
Inference System (FIS) has an advantage in terms of efficiency
in certain applications [4]–[6]. The idea proposed in this
work is based on the intuition of exploiting the RWFNN
generalization capability to solve a prediction problem, by
using a proper embedding technique to select the past samples
of time series to be used for predicting the future ones [7].

Regarding the usage of randomized neural network models,
a consistent investigation has been carried out both on classical
Artificial Neural Networks [8]–[10] and on FNNs [11], [12].
In fact, it was proved that, if the parameters of the membership
functions are kept fixed and only the consequent parameters
are tuned, the resulting model is equivalent to a functional-
link network, where the membership functions represent the
functional expansion.

The novelty of the present work resides in solving the
forecasting problem with the generalization capability of data-
driven function approximation models. The optimal estimation
of RWFNN parameters is obtained by solving a Regularized
Least Squares (RLS) problem; such parameters represent the
consequent part of randomized Sugeno first-order type fuzzy
rules, which implement the reasoning system for estimating
the expected outcome of the regression model. If we borrow
from signal processing and chaotic modeling the embedding
approach on the time series to be analyzed, it is possible to
solve the prediction problem by using the RWFNN regressor
[13].

Among supervised learning problems, we focus our atten-
tion on real-world time series forecasting: in this context,
training a randomized architecture model with a data-driven
approach can still be considered as an open challenge. In
particular, regarding fluctuating and non-stationary time series,
one of the most demanding tasks is reconstructing the state
space evolution of energy-related physical systems, due to their
intrinsic volatility [14]–[16]. The high diffusion of Renewable
Energy Sources (RESs) consumers and production units causes
the call for a sound forecasting algorithm to deploy in the
smart grid scenario, giving us a good context in which to test
the proposed RWFNN approach.

The present paper aims at assessing the efficacy of RWFNNs
in solving time series forecasting problems. To this end, we
consider energy-related time series on a real-world application
context. The prediction performance is compared with respect
to other feed-forward regression models adopted for predic-
tion, such as linear Least Squares Estimator (LSE), Radial
Basis Function (RBF), Mixture of Gaussian (MoG) neural
networks, and Adaptive Neuro-Fuzzy Inference System (AN-
FIS). As the experimental tests illustrated in the following are
encouraging, next developments may consider also recurrent
and/or deep architectures for further comparisons as well as for
extending the underlying novelty represented by randomized
fuzzy rules applied to regression and prediction.

The rest of the paper is organized as follows. In Sect. II we
introduce the structure of RWFNNs. In Sect. III we describe
the embedding used in the training phase. In Sect. IV we
present the experimental results obtained through numerical
simulations. Finally, in Sect. V we summarize our proposal
and we discuss future works.
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II. RANDOM WEIGHTS FUZZY NEURAL NETWORKS

In the following, we provide the fundamental concepts of
the RWFNN model, describing its architecture as in [3]. We
show that the problem of training a RWFNN can be formulated
as an RLS problem.

An RWFNN is constituted by five feed-forward layers, each
layer is in turn constituted by a set of nodes and each node is
associated with a fuzzy rule. Each node performs a particular
operation on the signals coming from the previous layer, and
sends the result of the calculation to the nodes in the next
layer. There are no connections between nodes in the same
layer.

Let us consider the problem of estimating a scalar output
y ∈ R from a d-dimensional input x = [x1, . . . , xd]T. Several
alternatives are possible for the fuzzification of crisp inputs,
the composition of input membership functions (MFs), and the
way rule outputs are combined [17]. Let m be the predefined
number of rules of the RWFNN network; usually, the structure
of the fuzzy inference system can be summarized as follows.

• Layer 1. Every node i in this layer, i = 1 . . .m, is
associated with an input MF µ(i,j)(xj ,α) operating on
the jth dimension of the input vector x for the ith rule.
The parameters of the antecedents α are chosen at the
beginning of the learning process from a fixed probability
distribution, which is independent on the training data.

• Layer 2. Every node in this second layer corresponds to
an if-then rule of the FIS. If the adopted operator for the
logical AND is the algebraic product, then the output of
the ith node is:

wi(x) =

d∏
j=1

µ(i,j)(xj), i = 1 . . .m. (1)

• Layer 3. Normalization:

wi(x) =
wi(x)∑m

h=1 wh(x)
, i = 1 . . .m. (2)

• Layer 4. Local output of the ith rule:

f̃i(x) = wi(x)(βT
i x

+), i = 1 . . .m, (3)

where βi is the (d + 1)-dimensional vector given by
βi = [β(i,0), . . . , β(i,d)]

T and x+ = [1,x]T.

• Layer 5. This layer is constituted by a single node that
computes the overall output ŷ as the sum of all the
normalized firing strengths:

ŷ =

m∑
i=1

f̃i . (4)

Let T = {(x1, y1), . . . , (xn, yn)} be the set of data avail-
able for the training phase, and denote with x(r,j) the jth
component of the rth input vector. We define the hidden matrix
H =

[
H1, . . . , Hm

]
, where:

Hi =


wi wix(1,1) · · · wix(1,d)
wi wix(2,1) · · · wix(2,d)
...

...
. . .

...
wi wix(n,1) · · · wix(n,d)

 , i = 1 . . .m. (5)

and the output vector y = [y1, . . . , yn]T. Rearranging the
parameters β in the form:

β = [β(1,0) . . .β(1,d)β(2,0) . . .β(2,d) . . .β(m,0) . . .β(m,d)]
T,
(6)

the optimization problem for training a RWFNN can be
reformulated as a Least Squares (LS) problem:

min
β∈Rp

1

2
‖y −Hβ‖22 , (7)

where ‖·‖2 is the l2 norm and p = m(d+1). The formulation
in (7) may suffer of numerical instability due to the possible
small values of wi, additionally, the optimal solution is unde-
termined if n < p. For this reason, we modify the optimization
problem by setting it in the form of a RLS problem:

min
β∈Rp

1

2
‖y −Hβ‖22 +

λ

2
‖β‖22 (8)

where λ > 0 is the regularization factor. The new problem
(8) is strictly convex, and then it has a unique solution that
can be obtained in closed form as:

β∗ =
(
HTH + λI

)−1
HTy . (9)

III. EMBEDDING OF TIME SERIES FOR SOLVING
PREDICTION PROBLEMS

Since forecasting is of actual importance, the pertinent
literature proposes plenty of methods to solve the prediction
problem with neural and fuzzy neural networks [18]. Indeed,
by properly transforming the said problem into a function
approximation one, such models are well-suited for the case.

In the previous section, we reached a unique solution for
estimating a scalar output from a d-dimensional input x,
solving a RLS problem. If we now consider a time series S(t),
its future samples can be predicted by means of a generalized
function approximation y = f(x), f : IRd → IR.

For instance, resuming the d-dimensional input x introduced
earlier, each input vector can be made of d subsequent samples
of S(t) and the scalar output y, which is the sample to be
predicted, can be obtained by a linear model f(·):

x =
[
S(t) S(t− 1) . . . S(t− d+ 1)

]
, (10)

y = S(t+m) , (11)

flin(x) =

N∑
j=1

λjxj . (12)



Then, we obtain:

S̃(t+m) =

d∑
j=1

λjS(t− j + 1) , (13)

where S̃(t+m) is the prediction of the true value S(t+m)
at the time distance m. Considering the statistical properties
of S(t), as the autocorrelation function, it is possible to
determinate the parameters λj , j = 1 . . . N , of the function
flin(·).

In our case, input vectors x are obtained through the so
called ‘embedding technique’, which makes use of previous
samples of S(t) to build the vectors themselves. Thus, the
dimension d of the input vector corresponds to the embedded
samples of the original time series at time t. Two are the
parameters to be set in this regard, the embedding dimension
d and the time lag θ, resulting in the following embedding:

x =
[
S(t) S(t− θ) S(t− 2θ) . . . S(t− (d− 1)θ)

]
. (14)

These two parameters are estimated by using the False
Nearest Neighbors (FNN) algorithm for the embedding di-
mension and the Average Mutual Information (AMI) criterion
for the time lag [19]. In the following of the paper, both d
and θ will be chosen by such algorithms via the VRA soft-
ware available at https://visual-recurrence-analysis.software.
informer.com/download/.

The performances of a predictor that relies on a linear
approximation model, as the one in (10), are very poor when
it is applied to data sequences in real environments. They
often have noisy and chaotic components that force to wisely
choose the embedding parameters, as well as the function
approximation model, by using appropriate procedures [20].

In this context, the underlying, unknown system is observed
through S(t) and its state-space evolution is obtained by the
trajectories of embedded vectors. The estimated sample S̃(t+
m) predicted at a distance m will be:

S̃(t+m) = f (x) , (15)

where f(·) is the regression model to be determined. Thus,
such a function will approximate the link from the recon-
structed state x to the corresponding output y [19]. It is
important to note that f(·) must be non-linear since the
considered system has a complex behavior.

As said, because of the intrinsic nonlinearity and non-
stationarity of a chaotic system, the regression model should
be a nonlinear function, which must be determined using
data-driven techniques that are typical of the neural network
approach. In fact, in this work we will use the non-linear
function stemming from the RWFNN reasoning in the previous
section. Along, other predictors will be employed, where the
nonlinear function is based on other models, namely:
• LSE: the relationship between the value to be predicted

and the current ones is modeled as a linear function, an
LS algorithm is used to estimate the parameters [21];

• RBF: a neural network that builds up a function approx-
imation model with a usually multiquadratic radial basis

functions [22];
• MoG: a neural network model in which a density mixture

of Gaussian components are used in the joint input-
output space; the mixture parameters are estimated via
the Expectation-Maximization [23];

• ANFIS: a data driven fuzzy inference system based on
a set of Sugeno first-order type fuzzy rules trained by
back-propagation [2].

IV. EXPERIMENTAL TESTS

In order to asses the performance of the proposed RWFNN-
based approach, we consider real-world data in the renew-
able energy context. The neural architectures with which we
compare the RWFNN model were introduced in the previous
section, i.e. RBF, MoG and ANFIS. The baseline for the tests
is the linear predictor reported in (10), whose parameters are
estimated through a common LSE.

A. Data Description

The proposed approach focuses on a particular applica-
tion, regarding the power plant located in Sant’Eusanio del
Sangro, in the Abruzzo region of Italy. The data is relative
to a single PV plant that belongs to a broader system with
other interconnected plants operated by the same agent. The
complete numerical dataset is available at https://github.com/
max-panella/panella/raw/master/FUZZ2020 Dataset.zip.

In the considered prediction problem, the adopted time
series is composed by the output voltage of the plant sub-
sampled at one sample per hour. The time series is linearly
normalized in the range [−0.5,+0.5], so as to satisfy the
numerical requirements of the data driven prediction models.

The adopted training set is a single month (mostly 31 days)
of the time series, then resulting in 744 samples. During
learning, the considered regression model is trained by using
an input-output dataset that is built, through embedding, on the
first 500 samples of the adopted time series. The remaining
244 samples are used to cross-validate the complexity of
the adopted regression model (i.e., order of linear predictor,
Gaussian kernels in RBF and MoG, number of fuzzy rules in
ANFIS and RWFNN).

The final model found by the training algorithm is tested
on the next operation day (i.e., 24 samples) after the end of
the month. In this regard, we are facing a very challenging
prediction problem, as all of the 24 values of the new day must
be predicted at once, for regulating purposes of the energy
distribution system. Thus, in the following we will consider
an unusual prediction distance, which is set to m = 24, in a
‘multi-step-ahead’ prediction problem.

The performances are measured by the Normalized Mean
Squared Error (NMSE), which is defined as:

NMSE =

∑
n

(
S(t)− S̃(t)

)2
∑

n

(
S(t)− S̄

)2 , (16)

where S̃(t) is the predicted value of S(t) and S̄ is the average
on the considered values of S(t).



We tested the proposed approach by using four different
datasets, all taken from the described time series relative to the
year 2016. These sets exhibit some different behaviors, as for
the maximum values reached in a day and for the volatility of
the time series. The training set is a whole month of a different
season (winter, spring, summer, and autumn), as described in
the following and shown from Fig. 1 to Fig. 4:

• Winter: from January 1 to January 31, 2016, standard
embedding parameters θ = 13, d = 25;

• Spring: from March 31 to April 30, 2016, standard
embedding parameters θ = 10, d = 20;

• Summer: from July 1 to July 31, 2016, standard embed-
ding parameters θ = 10, d = 14;

• Autumn: from October 1 to October 31, 2016, standard
embedding parameters θ = 10, d = 13.

Fig. 1. Winter training set.

Fig. 2. Spring training set.

B. Numerical Results

The numerical results on the test set for all of the considered
datasets are reported in Table I, while the graphical behavior is

Fig. 3. Summer training set.

Fig. 4. Autumn training set.

shown from Fig. 5 to Fig. 8 by using the proposed RWFNN-
based prediction model. All of the experiments had been
performed using Matlab

TM
R2019a on a machine equipped

with Intel R© Core
TM

i7-3770K 64-bit CPU at 3.50 GHz, 32
GB RAM, and NVIDA GTX 680 GPU.

TABLE I
NUMERICAL RESULTS (NMSE) FOR DIFFERENT TIME SERIES AND

PREDICTION MODELS

Prediction model Winter Spring Summer Autumn

LSE 0.825 0.066 0.057 0.234

RBF 0.616 0.062 0.062 0.132

MoG 0.753 0.063 0.045 0.155

ANFIS 0.677 0.065 0.044 0.159

RWFNN 0.591 0.059 0.040 0.107

The obtained results are coherent in showing the best
prediction accuracy of the proposed RWFNN model, although
there are many differences among the various seasons; winter



Fig. 5. Winter test set (blue) and predicted time series (red) using RWFFN.

Fig. 6. Spring test set (blue) and predicted time series (red) using RWFFN.

Fig. 7. Summer test set (blue) and predicted time series (red) using RWFFN.

seems to be the hardest one to be predicted. For every season,
there are improvements in terms of NMSE reduction with
respect to other models that, considering the best one among

Fig. 8. Autumn test set (blue) and predicted time series (red) using RWFFN.

them, range from 4% up 18%.
Overall, the usefulness of the RWFNN approach is rein-

forced by the results, in which even a slight NMSE decrease
must be considered a significant amelioration, since the phys-
ical quantities in play are quite large, although normalized.

V. CONCLUSIONS

In this paper, we have proposed a new method of solving
prediction tasks using the RWFNN paradigm. By formulating
forecasting as a function approximation problem, we are
able to make use of the embedding technique in order to
appropriately select the meaningful samples of the time series
to be predicted. A straightforward RLS problem is defined for
training the network parameters of the randomized FIS.

The performance of the proposed model has been as-
sessed through a comprehensive benchmarking on a real-world
application considering well-known regression models. The
obtained numerical results prove the feasibility and the efficacy
of the proposed approach.

In future works, a distributed implementation of the fore-
casting RWFNN paradigm might be considered, where local
predictors can have the ability to exchange information with
other prediction agents in the network and to reach consensus
among some model parameters, so as to achieve a better
prediction accuracy.

REFERENCES

[1] M. Panella and G. Martinelli, “Neurofuzzy networks with nonlinear
quantum learning,” IEEE Trans. Fuzzy Syst., vol. 17, no. 3, pp. 698
–710, 2009.

[2] J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 3, pp.
665–685, 1993.

[3] R. Fierimonte, M. Barbato, A. Rosato, and M. Panella, “Distributed
learning of random weights fuzzy neural networks,” in 2016 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2016,
pp. 2287–2294.

[4] A. Cabalar, A. Cevik, and C. Gokceoglu, “Some applications of adap-
tive neuro-fuzzy inference system (anfis) in geotechnical engineering,”
Computers and Geotechnics, vol. 40, p. 14–33, 03 2012.

[5] M. Salleh and K. Hussain, “A review of training methods of anfis for
applications in business and economics,” International Journal of u- and
e- Service, Science and Technology, vol. 9, pp. 165–172, 07 2016.



[6] B. Savkovic, P. Kovac, B. a. Z. Dudic, D. Rodic, M. Taric, and
M. Gregus, “Application of an adaptive “neuro-fuzzy” inference system
in modeling cutting temperature during hard turning,” Applied Sciences,
vol. 9, p. 3739, 09 2019.

[7] M. Casdagli, “Nonlinear prediction of chaotic time series,” Physica
D: Nonlinear Phenomena, vol. 35, no. 3, pp. 335 – 356,
1989. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0167278989900742

[8] W. F. Schmidt, M. A. Kraaijveld, and R. P. W. Duin, “Feedforward neural
networks with random weights,” in 11th IAPR International Conference
on Pattern Recognition, 1992. IEEE, 1992, pp. 1–4.

[9] Y.-H. Pao, G.-H. Park, and D. J. Sobajic, “Learning and generalization
characteristics of the random vector functional-link net,” Neurocomput-
ing, vol. 6, no. 2, pp. 163–180, 1994.

[10] L. Wang, B. Liu, and C. Wan, “A novel RBF neural network with fast
training and accurate generalization,” in Computational and Information
Science. Springer, 2004, pp. 166–171.

[11] ——, “On the universal approximation theorem of fuzzy neural networks
with random membership function parameters,” in Advances in Neural
Networks–ISNN 2005. Springer, 2005, pp. 45–50.

[12] Y.-L. He, X.-Z. Wang, and J. Z. Huang, “Fuzzy nonlinear regression
analysis using a random weight network,” Information Sciences, 2016,
in press.

[13] M. Panella, “A hierarchical procedure for the synthesis of ANFIS
networks,” Advances in Fuzzy Systems, vol. 2012, pp. 1–12, 2012.

[14] F. Chen, D. Liu, and X. Xiong, “Research on stochastic optimal

operation strategy of active distribution network considering intermittent
energy,” Energies, vol. 10, no. 4, pp. 1996–1073, 2017.

[15] X. Han, S. Liao, X. Ai, W. Yao, and J. Wen, “Determining the
minimal power capacity of energy storage to accommodate renewable
generation,” Energies, vol. 10, no. 4, pp. 1996–1073, 2017.

[16] A. Rosato, R. Altilio, R. Araneo, and M. Panella, “Prediction in
photovoltaic power by neural networks,” Energies, vol. 10, no. 7, 2017.

[17] J.-S. Jang, C. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: a
Computational Approach to Learning and Machine Intelligence. Upper
Saddle River, NJ, USA: Prentice Hall, 1997.

[18] F. Masulli and L. Studer, “Time series forecasting and neural networks,”
in Proc. of IJCNN’99, Washington D.C., USA, 1999.

[19] H. Abarbanel, Analysis of Observed Chaotic Data. Springer, New York,
1996.

[20] M. Panella, A. Rizzi, F. M. F. Mascioli, and G. Martinelli, “ANFIS
synthesis by hyperplane clustering,” in IFSA World Congress and 20th
NAFIPS International Conference, 2001. Joint 9th, vol. 1, July 2001,
pp. 340–345 vol.1.

[21] H. W. Bode and C. E. Shannon, “A simplified derivation of linear
least square smoothing and prediction theory,” Proceedings of the IRE,
vol. 38, no. 4, pp. 417–425, 1950.

[22] A. Bors and I. Pitas, “Median radial basis function neural network,”
IEEE Trans. Neural Netw., vol. 7, no. 6, pp. 1351–1364, 1996.

[23] M. Panella, A. Rizzi, and G. Martinelli, “Refining accuracy of envi-
ronmental data prediction by MoG neural networks,” Neurocomputing,
vol. 55, pp. 521–549, 2003.




